# Year 1 Monitoring Report for

# Site 23 Underdrain Metering Pit Sampling

### Naval Submarine Base New London Groton, Connecticut



### Naval Facilities Engineering Command Mid-Atlantic

Contract Number N62472-03-D-0057 Contract Task Order 73

September 2008

#### YEAR 1 MONITORING REPORT FOR SITE 23 - UNDERDRAIN METERING PIT

### NAVAL SUBMARINE BASE NEW LONDON GROTON, CONNECTICUT

### COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command Mid-Atlantic
9742 Maryland Avenue
Norfolk, Virginia 23511-3095

Submitted by: Tetra Tech NUS, Inc. 260 Mall Boulevard, Suite 260 King of Prussia, PA 19406

CONTRACT NUMBER N62472-03-D-0057 CONTRACT TASK ORDER 73

**SEPTEMBER 2008** 

PREPARED UNDER THE DIRECTION OF:

APPROVED FOR SUBMISSION BY:

COREY A. RICH, P.E. PROJECT MANAGER TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

JOHN J. TREPANOWSKÍ, P.E.

PROGRAM MANAGER TETRA TECH NUS, INC.

KING OF PRUSSIA, PENNSYLVANIA

#### **TABLE OF CONTENTS**

| <u>SECTION</u> |         |                                                     |      |  |  |
|----------------|---------|-----------------------------------------------------|------|--|--|
| ACR            | ONYMS   |                                                     | v    |  |  |
| 1.0            | INTRO   | DUCTION                                             | 1-1  |  |  |
|                | 1.1     | PURPOSE                                             |      |  |  |
|                | 1.2     | OBJECTIVES                                          |      |  |  |
|                | 1.3     | FACILITY LOCATION AND DESCRIPTION                   |      |  |  |
|                | 1.4     | SITE LOCATION AND DESCRIPTION                       |      |  |  |
|                | 1.5     | REPORT FORMAT                                       |      |  |  |
| 2.0            | FIELD ' | WORK                                                | 2-1  |  |  |
|                | 2.1     | SAMPLE COLLECTION                                   | 2-1  |  |  |
|                | 2.2     | WATER QUALITY                                       | 2-2  |  |  |
|                | 2.3     | ANALYTICAL PROGRAM                                  |      |  |  |
|                | 2.4     | QA/QC PROGRAM                                       | 2-3  |  |  |
|                | 2.5     | DECONTAMINATION                                     |      |  |  |
| 3.0            | RESUL   | TS                                                  |      |  |  |
|                | 3.1     | DATA VALIDATION                                     | 3-1  |  |  |
|                | 3.1.1   | Data Validation Process                             | 3-1  |  |  |
|                | 3.1.2   | Data Validation Outputs                             | 3-2  |  |  |
|                | 3.1.3   | Data Quality Review                                 |      |  |  |
|                | 3.1.4   | Completeness                                        |      |  |  |
|                | 3.1.5   | Sensitivity                                         | 3-4  |  |  |
|                | 3.1.6   | Laboratory Accuracy                                 |      |  |  |
|                | 3.1.7   | Laboratory Precision                                |      |  |  |
|                | 3.1.8   | Comparability                                       |      |  |  |
|                | 3.1.9   | Representativeness                                  |      |  |  |
|                | 3.2     | QUALITY ASSURANCE/QUALITY CONTROL PROGRAM           |      |  |  |
|                | 3.3     | ANALYTICAL DATA EVALUATION                          |      |  |  |
|                | 3.4     | STATISTICAL/TREND ANALYSIS                          |      |  |  |
|                | 3.5     | MEMORANDUM REGARDING HUMAN HEALTH RISKS ASSOCIATED  |      |  |  |
|                | 0.0     | WITH SITE 23 GROUNDWATER (MAY 19, 2008)             | 3-10 |  |  |
|                | 3.6     | MEMORANDUM REGARDING VAPOR INTRUSION EVALUATION FOR | 10   |  |  |
|                | 3.0     | GROUNDWATER AT OPERABLE UNIT 9 (MAY 30, 2008)       | 3-11 |  |  |
| 4.0            | CONCL   | LUSIONS AND RECOMMENDATIONS                         | 4-1  |  |  |
|                | 4.1     | CONCLUSIONS                                         |      |  |  |
|                | 4.2     | RECOMMENDATIONS                                     |      |  |  |
| REFE           | ERENCES |                                                     | R-1  |  |  |
|                |         |                                                     |      |  |  |
| APPE           | ENDICES |                                                     |      |  |  |
|                | Α       | FIELD FORMS                                         |      |  |  |
|                | В       | ROUND 4 DATA VALIDATION LETTER                      |      |  |  |
|                | С       | YEAR 1 ANALYTICAL DATABASE                          |      |  |  |
|                | D       | HUMAN HEALTH RISK ASSESSMENT MEMORANDUM             |      |  |  |
|                | E       | VAPOR INTRUSION EVALUATION FOR GROUNDWATER MEMORANI | DUM  |  |  |

#### **TABLES**

#### **NUMBER**

- 2-1 Summary of Water Quality Measurements3-1 Data Rejection and Reasons for Rejections
- 3-2 Data Qualification and Reasons for Qualifications
- 3-3 Summary of Detected Concentrations

#### **FIGURES**

#### **NUMBER**

- 1-1 Facility Location Map
- 1-2 Site Location Map
- 1-3 Site Map, Site 23 Tank Farm
- 1-4 Site Plan, Storm Sewer Rehabilitation As-Built
- 1-5 Metering Pit As-Built, Field Sketch FSK-003

#### **ACRONYMS**

%C Percent completeness

%R Percent recovery

AS/SVE Air sparging/soil vapor extraction

AST above-ground storage tank

BGOURI Basewide Groundwater Operable Unit Remedial Investigation Report

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CLEAN Comprehensive Long-Term Environmental Action Navy

CLP Contract Laboratory Program

CTDEP Connecticut Department of Environmental Protection

CTO Contract Task Order

DERP Defense Environmental Restoration Program

DQI Data quality indicator
DO Dissolved oxygen

ETPH Extractable total petroleum hydrocarbons

FWEC Foster Wheeler Environmental Corporation

HDPE High-density polyethylene

HHRA Human Health Risk Assessment IRP Installation Restoration Program

LCS Laboratory control sample

LCSD LCS duplicate

MDL Method detection limit µg/L Microgram per liter mg/L Milligram per liter

mS/cm MilliSiemen per centimeter

MS/MSD Matrix spike/matrix spike duplicate

Navy United States Department of the Navy

NEX Naval Exchange

NSB-NLON Naval Submarine Base-New London

NTU Nephelometric turbidity unit
ORP Oxidation-reduction potential

OU Operable Unit

PAH Polynuclear aromatic hydrocarbon
PCMP Perforated corrugated metal pipe

PQL Practical quantitative limit

PVC Polyvinyl chloride

#### **SEPTEMBER 2008**

QA/QC Quality assurance/quality control

RCRA Resource Conservation and Recovery Act

RPD Relative percent difference

RSR Remediation Standard Regulations

SARA Superfund Amendments and Reauthorization Act

SVOC Semivolatile organic compound

TAL Target Analyte List
TCL Target Compound List
Tetra Tech Tetra Tech NUS, Inc.

TPH Total petroleum hydrocarbons

TSS Total suspended solids

USEPA United States Environmental Protection Agency

UST Underground storage tank
VOC Volatile organic compound

#### 1.0 INTRODUCTION

#### 1.1 PURPOSE

This Year 1 Monitoring Report summarizes the field activities, analytical results, and data evaluations for underdrain metering pit sampling at Site 23 (Tank Farm) at Naval Submarine Base-New London (NSB-NLON) in Groton, Connecticut. This work was conducted by Tetra Tech NUS, Inc. (Tetra Tech) under the Comprehensive Long-Term Environmental Action Navy (CLEAN) Contract N62472-03-D-0057, Contract Task Order (CTO) 073. The work is part of the United States Department of the Navy's (Navy) Installation Restoration Program (IRP), a component of the Defense Environmental Restoration Program (DERP) established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (SARA).

#### 1.2 OBJECTIVES

The objective of the field work was to collect four quarterly rounds of water samples from the metering pit located just before the groundwater underdrain system connects with the storm sewer system, which then carries the combined flow to the Thames River outfall. The objective of this report is to summarize the results of the four quarterly sampling events conducted between June 2007 and February 2008 and to determine if the quality of groundwater conveyed by the underdrain piping poses potential risks to human health or the environment.

#### 1.3 FACILITY LOCATION AND DESCRIPTION

NSB-NLON is located in southern Connecticut in the Towns of Ledyard and Groton. NSB-NLON is situated on the eastern bank of the Thames River, approximately 6 miles north of Long Island Sound. It is bordered on the east by Connecticut Route 12, on the south by Crystal Lake Road, and on the west by the Thames River. The northern border is a low ridge that trends approximately east-southeastward from the Thames River to Baldwin Hill. A general facility location map is presented as Figure 1-1. The location of each IRP site within NSB-NLON is shown on Figure 1-2.

#### 1.4 SITE LOCATION AND DESCRIPTION

Site 23 is located between Tang Avenue and Crystal Lake Road in the southern portion of NSB-NLON. The general configuration of Site 23 is shown on Figure 1-3.

The Tank Farm features nine former underground storage tanks (UST) that were demolished and closed in place, a 30,000-gallon, double-walled UST (OT-10), a former oil/water separator, a 10,000-gallon

waste oil tank, a fuel oil loading area, a tanker truck dumping pad and trough, associated UST piping systems, baseball/softball fields, buildings that housed the former air sparging/soil vapor extraction (AS/SVE) facility for the Naval Exchange (NEX) service station, two 150,000-gallon diesel above-ground storage tank (ASTs), and other buildings. The soil at Site 23 was investigated and remediated under the Connecticut Department of Environmental Protection (CTDEP) Resource Conservation and Recovery Act (RCRA) UST Program. Groundwater associated with the site is being investigated under CERCLA (TtNUS, 2006) and is considered part of Operable Unit (OU) 9.

The Tank Farm originally contained an extensive drainage system consisting of numerous catch basins, corrugated metal pipe, perforated corrugated metal pipe (PCMP), vitrified clay pipe, and reinforced concrete pipe. Portions of the drainage system were installed with PCMP to depress the water table in the Tank Farm to prevent groundwater from exerting uplift forces on the bottoms of the tanks. Both surface water and groundwater collected by the piping systems ultimately flow to the storm drain system near the Main Gate and are discharged to a boomed area of the Thames River, adjacent to the Goss Cove Landfill.

The drainage system was rehabilitated in 2000. The original combined groundwater and stormwater system was separated into a deep groundwater and a new shallow stormwater system. The groundwater underdrain collects water from the old tank ring drains (french drains). Over 2,000 feet of old deteriorated pipes in the groundwater underdrain system connecting the ring drains to the storm sewer were slip-lined to improve their integrity and conductance. A portion of the refurbished piping is shown by a dashed line on Figure 1-4. An existing manhole, initially intended to be converted into an oil/water separator, was modified to become a groundwater flow-metering pit. In the manhole, a 18-inch-diameter high-density polyethylene (HDPE) slip line was cut in half longitudinally to form a trough that could be used to meter flow. The annular space between the HDPE slip line and the old pipe was bricked and grouted with a watertight material, and the base of the structure was filled with grout to the top of the trough. Under this construction, all of the groundwater entering the metering pit flows through the trough, and the quantity of flow can be measured. The depth of the metering pit is approximately 15 feet. Field sketch FSK-003 of this structure is presented as Figure 1-5 (FWEC, 2001).

After completion of the storm sewer rehabilitation project, flow measurements were taken in the metering pit from October 4, 2000 to December 8, 2000. Daily flow rates ranged from 75,000 gallons per day (October 5, 2000) to 122,000 gallons per day (December 2, 2000). In addition, seven groundwater samples were collected from the metering pit between July 25, 2000 and May 23, 2001 and analyzed for a varying list of analytical parameters including fuel type fingerprint (Method 8015), pH (Method EPA 150.1), total petroleum hydrocarbons (TPH) (Method 418.1), oil and grease (Method EPA 413.1), total suspended solids (TSS) (Method 160.2), inorganics (Method 6010B), volatile organic compounds (VOC)

(Method OLM2.1), semivolatile organic compounds (SVOCs) (Method 8270C), and polynuclear aromatic hydrocarbons (PAHs) (Method 8310). The analytical results varied per round, and no official evaluation of data compared to Connecticut criteria was completed, but in general the results did not indicate that there were significant concentrations of contaminants typically found in fuel oil present in the groundwater.

#### 1.5 REPORT FORMAT

Section 1.0 of the report is this brief introduction. Section 2.0 describes the field tasks and methodologies in detail. Section 3.0 summarizes and evaluates the data collected during the Year 1 program. Conclusions and recommendations are provided in Section 4.0. Field forms (Appendix A), the Round 4 Data Validation Letter (Appendix B), analytical database (Appendix C), and human health risk assessment memoranda (Appendices D and E) are provided as appendices to this report.











#### 2.0 FIELD WORK

Four rounds of sampling were conducted during Year 1 in accordance with the Work Plan for Site 23 Underdrain Metering Pit Sampling (Tetra Tech, 2007a). The dates of the sampling rounds are as follows:

- Round 1 June 18, 2007
- Round 2 September 6, 2007
- Round 3 December 18, 2007
- Round 4 February 21, 2008

The field work performed during the four rounds of sampling is described in the following sections.

#### 2.1 SAMPLE COLLECTION

General field activities performed during the sampling rounds included removing the manhole cover, collecting samples from the underdrain metering pit, collecting quality assurance/quality control (QA/QC) samples, and measuring water quality parameters. The field forms associated with the Round 4 sampling effort (i.e., copies of the relevant field logbook pages, chain of custody forms, sample log sheets, and equipment calibration logs) are included in Appendix A. The field forms for Rounds 1 through 3 were previously provided in the round-specific letter reports (Tetra Tech, 2007b, 2007c, and 2008).

During Rounds 1 through 3, sampling was completed by lowering a dedicated stainless steel beaker into the manhole along the centerline of the bottom of the metering pit at a 45-degree angle, with the mouth of the beaker facing upstream. The beaker was allowed to fill, and the sample was then retrieved and transferred to the appropriate sample containers.

During Round 4, a new sampling technique was implemented in an attempt to minimize incorporation of suspended solids and iron floc into the samples. The need for the new technique was identified in the Round 3 Letter Report (Tetra Tech, 2008), and the new technique included the following steps:

- Installation of polyvinyl chloride (PVC) riser with an attached 2-foot length of screen with a slot size of 0.01 inch into the flow in the Site 23 underdrain metering pit.
- Insertion of Teflon tubing inside the PVC riser until the end of the tubing was approximately 2 inches
  off the bottom of the underdrain metering pit. Water in the pit was approximately 3 to 4 inches in
  depth.

- Use of surgical-grade silicone tubing to connect the Teflon tubing to a peristaltic pump. Purging of several hundred milliliters of water through the tubing until the water appeared clear (i.e., low turbidity).
- Adjustment of the pump rate to 200 milliliters per minute and filling of appropriate sample containers, collecting unfiltered parameters first and then dissolved parameters. A 0.45-micron in-line filter was used to filter the samples in the field. Per the recommendation provided in the Round 3 Letter Report, total and dissolved (filtered) samples were collected for PAHs and Extractable Total Petroleum Hydrocarbon (ETPH) analysis during Round 4 to evaluate the potential impact of suspended solids and/or iron floc on the analytical results.

All samples were placed on ice immediately after collection and then sent to the laboratory for analysis.

#### 2.2 WATER QUALITY

A summary of the water quality measurements collected during the four rounds of sampling is provided in Table 2-1. The parameters that were measured and are summarized in Table 2-1 include pH, conductivity, dissolved oxygen (DO), temperature, oxidation-reduction potential (ORP), and turbidity. With a few exceptions, most of the measurements were consistent over the four rounds of measurements or varied as expected based on seasonal changes. One exception was the high conductivity measurement [5.8 milliSiemens per centimeter (mS/cm)] recorded during Round 2, which appears to be anomalous when compared to the other three rounds of data. The equipment calibration results, field notes, and manufacturer's information for the water quality probe were reviewed; however, a cause for the anomaly could not be determined. Another exception is the high DO concentration (18.26 mg/L) recorded during Round 4. It is likely that this artificially high concentration is related to oxygen being incorporated into the sample by the sampling technique (i.e., peristaltic pump) used during Round 4. The last exception is turbidity, which consistently declined over the four sampling rounds. It appears that the sampling technique steadily improved during the first three rounds of sampling, with turbidity readings decreasing from 55.6 nephelometric turbidity units (NTUs) to 3.4 NTUs. The new sampling approach used during Round 4 resulted in the lowest turbidity (2.43 NTUs) of any of the rounds and is expected to have resulted in sample results with the least impact from turbidity.

#### 2.3 ANALYTICAL PROGRAM

After collection, the samples were packaged and shipped to the project laboratory, Katahdin Analytical Services in Scarborough, Maine, for analysis. The samples were analyzed by the laboratory for Target Compound List (TCL) VOCs, TCL SVOCs, TCL PAHs, Target Analyte List (TAL) metals (total and dissolved), oil and grease, and ETPH per the Work Plan. Per the recommendation provided in the

Round 3 Letter Report, filtered samples were also analyzed for PAHs and ETPH during Round 4 to evaluate the potential impact of suspended solids and/or iron floc on the analytical results.

#### 2.4 QA/QC PROGRAM

Samples collected to meet QA/QC requirements included in the Work Plan were trip blanks, field duplicates, and matrix spike/matrix spike duplicate (MS/MSD). The blanks and duplicates collected and submitted during each round were identified on the chain-of-custody forms and sample log sheets. Trip blanks were included in the coolers shipped to the laboratory during Rounds 1 through 4 that contained samples for TCL VOC analysis. Trip blanks are used to assess the potential for contamination of samples to be analyzed for VOCs by contaminant migration into sample containers during sample shipment and storage. Field duplicates were collected during Rounds 1 and 3, in accordance with the Work Plan, to help identify the precision of the sampling and analysis procedures. MS/MSD samples were collected and sent to the laboratory during each round of sampling to help identify method performance and precision issues.

#### 2.5 DECONTAMINATION

Minimal decontamination efforts were required during the field sampling program. The beaker used to collect samples during Rounds 1 through 3 was decontaminated prior to and after sampling using a potable water rinse, detergent rinse, and potable water rinse. The small quantity of decontamination fluid generated during decontamination was directly disposed into the sanitary sewer system. The Teflon tubing used to collect the water sample during Round 4 did not require decontamination. The tubing was retained to be used for additional sampling of the metering pit if required in the future. During all rounds, purge water generated during sampling was returned to the Site 23 underdrain metering pit.

**TABLE 2-1** 

#### SUMMARY OF WATER QUALITY MEASUREMENTS ROUNDS 1 THROUGH 4 SAMPLING EVENTS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

| Round | pH<br>(SU) | Conductivity<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>(°C) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity<br>(NTU) |
|-------|------------|-------------------------|-------------------------------|---------------------|----------------------------------------------|--------------------|
| 1     | 6.18       | 0.709                   | 9.00                          | 16.63               | 45                                           | 55.60              |
| 2     | 6.61       | 5.8 <sup>(1)</sup>      | 4.70                          | 17.30               | 15                                           | 26.00              |
| 3     | 5.67       | 0.594                   | 4.15                          | 13.20               | 52                                           | 3.40               |
| 4     | 6.33       | 0.648                   | 18.26 <sup>(2)</sup>          | 11.76               | 40                                           | 2.43               |

- 1 Result appears to be anomalous compared to the other three rounds of data. The equipment calibration results, field notes, and manufacturer's information for the water quality probe were reviewed; however, a cause for the anomaly could not be determined.
- 2 Result appears to be anomalous compared to the other three rounds of data. The peristaltic pump used during Round 4 may have caused this elevated dissolved oxygen concentration.

#### 3.0 RESULTS

#### 3.1 DATA VALIDATION

This section describes the data review processes used to determine whether analytical laboratory data were of acceptable technical quality for use in decision making. The review began with data validation, which is a comparison of data quality indicators (DQIs) to prescribed acceptance criteria. The DQIs are measures to assess the bias and precision of the analytical calibrations and sample analyses. The output of this review was a set of alphabetic flags such as "U," "J," "R," or combinations thereof, that may have been assigned to individual results based on the validation effort. These flags were used to infer the general quality of the data. Also evaluated were the measures of data completeness, sensitivity, comparability, and representativeness.

#### 3.1.1 Data Validation Process

All of the results from analytical laboratory samples were validated according to several specifications. Assignment of data qualification flags conformed to United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for Low Concentration Organic Data Review (June 2001), USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses (December 1996), and USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses (February 1989) to the greatest extent practicable for non-CLP data.

Data validation specifications require that various data qualifiers be assigned when a deficiency is detected or when a result is less than its detection limit. If no qualifier is assigned to a result that has been validated, the data user is assured that no technical deficiencies were identified during validation. The qualification flags used are defined as follows:

U – Indicates that the chemical was not detected at the numerical detection limit (sample-specific detection limit) noted. Non-detected results from the laboratory are reported in this manner. This qualifier is also added to a positive result (reported by the laboratory) if the detected concentration is determined to be attributable to contamination introduced during field sampling or laboratory analysis.

UJ – Indicates that the chemical was not detected; however, the detection limit (sample-specific detection limit) is considered to be estimated based on problems encountered during laboratory analysis. The associated numerical detection limit is regarded as inaccurate or imprecise.

J – Indicates that the chemical was detected; however, the associated numerical result is not a precise representation of the concentration that is actually present in the sample. The laboratory reported concentration is considered to be an estimate of the true concentration.

UR – Indicates that the chemical may or may not be present. The non-detected analytical result reported by the laboratory is considered to be unreliable and unusable. This qualifier is applied in cases of gross technical deficiencies (e.g., holding times missed by a factor of two times the specified time limit, severe calibration non-compliances, and extremely low analyte recoveries).

R – Indicates that the chemical may or may not be present. The positive analytical result reported by the laboratory is considered to be unreliable and unusable. This qualifier is applied in cases of gross technical deficiencies.

The preceding data qualifiers may be categorized as indicative of major or minor problems. Major problems are defined as issues that result in the rejection of data and qualification with UR or R data validation qualifiers. These data are considered invalid and are not used for decision-making purposes unless they are used in a qualitative way and the use is justified and documented. Minor problems are defined as issues resulting in the estimation of data and qualification with U, J, and UJ data validation qualifiers. Estimated analytical results are considered to be suitable for decision-making purposes unless the data use requirements are very stringent and the qualifier indicates a deficiency that is incompatible with the intended data use. A U qualifier does not necessarily indicate that a data deficiency exists because all non-detect values are flagged with the U qualifier regardless of whether a quality deficiency has been detected.

#### 3.1.2 Data Validation Outputs

After data were validated, a list was developed of non-conformities requiring data qualifier flags that were used to alert the data user to inaccurate or imprecise data. For situations in which several QC criteria were out of specification, the data validator made professional judgments and/or comments on the validity of the overall data package. The reviewer then prepared a technical memorandum presenting qualification of the data, if necessary, and the rationale for making such qualifications. The net result was a data package that had been carefully reviewed for its adherence to prescribed technical requirements. Pertinent quality estimates are summarized in a more quantitative format in the following section.

#### 3.1.3 <u>Data Quality Review</u>

DQIs are parameters that are monitored to help establish the quality of data generated during an investigation. Some of the DQIs are generated from analysis of field samples (e.g., field duplicates) and

some are generated from the analysis of laboratory samples (e.g., laboratory duplicates). Individually, field and laboratory DQIs provide measures of the performance of the respective investigative operations (field or laboratory). During data validation, individual QC results were evaluated. If individual QC results were acceptable, no validation flag was assigned to an analytical result; otherwise, a flag indicating the type of QC deficiency was assigned to the result. Table 3-1 lists all the data that were rejected and the reasons for the rejections. This data is considered un-useable for any purposes. The semivolatile compound pentachlorophenol is considered a poor responder, and several calibrations failed due to low pentachlorophenol response. Table 3-2 lists all the data that were qualified and the reasons for the qualification. The qualified data from Table 3-2 are useable for their intended purpose.

#### 3.1.4 Completeness

Completeness is a measure of the number of valid samples or measurements that are available relative to the number of samples or measurements that were intended to be generated. For this project, completeness was measured on two different bases, samples collected and laboratory measurements, as follows:

- Sample completeness was a measure of the usable samples collected compared to those intended to be collected.
- Laboratory measurement completeness was a measure of the amount of usable, valid, laboratory measurements obtained for each target analyte.

Usable, valid samples (or results) were those judged, after data assessment, to represent the sampling populations and to not have been disqualified for use through data validation or additional data review. Completeness was determined using the following equation:

$$%C = \frac{V}{T} \times 100$$

where %C = percent completeness

V = number of samples (or results) determined to be valid

T = total number of planned samples (or results)

All samples proposed were collected during all four sampling rounds. The percent completeness (%C) for laboratory measurement for all analytical fractions for all four rounds was 100, with the exception of SW-846 Methods 8270C and 8270C-SIM. One 4-nitroaniline and six pentachlorophenol data points were

rejected. With the seven rejected semivolatile data points, the laboratory completeness for semivolatiles was approximately 98 percent, which is still greater than the 90 percent quality control level.

#### 3.1.5 <u>Sensitivity</u>

The method detection limits (MDLs) reported by the laboratory were less than the action limits specified for the Connecticut Remediation Standards Regulations (RSRs) (January 1996 and October 24, 2005) and NSB-NLON General Permit for the Discharge of Stormwater Associated with Industrial Activity (DEP-PERD-GP-014, Issuance Date: October 1, 2002 and Modified Date: July 15, 2003). Therefore, sensitivity specifications were not adversely affected for this project, and data quality objectives were met.

#### 3.1.6 Laboratory Accuracy

Accuracy in the laboratory is measured through the comparison of a spiked sample or laboratory control sample (LCS) result to a known or calculated value and is expressed as a percent recovery (%R). It was also assessed by monitoring the analytical recovery of select surrogate compounds added to samples that were analyzed by organic chromatographic methods. LCSs were used to assess the accuracy of laboratory operations with minimal sample matrix effects. MS and surrogate compound analyses measure the combined accuracy effects of the sample matrix, sample preparation, and sample measurement. LCS and MS analyses were performed at a frequency of one per 20 associated samples. Laboratory accuracy was assessed by comparing calculated %R values to accuracy control limits specified by the laboratory.

Percent recovery is calculated using the following equation:

$$%R = \frac{(S_s - S_o)}{S} \times 100$$

where %R = percent recovery

 $S_s$  = result of spiked sample

S<sub>o</sub> = result of non-spiked sample

S = concentration of spiked amount.

All MS/MSD recovery, LCS/LCS duplicate(LCSD) recovery, and surrogate recovery non-compliances that resulted in qualification of data are presented in Table 3-2. Although data are qualified due to MS/MSD, LCS/LCSD, and surrogate recovery non-compliances, this is not expected to adversely affect data quality because the data are still useable for risk assessment. Three pentachlorophenol data points were rejected due to MS/MSD, LCS/LCSD, and/or surrogate recoveries less than 10 percent. These data are

not useable for risk assessment because of low bias, and its affect on data quality will be assessed in the risk assessment section of this report.

#### 3.1.7 Laboratory Precision

Precision is a measure of the degree to which two or more measurements are in agreement and describes the reproducibility of measurements of the same parameter for samples analyzed under similar conditions.

Precision for chemical parameters is expressed as a relative percent difference (RPD), which is defined as the ratio of the difference to the mean for the two values being evaluated. RPDs, typically expressed as percentages, are used to evaluate both field and laboratory duplicate precision and are calculated as follows:

$$RPD = \frac{|V1 - V2|}{(V1 + V2)/2} \times 100$$

where RPD = relative percent difference

V1, V2 = two results obtained by analyzing duplicate samples

The precision estimates obtained from duplicate field samples encompass the combined uncertainty associated with sample collection, homogenization, splitting, handling, laboratory and field storage (as applicable), preparation for analysis, and analysis. In contrast, precision estimates obtained from analyzing duplicate laboratory samples incorporate only homogenization, subsampling, preparation for analysis, laboratory storage (if applicable), and analysis uncertainties.

Field duplicate imprecision was noted for several parameters in several samples in Table 3-2. However, none of these field duplicate non-compliances resulted in rejection of the data. All MS/MSD, LCS/LCSD, and field duplicate precision data are considered useable for risk assessment.

#### 3.1.8 Comparability

Comparability is defined as the confidence with which one data set can be compared with another (e.g., among sampling points and among sampling events). Comparability was achieved by using standardized sampling and analysis methods, and standardized data reporting formats. Comparability of laboratory measurements was achieved primarily through the use and documentation of standard sampling and analytical methods. Results were reported in units that ensured comparability with previous data and with

current state and federal standards and guidelines. Comparability of laboratory measurements was assessed primarily through the use of QC samples and through adherence to the QA plan.

Calibration non-compliances occurred in the volatile, semivolatile, and metals fractions for several samples. Six of the seven rejected data points are due to poor instrument response for semivolatile compounds 4-nitroaniline and pentachlorophenol. These compounds are considered poor responders by SW-846 Method 8270C. The low instrument responses for 4-nitroaniline and pentachlorophenol indicate a low bias, and positive results for these compounds at the low end of the calibration curve may not be detected.

#### 3.1.9 Representativeness

Representativeness is an expression of the degree to which data accurately and precisely depict the actual characteristics of a population or environmental condition existing at the site.

The Site 23 Underdrain Metering Pit Sampling Work Plan (Tetra Tech, 2007a) and the use of standardized sampling, sample handling, sample analysis, and data reporting procedures were designed so that the final data would be accurate representations of actual site conditions. It is believed that all reported data are adequately representative of site conditions.

#### 3.2 QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

Table 3-3 summarizes the actual detection limits achieved by the laboratory that analyzed the Year 1 groundwater samples. By comparing the required and achieved detection limits, it is evident that the analyses performed by the project laboratory met the project requirements (i.e., achieved detection limits less than remedial goals and monitoring criteria).

#### 3.3 ANALYTICAL DATA EVALUATION

The results of the underdrain metering pit sampling events are discussed below. The analytical results for the February 2008 sampling event are provided in Appendix B. The analytical results for Rounds 1 through 3 were previously provided in their respective quarterly reports (Tetra Tech, 2007b, 2007c, and 2008). The analytical data for all Year 1 quarterly sampling events are summarized in Table 3-3 and Appendix C.

#### Round 1

Seven VOCs (bromodichloromethane, chloroform, cis-1,2-dichloroethene, isopropylbenzene, methyl tert-butyl ether (MTBE), tetrachloroethene, and trichloroethene), one PAH (2-methylnaphthalene), 10 metals (aluminum, barium, calcium, iron, lead, magnesium, manganese, potassium, sodium, and zinc),

and ETPH were detected during the Round 1 event in either the original or duplicate sample. The original sample and duplicate sample concentrations were comparable, with the exception of bromodichloromethane and selenium. Bromodichloromethane was detected in the original sample and not in the duplicate sample. Selenium was detected in the filtered and unfiltered duplicate sample for metals and not in the original sample. None of the detected concentrations exceeded any established CTDEP criteria.

Because all Round 1 concentrations were in compliance with criteria, it was concluded that the groundwater does not represent a significant risk to human health or the environment under current conditions.

#### Round 2

Six VOCs (cyclohexane, cis-1,2-dichloroethene, isopropylbenzene, MTBE, tetrachloroethene, and trichloroethene), no PAHs, 15 metals (aluminum, arsenic, barium, calcium, chromium, copper, iron, lead, magnesium, manganese, potassium, silver, sodium, vanadium, and zinc), and ETPH were detected during the Round 2 event. All of the Round 2 results were in compliance with CTDEP criteria except for arsenic in the unfiltered sample. Arsenic was detected at a concentration of 13.9 micrograms per liter (µg/L) in the unfiltered sample, which exceeds the surface water protection criterion (4 µg/L). However, arsenic was detected at 1.2 µg/L in the filtered sample, which is less than the criteria, and was not detected at similar concentrations in previous or subsequent sampling events. Because the arsenic concentration detected in the filtered sample was significantly less than the concentration detected in the unfiltered sample, it is likely that the unfiltered arsenic concentration is a result of suspended solid particles in the water and is not indicative of groundwater quality. Therefore, because all of the filtered sample concentrations were in compliance with criteria, it was concluded that the groundwater did not represent a significant risk to human health or the environment.

#### Round 3

Four VOCs (cis-1,2-dichloroethene, MTBE, tetrachloroethene, and trichloroethene), 20 PAHs (1-methylnaphthalene, 2-methylnaphthalene, 4-nitroaniline, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)flouranthene, benzo(g,h,i)perylene, benzo(k)flouranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, hexachlorobenzene, hexachlorobutadiene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene), 12 metals (aluminum, barium, calcium, chromium, cobalt, iron, magnesium, manganese, nickel, potassium, sodium, and zinc), and ETPH were detected during the Round 3 event. Round 3 was the only event which PAHs were detected at significant concentrations. Concentrations were less than criteria except for seven PAH concentrations as shown in Table 3-3. Concentrations of PAHs exceeded Surface Water Protection Criteria but were all low (approx.

1 µg/L or less). Similar concentrations of PAHs were detected once before in May 2001 during a series of four sampling rounds conducted by another Navy contractor after the metering pit was installed. Although 21 PAHs were detected in sample S23GWMPM-03, only three PAHs were detected in the field duplicate sample, and none of those detections exceeded of Surface Water Protection Criteria. The discrepancy between the original sample and field duplicate may indicate that the PAH results are not truly indicative of groundwater quality. The sample collection technicians have noted that an orange/rust colored floc forms in the bottom of the manhole between sampling events. Every attempt is made to limit collection of the floc with the groundwater; however, it is thought that the sampling technique disturbed the floc, which resulted in sediment particles being collected with the aqueous sample. The PAHs could then have been bound to the sediment particles. Both filtered and unfiltered samples were collected for inorganics analysis because it was anticipated that sediment particles in the aqueous samples may be problematic. The inorganic data show that there have been fewer detections of metals in filtered samples than in unfiltered samples, which suggests that sediment particles are present to some extent.

Based on the discrepancy between the original sample and field duplicate results and the low levels of PAHs detected, it was concluded that the PAH results were not indicative of groundwater quality and that the groundwater does not represent a significant risk to human health or the environment. To confirm that the PAH results are related to sediment particles, it was recommended that both total and filtered PAH samples be collected during the Round 4 sampling event.

A discrepancy between the original and field duplicate results for ETPH was also identified. The original sample result for ETPH was non-detect; however, the concentration in the field duplicate was 1600  $\mu$ g/L, which also supports the possibility that sediment particles could be affecting the results. The detection of ETPH in the field duplicate was less than the allowable concentration listed in the general stormwater permit of 2,500  $\mu$ g/L (for oil and grease).

In addition to the discrepancy between sample and duplicate results for hexachlorobenzene (1.2  $\mu$ g/L and 0.2 U  $\mu$ g/L), as was the case for many PAHs, it was noted during Round 3 that the detection limit for hexachlorobenzene in the duplicate sample was greater than the Connecticut Surface Water Protection Criterion (0.077  $\mu$ g/L). The reported detection limit (0.2  $\mu$ g/L) is the practical quantitation limit (PQL) for Method SW-846 8270C SIM performed by the project laboratory. This method is typically used by commercial laboratories to obtain the lowest possible detection limit. Therefore, because the Surface Water Protection Criteria (0.077  $\mu$ g/L) is approximately one order of magnitude less than the PQL, current technology available to commercial laboratories is not able to reach the required detection limit. According to 22a-133k-3(f)(4)(B) of the Connecticut RSRs, compliance with groundwater criterion can be shown when the detected concentration is less than the lowest concentration that can be consistently and accurately quantified (i.e., the lowest detection limit achievable by current analytical methods). Therefore,

it was concluded that the  $0.2 \mu g/L$  detection limit could be used as a surrogate Surface Water Protection Criterion for hexachlorobenzene.

Because of the anomalous Round 3 results, the impact of Site 23 groundwater on human health and the environment was inconclusive.

#### Round 4

Five VOCs (benzene, cis-1,2-dichloroethene, MTBE, tetrachloroethene, and trichloroethene) and 12 metals (aluminum, arsenic, barium, calcium, cobalt, iron, magnesium, manganese, nickel, potassium, sodium, and zinc) were detected during the Round 4 sampling event. None of the detected concentrations exceeded any established Connecticut criteria.

Both filtered and unfiltered samples were collected for PAH and ETPH analysis during Round 4 to verify Round 3 results suspected to be related to suspended sediment particles. Fewer PAHs were detected during Round 4 than Round 3 and four of five PAH concentrations detected during Round 4 were less than Round 3 concentrations. Unlike Round 3 when seven PAHs were detected above established CTDEP criteria, the PAH concentrations detected during Round 4 did not exceed any established CTDEP criteria. ETPH was not detected in either the unfiltered or filtered sample during Round 4 compared to a detection of 1,600 µg/L during Round 3. The Round 4 PAH and ETPH results were also similar to the data collected during Rounds 1 and 2, which supports the theory that the Round 3 results were anomalous. However, it should be noted that during Round 4, no PAHs were detected in the unfiltered sample, but five PAHs were detected in the filtered sample. This data suggests that a factor (e.g., filter, bottleware, or laboratory equipment) other than suspended sediment particles contributed to the PAHs detected during Round 4. A similar factor may have caused the anomalous Round 3 results. Therefore, the Round 4 results suggest that a factor other than suspended sediments in the sample may have caused the anomalous results during Round 3.

Therefore, because all of the Round 4 sample concentrations were in compliance with the criteria, it was concluded that groundwater does not represent a significant risk to human health or the environment under current conditions.

#### 3.4 STATISTICAL/TREND ANALYSIS

It was anticipated that statistical or trend analysis would be performed for the Site 23 data; however, because of the limited number of contaminants detected and the inconsistent/infrequent detection of chemicals in excess of criteria, no statistical or trend analysis is warranted. This type of analysis may be performed in the future if additional data are collected and the results indicate the need for the analysis.

### 3.5 MEMORANDUM REGARDING HUMAN HEALTH RISKS ASSOCIATED WITH SITE 23 GROUNDWATER (MAY 19, 2008)

The following section summarizes the human health risk assessment (HHRA) memoranda that were completed to evaluate potential for adverse impacts on human health resulting from exposure to contaminated groundwater at Site 23. The complete memorandum is provided in Appendix D.

Historical and current information pertaining to Site 23 groundwater were reviewed to determine if Site 23 groundwater poses a threat to human health and the environment. Historical information reviewed as part of the evaluation included the Basewide Groundwater Operable Unit Remedial Investigation Report (BGOURI) (Tetra Tech, 2002) and data collected as part of the storm sewer rehabilitation (FWEC, 2001). Current data reviewed included the year of underdrain metering pit data collected through February 2008. USEPA and CTDEP guidance updated since the BGOURI were used in the evaluation.

The conclusions of the evaluation are as follows:

- The Human Health Risk Assessment (HHRA) performed during the BGOURI evaluated potential risks from exposures to groundwater by construction workers and hypothetical residents, although it is unlikely that direct contact exposures to Site 23 groundwater would occur based on current and expected future site use. Cumulative risks were less than or within USEPA and CTDEP acceptable levels. However, chemical-specific risks for tetrachloroethene exceeded the CTDEP target level for individual chemicals, although the maximum detected concentration of tetrachloroethene was less than its CTDEP Remediation Standard Regulations (RSR) (5 μg/L). Concentrations of tetrachloroethene in Site 23 groundwater have decreased from 3 μg/L in the BGOURI to 0.3 μg/L during Round 4 sampling. Chemical-specific risks associated with tetrachloroethene would now be less than the CTDEP target level for individual chemicals.
- Human Health Risk Assessment guidance has been revised since the BGOURI HHRA was prepared but the changes in the guidance would not change the conclusions of the HHRA.
- Concentrations of chemicals in groundwater samples after the storm sewer rehabilitation were greatest in samples collected in August and October 2000, right after completion of construction and decreased significantly in subsequent sampling rounds.
- Concentrations of all chemicals detected in groundwater during the first year of the underdrain metering pit sampling were less than CTDEP Surface Water Protection and Volatilization Criteria with the exception of arsenic and several PAHs. The concentration of total arsenic in the Round 2 sample

exceeded the Surface Water Protection Criteria although the concentration of arsenic in the filtered sample was less than the Surface Water Protection Criterion. The arsenic detected in the unfiltered sample is believed to be a result of suspended solid particles in the water and the filtered sample is more indicative of groundwater quality. Concentrations of acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, hexachlorobenzene, and phenanthrene exceeded the Surface Water Protection Criterion. These chemicals were not detected in the duplicate sample collected in Round 3 and these chemicals were not detected in the Round 4 sample.

- In general, concentrations of chemicals in Site 23 groundwater have decreased over time except as noted above.
- Potential risks for construction workers exposed to Site 23 groundwater are still acceptable using the
  analytical results from the four rounds of quarterly sampling. Potential risks for hypothetical residents
  exposed to Site 23 groundwater exceed acceptable levels, although Site 23 is not suitable for
  residential development.

Based on existing information, under current and expected land use, Site 23 groundwater does not pose a significant threat to human health or the environment. Adverse health effects are possible under hypothetical residential land use.

### 3.6 MEMORANDUM REGARDING VAPOR INTRUSION EVALUATION FOR GROUNDWATER AT OPERABLE UNIT 9 (MAY 30, 2008)

Groundwater data from Site 23, which is within operable unit (OU) 9, was evaluated to determine if there were unacceptable risks associated with vapor intrusion into buildings. The complete memorandum for OU9 is provided in Appendix E. Data from a total of eight sites (i.e., 2, 3, 7, 14, 15, 18, 20, and 23) were evaluated in the memorandum, but only the risk results for Site 23, which are called out in separate sections of the memorandum, are applicable to this report.

The most recent groundwater data that was available for the site were used in the evaluation. Concentrations of volatile organic compounds (VOCs) in groundwater were compared to screening criteria for vapor intrusion. Screening criteria were obtained from USEPA's OSWER Draft Guidance for Evaluating the Vapor Intrusion into Indoor Air from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), November 2002, CTDEP's Proposed Revisions - Connecticut's Remediation Standard Regulations Volatilization Criteria, March 2003, and USEPA Region I (USEPA, 2008). The screening criteria are for residential exposures and are based on an incremental lifetime cancer risk (ILCR) of 1 x 10<sup>-6</sup> or a hazard index (HI) of 1. If the risk-based screening criterion is less than the Maximum

Contaminant Level (MCL) the 2002 EPA guidance recommends using the MCL as the screening level. However, USEPA Region I guidance does not allow for MCLs to be used as screening criteria. USEPA Region I provided risk-based screening levels for those cases where the USEPA draft guidance recommended MCLs as screening levels. If chemicals were detected at concentrations exceeding either screening criteria, the chemicals were further evaluated using USEPA's Johnson and Ettinger Vapor Intrusion Model.

Year 1 quarterly groundwater data were used to evaluate the potential for vapor intrusion at Site 23. Concentrations of chloroform detected in one sample and trichloroethene detected in four samples exceeded the USEPA screening criteria. Therefore, chloroform and trichloroethene were further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

Residential exposures, at Site 23 the ILCR for chloroform of 2 x  $10^{-6}$  and trichloroethene of 4 x  $10^{-6}$  based on the draft USEPA toxicity criteria are less than the CTDEP acceptable level for cumulative exposures but exceed the CTDEP acceptable level of 1 x  $10^{-6}$  for individual chemicals. The ILCR for trichloroethene for residential exposures based on the California Environmental Protection Agency (Cal EPA) toxicity value and ILCRs for industrial exposures for trichloroethene and vinyl chloride are all less than 1 x  $10^{-6}$ . Also the maximum detected concentration of chloroform in groundwater samples at Site 23 of 3  $\mu$ g/L is less than the residential CTDEP RSR of 26  $\mu$ g/L for vapor intrusion.

Modeling results showed that cancer risks for chloroform under a residential scenario were within USEPA acceptable levels but exceeded CTDEP acceptable levels. Cancer risks for trichloroethene based upon California EPA toxicity criteria were within USEPA and CTDEP acceptable levels for residential and industrial scenarios but cancer risks for a residential scenario based on draft USEPA toxicity criteria exceeded CTDEP acceptable levels. Further Applicable or Relevant and Appropriate Requirements (ARARs) showed that vapor intrusion is not an issue at Site 23. No further action is required for vapor intrusion issues.

TABLE 3-1

#### DATA REJECTION AND REASONS FOR REJECTIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

| SAMPLE NUMBER | PARAMETER         | SAMPLE RESULT<br>(µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION<br>CODE | REASON FOR QUALIFICATION                                                                         |
|---------------|-------------------|-------------------------|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------|
| S23GWMPM-03-D | 4-NITROANILINE    | 1                       | UR                      | С                     | Calibration non-compliance.                                                                      |
| S23GWMPM01    | PENTACHLOROPHENOL | 1                       | UR                      | CDE                   | Calibration non-compliance, MS/MSD recovery noncompliance, and LCS/LCSD recovery non-compliance. |
| S23GWMPM01-D  | PENTACHLOROPHENOL | 1                       | UR                      | CE                    | Calibration non-compliance and LCS/LCSD recovery non-compliance.                                 |
| S23GWMPM02    | PENTACHLOROPHENOL | 1                       | UR                      | С                     | Calibration non-compliance.                                                                      |
| S23GWMPM-03   | PENTACHLOROPHENOL | 1                       | UR                      | С                     | Calibration non-compliance                                                                       |
| S23GWMPM-03-D | PENTACHLOROPHENOL | 1                       | UR                      | С                     | Calibration non-compliance                                                                       |
| S23GWMPM04    | PENTACHLOROPHENOL | 1                       | UR                      | R                     | Surrogate recovery non-compliance.                                                               |

MS/MSD = Matrix spike/matrix spike duplicate LCS/LCSD = Laboratory control sample/LCS duplicate

TABLE 3-2

## DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 1 OF 9

| SAMPLE NUMBER | PARAMETER                  | SAMPLE RESULT (µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                      |
|---------------|----------------------------|----------------------|-------------------------|--------------------|---------------------------------------------------------------|
| S23GWMPM01    | 2,4-DIMETHYLPHENOL         | 10                   | UJ                      | D                  | MS/MSD recovery non-compliance                                |
| S23GWMPM01    | 2,4-DINITROPHENOL          | 25                   | UJ                      | С                  | Calibration non-compliance.                                   |
| S23GWMPM01    | 2-METHYLNAPHTHALENE        | 0.17                 | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | 4-NITROPHENOL              | 25                   | UJ                      | С                  | Calibration non-compliance.                                   |
| S23GWMPM01    | ALUMINUM                   | 20.4                 | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | ANTIMONY                   | 2.3                  | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | ARSENIC                    | 3.7                  | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | ARSENIC                    | 3.5                  | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | BENZO(A)PYRENE             | 0.2                  | UJ                      | D                  | MS/MSD recovery non-compliance                                |
| S23GWMPM01    | BENZO(G,H,I)PERYLENE       | 0.2                  | UJ                      | D                  | MS/MSD recovery non-compliance                                |
| S23GWMPM01    | BENZO(K)FLUORANTHENE       | 0.2                  | UJ                      | С                  | Calibration non-compliance.                                   |
| S23GWMPM01    | BIS(2-ETHYLHEXYL)PHTHALATE | 1                    | UJ                      | CD                 | Calibration non-compliance and MS/MSD recovery non-compliance |
| S23GWMPM01    | BROMODICHLOROMETHANE       | 0.3                  | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | CHLOROETHANE               | 0.5                  | UJ                      | С                  | Calibration non-compliance.                                   |
| S23GWMPM01    | CHLOROFORM                 | 3                    | J                       | G                  | Field duplicate imprecision.                                  |
| S23GWMPM01    | CHROMIUM                   | 0.94                 | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | CHROMIUM                   | 1.2                  | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | CIS-1,2-DICHLOROETHENE     | 0.3                  | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | COBALT                     | 0.84                 | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | COBALT                     | 0.67                 | U                       | Α                  | Laboratory blank contamination.                               |
| S23GWMPM01    | COPPER                     | 3                    | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | COPPER                     | 14.9                 | U                       | Α                  | Laboratory blank contamination.                               |
| S23GWMPM01    | DIBENZO(A,H)ANTHRACENE     | 0.2                  | UJ                      | D                  | MS/MSD recovery non-compliance                                |
| S23GWMPM01    | DI-N-OCTYL PHTHALATE       | 10                   | UJ                      | С                  | Calibration non-compliance.                                   |
| S23GWMPM01    | INDENO(1,2,3-CD)PYRENE     | 0.2                  | UJ                      | D                  | MS/MSD recovery non-compliance                                |
| S23GWMPM01    | ISOPROPYLBENZENE           | 0.1                  | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | LEAD                       | 1.3                  | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | MERCURY                    | 0.03                 | U                       | Α                  | Laboratory blank contamination.                               |
| S23GWMPM01    | MERCURY                    | 0.03                 | U                       | Α                  | Laboratory blank contamination.                               |
| S23GWMPM01    | METHYLENE CHLORIDE         | 0.5                  | UJ                      | С                  | Calibration non-compliance.                                   |
| S23GWMPM01    | NICKEL                     | 1                    | U                       | Α                  | Laboratory blank contamination.                               |
| S23GWMPM01    | NICKEL                     | 1.1                  | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | TETRACHLOROETHENE          | 0.3                  | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | THALLIUM                   | 0.99                 | U                       | A                  | Laboratory blank contamination.                               |
| S23GWMPM01    | THALLIUM                   | 1.2                  | U                       | Α                  | Laboratory blank contamination.                               |
| S23GWMPM01    | TPH (C09-C36)              | 55                   | J                       | Р                  | Uncertainty near the detection limit.                         |
| S23GWMPM01    | TRICHLOROETHENE            | 0.4                  | J                       | Р                  | Uncertainty near the detection limit.                         |

TABLE 3-2

## DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 2 OF 9

| SAMPLE NUMBER | PARAMETER                  | SAMPLE RESULT (µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION              |
|---------------|----------------------------|----------------------|-------------------------|--------------------|---------------------------------------|
| S23GWMPM01    | TRICHLOROFLUOROMETHANE     | 0.5                  | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01    | VANADIUM                   | 1.3                  | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01    | VANADIUM                   | 0.7                  | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01    | ZINC                       | 21.3                 | J                       | С                  | Calibration non-compliance.           |
| S23GWMPM01    | ZINC                       | 21.4                 | J                       | С                  | Calibration non-compliance            |
| S23GWMPM01-D  | 2,4-DINITROPHENOL          | 25                   | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | 2-METHYLNAPHTHALENE        | 0.16                 | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | 4-NITROPHENOL              | 25                   | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | ALUMINUM                   | 36.7                 | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | ANTIMONY                   | 1.5                  | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | ANTIMONY                   | 1.6                  | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | ARSENIC                    | 3                    | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | ARSENIC                    | 2.2                  | U                       | Α                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | BENZO(K)FLUORANTHENE       | 0.2                  | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | BIS(2-ETHYLHEXYL)PHTHALATE | 1                    | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | CHLOROETHANE               | 0.5                  | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | CHLOROFORM                 | 2                    | J                       | G                  | Field duplicate imprecision.          |
| S23GWMPM01-D  | CHROMIUM                   | 0.81                 | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | CHROMIUM                   | 0.44                 | U                       | А                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | CIS-1,2-DICHLOROETHENE     | 0.2                  | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | COBALT                     | 0.64                 | U                       | А                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | COBALT                     | 0.86                 | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | COPPER                     | 3                    | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | COPPER                     | 2.2                  | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | DI-N-OCTYL PHTHALATE       | 10                   | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | ISOPROPYLBENZENE           | 0.09                 | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | LEAD                       | 1.8                  | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | MERCURY                    | 0.04                 | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | MERCURY                    | 0.04                 | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | METHYLENE CHLORIDE         | 0.5                  | UJ                      | С                  | Calibration non-compliance.           |
| S23GWMPM01-D  | NICKEL                     | 0.77                 | U                       | A                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | NICKEL                     | 0.88                 | U                       | Α                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | SELENIUM                   | 2                    | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | SELENIUM                   | 1.7                  | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | TETRACHLOROETHENE          | 0.3                  | J                       | Р                  | Uncertainty near the detection limit. |
| S23GWMPM01-D  | THALLIUM                   | 2.3                  | Ü                       | А                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | THALLIUM                   | 0.93                 | U                       | А                  | Laboratory blank contamination.       |
| S23GWMPM01-D  | TRICHLOROETHENE            | 0.3                  | J                       | Р                  | Uncertainty near the detection limit. |

TABLE 3-2

## DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 3 OF 9

| SAMPLE NUMBER | PARAMETER                    | SAMPLE RESULT (µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                    |
|---------------|------------------------------|----------------------|-------------------------|--------------------|-------------------------------------------------------------|
| S23GWMPM01-D  | TRICHLOROFLUOROMETHANE       | 0.5                  | UJ                      | С                  | Calibration non-compliance.                                 |
| S23GWMPM01-D  | VANADIUM                     | 1.4                  | U                       | Α                  | Laboratory blank contamination.                             |
| S23GWMPM01-D  | VANADIUM                     | 0.56                 | U                       | A                  | Laboratory blank contamination.                             |
| S23GWMPM01-D  | ZINC                         | 19.5                 | J                       | С                  | Calibration non-compliance.                                 |
| S23GWMPM02    | 2,4,6-TRICHLOROPHENOL        | 10                   | UJ                      | D                  | MS/MSD recovery non-compliance                              |
| S23GWMPM02    | 2,4-DIMETHYLPHENOL           | 10                   | UJ                      | D                  | MS/MSD recovery non-compliance                              |
| S23GWMPM02    | 2,4-DINITROPHENOL            | 25                   | UJ                      | С                  | Calibration non-compliance.                                 |
| S23GWMPM02    | 2-CHLOROPHENOL               | 10                   | UJ                      | D                  | MS/MSD recovery non-compliance                              |
| S23GWMPM02    | 4,6-DINITRO-2-METHYLPHENOL   | 25                   | UJ                      | С                  | Calibration non-compliance.                                 |
| S23GWMPM02    | 4-NITROANILINE               | 1                    | UJ                      | С                  | Calibration non-compliance.                                 |
| S23GWMPM02    | ALUMINUM                     | 21.3                 | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | ARSENIC                      | 1.2                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | BUTYL BENZYL PHTHALATE       | 10                   | UJ                      | С                  | Calibration non-compliance.                                 |
| S23GWMPM02    | CADMIUM                      | 0.64                 | U                       | A                  | Laboratory blank contamination.                             |
| S23GWMPM02    | CHROMIUM                     | 0.3                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | CIS-1,2-DICHLOROETHENE       | 0.3                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | COBALT                       | 0.47                 | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | COPPER                       | 0.7                  | U                       | A                  | Laboratory blank contamination.                             |
| S23GWMPM02    | CYCLOHEXANE                  | 0.1                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | ISOPROPYLBENZENE             | 0.1                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | LEAD                         | 1.1                  | U                       | A                  | Laboratory blank contamination.                             |
| S23GWMPM02    | METHYL TERT-BUTYL ETHER      | 0.4                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | NICKEL                       | 0.78                 | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | SELENIUM                     | 2.4                  | U                       | A                  | Laboratory blank contamination.                             |
| S23GWMPM02    | TETRACHLOROETHENE            | 0.4                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM02    | THALLIUM                     | 0.98                 | U                       | A                  | Laboratory blank contamination.                             |
| S23GWMPM02    | THALLIUM                     | 1.7                  | U                       | Α                  | Laboratory blank contamination.                             |
| S23GWMPM02    | TPH (C09-C36)                | 140                  | J                       | D                  | MS/MSD recovery non-compliance                              |
| S23GWMPM02    | TRICHLOROETHENE              | 0.5                  | J                       | Р                  | Uncertainty near the detection limit.                       |
| S23GWMPM-03   | 1-METHYLNAPHTHALENE          | 0.96                 | J                       | D                  | MS/MSD recovery non-compliance                              |
| S23GWMPM-03   | 2,2'-OXYBIS(1-CHLOROPROPANE) | 10                   | UJ                      | Н                  | Holding time exceedance.                                    |
| S23GWMPM-03   | 2,4,5-TRICHLOROPHENOL        | 25                   | UJ                      | Н                  | Holding time exceedance.                                    |
| S23GWMPM-03   | 2,4,6-TRICHLOROPHENOL        | 10                   | UJ                      | Н                  | Holding time exceedance.                                    |
| S23GWMPM-03   | 2,4-DICHLOROPHENOL           | 10                   | UJ                      | Н                  | Holding time exceedance.                                    |
| S23GWMPM-03   | 2,4-DIMETHYLPHENOL           | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance. |
| S23GWMPM-03   | 2,4-DINITROPHENOL            | 25                   | UJ                      | Н                  | Holding time exceedance.                                    |
| S23GWMPM-03   | 2,4-DINITROTOLUENE           | 10                   | UJ                      | Н                  | Holding time exceedance.                                    |

TABLE 3-2

## DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 4 OF 9

| SAMPLE NUMBER | PARAMETER                   | SAMPLE RESULT (μG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                                                              |
|---------------|-----------------------------|----------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------------------|
| S23GWMPM-03   | 2,6-DINITROTOLUENE          | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 2-CHLORONAPHTHALENE         | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 2-CHLOROPHENOL              | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance.                                           |
| S23GWMPM-03   | 2-METHYLNAPHTHALENE         | 1.1                  | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.                                       |
| S23GWMPM-03   | 2-METHYLPHENOL              | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 2-NITROANILINE              | 25                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 2-NITROPHENOL               | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 3&4-METHYLPHENOL            | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance.                                           |
| S23GWMPM-03   | 3,3'-DICHLOROBENZIDINE      | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 3-NITROANILINE              | 25                   | UJ                      | СН                 | Calibration non-compliance and holding time exceedance.                                               |
| S23GWMPM-03   | 4,6-DINITRO-2-METHYLPHENOL  | 25                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 4-BROMOPHENYL PHENYL ETHER  | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 4-CHLORO-3-METHYLPHENOL     | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 4-CHLOROANILINE             | 10                   | UJ                      | СН                 | Calibration non-compliance and holding time exceedance.                                               |
| S23GWMPM-03   | 4-CHLOROPHENYL PHENYL ETHER | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | 4-NITROANILINE              | 0.75                 | J                       | CDP                | Calibration non-compliance, MS/MSD recovery non-compliance, and uncertainty near the detection limit. |
| S23GWMPM-03   | 4-NITROPHENOL               | 25                   | UJ                      | СН                 | Calibration non-compliance and holding time exceedance.                                               |
| S23GWMPM-03   | ACENAPHTHENE                | 0.83                 | J                       | G                  | Field duplicate imprecision.                                                                          |
| S23GWMPM-03   | ACENAPHTHYLENE              | 0.9                  | J                       | G                  | Field duplicate imprecision.                                                                          |
| S23GWMPM-03   | ANTHRACENE                  | 0.92                 | J                       | G                  | Field duplicate imprecision.                                                                          |
| S23GWMPM-03   | ANTIMONY                    | 1.8                  | U                       | A                  | Laboratory blank contamination.                                                                       |
| S23GWMPM-03   | ARSENIC                     | 2.2                  | U                       | A                  | Laboratory blank contamination.                                                                       |
| S23GWMPM-03   | ARSENIC                     | 1.9                  | U                       | A                  | Laboratory blank contamination.                                                                       |
| S23GWMPM-03   | BENZO(A)ANTHRACENE          | 1                    | J                       | G                  | Field duplicate imprecision.                                                                          |
| S23GWMPM-03   | BENZO(A)PYRENE              | 0.35                 | J                       | D                  | MS/MSD recovery non-compliance                                                                        |
| S23GWMPM-03   | BENZO(B)FLUORANTHENE        | 0.64                 | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.                                       |
| S23GWMPM-03   | BENZO(K)FLUORANTHENE        | 0.53                 | J                       | D                  | MS/MSD recovery non-compliance                                                                        |
| S23GWMPM-03   | BIS(2-CHLOROETHOXY)METHANE  | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |
| S23GWMPM-03   | BIS(2-CHLOROETHYL)ETHER     | 10                   | UJ                      | Н                  | Holding time exceedance.                                                                              |

TABLE 3-2

## DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 5 OF 9

| SAMPLE NUMBER | PARAMETER                  | SAMPLE RESULT (µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                                 |
|---------------|----------------------------|----------------------|-------------------------|--------------------|--------------------------------------------------------------------------|
| S23GWMPM-03   | BUTYL BENZYL PHTHALATE     | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | CARBAZOLE                  | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | CHRYSENE                   | 0.76                 | J                       | G                  | Field duplicate imprecision.                                             |
| S23GWMPM-03   | CIS-1,2-DICHLOROETHENE     | 0.2                  | J                       | Р                  | Uncertainty near the detection limit.                                    |
| S23GWMPM-03   | COPPER                     | 0.44                 | U                       | A                  | Laboratory blank contamination.                                          |
| S23GWMPM-03   | DIBENZO(A,H)ANTHRACENE     | 0.14                 | J                       | DP                 | MS/MSD recovery non-compliance and uncertainty near the detection limit. |
| S23GWMPM-03   | DIBENZOFURAN               | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | DIETHYL PHTHALATE          | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | DIMETHYL PHTHALATE         | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | DI-N-BUTYL PHTHALATE       | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | DI-N-OCTYL PHTHALATE       | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | FLUORANTHENE               | 1.1                  | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.          |
| S23GWMPM-03   | FLUORENE                   | 0.97                 | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.          |
| S23GWMPM-03   | HEXACHLOROBENZENE          | 1.2                  | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.          |
| S23GWMPM-03   | HEXACHLOROBUTADIENE        | 0.64                 | J                       | DP                 | MS/MSD recovery non-compliance and uncertainty near the detection limit. |
| S23GWMPM-03   | HEXACHLOROCYCLOPENTADIENE  | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | HEXACHLOROETHANE           | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | ISOPHORONE                 | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | LEAD                       | 2.5                  | U                       | Α                  | Laboratory blank contamination.                                          |
| S23GWMPM-03   | LEAD                       | 2.1                  | U                       | A                  | Laboratory blank contamination.                                          |
| S23GWMPM-03   | NAPHTHALENE                | 1                    | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.          |
| S23GWMPM-03   | NITROBENZENE               | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | N-NITROSO-DI-N-PROPYLAMINE | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | N-NITROSODIPHENYLAMINE     | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | OIL & GREASE - HEM         | 1.2                  | UJ                      | D                  | MS/MSD recovery non-compliance                                           |
| S23GWMPM-03   | PHENANTHRENE               | 0.98                 | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.          |
| S23GWMPM-03   | PHENOL                     | 10                   | UJ                      | Н                  | Holding time exceedance.                                                 |
| S23GWMPM-03   | PYRENE                     | 0.84                 | J                       | DG                 | MS/MSD recovery non-compliance and field duplicate imprecision.          |
| S23GWMPM-03   | TETRACHLOROETHENE          | 0.3                  | J                       | Р                  | Uncertainty near the detection limit.                                    |

TABLE 3-2

# DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 6 OF 9

| SAMPLE NUMBER | PARAMETER                    | SAMPLE RESULT (µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                              |  |  |
|---------------|------------------------------|----------------------|-------------------------|--------------------|-----------------------------------------------------------------------|--|--|
| S23GWMPM-03   | TOTAL PETROLEUM HYDROCARBONS | 160                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03   | TRICHLOROETHENE              | 0.4                  | J                       | Р                  | Uncertainty near the detection limit.                                 |  |  |
| S23GWMPM-03   | TRICHLOROFLUOROMETHANE       | 0.5                  | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03   | VANADIUM                     | 0.34                 | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | 1,1,2-TRICHLOROETHANE        | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                    |  |  |
| S23GWMPM-03-D | 1-METHYLNAPHTHALENE          | 0.048                | J                       | Р                  | Uncertainty near the detection limit.                                 |  |  |
| S23GWMPM-03-D | 2,4-DINITROPHENOL            | 25                   | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03-D | 2-METHYLNAPHTHALENE          | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | 3,3'-DICHLOROBENZIDINE       | 10                   | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03-D | 3-NITROANILINE               | 25                   | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03-D | 4,6-DINITRO-2-METHYLPHENOL   | 25                   | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03-D | 4-NITROPHENOL                | 25                   | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03-D | ACENAPHTHENE                 | 0.029                | J                       | GP                 | Field duplicate imprecision and uncertainty near the detection limit. |  |  |
| S23GWMPM-03-D | ACENAPHTHYLENE               | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | ANTHRACENE                   | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | ANTIMONY                     | 1.1                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | ANTIMONY                     | 1.3                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | ARSENIC                      | 4.7                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | ARSENIC                      | 1.1                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | BENZO(A)ANTHRACENE           | 0.042                | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | BENZO(B)FLUORANTHENE         | 0.078                | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | CHRYSENE                     | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | CIS-1,3-DICHLOROPROPENE      | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                    |  |  |
| S23GWMPM-03-D | COPPER                       | 0.68                 | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | ETHYLBENZENE                 | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                    |  |  |
| S23GWMPM-03-D | FLUORANTHENE                 | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | FLUORENE                     | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | HEXACHLOROBENZENE            | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | HEXACHLOROCYCLOPENTADIENE    | 10                   | UJ                      | С                  | Calibration non-compliance.                                           |  |  |
| S23GWMPM-03-D | ISOPROPYLBENZENE             | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                    |  |  |
| S23GWMPM-03-D | LEAD                         | 2.2                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | LEAD                         | 2.8                  | U                       | А                  | Laboratory blank contamination.                                       |  |  |
| S23GWMPM-03-D | NAPHTHALENE                  | 0.088                | J                       | GP                 | Field duplicate imprecision and uncertainty near the detection limit. |  |  |
| S23GWMPM-03-D | PHENANTHRENE                 | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | PYRENE                       | 0.2                  | UJ                      | G                  | Field duplicate imprecision.                                          |  |  |
| S23GWMPM-03-D | SELENIUM                     | 2.3                  | U                       | A                  | Laboratory blank contamination.                                       |  |  |

TABLE 3-2

# DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 7 OF 9

| SAMPLE NUMBER | PARAMETER                    | SAMPLE RESULT (μG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                                    |
|---------------|------------------------------|----------------------|-------------------------|--------------------|-----------------------------------------------------------------------------|
| S23GWMPM-03-D | STYRENE                      | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                          |
| S23GWMPM-03-D | TETRACHLOROETHENE            | 0.2                  | J                       | PR                 | Uncertainty near the detection limit and surrogate recovery non-compliance. |
| S23GWMPM-03-D | TOLUENE                      | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                          |
| S23GWMPM-03-D | TOTAL PETROLEUM HYDROCARBONS | 1600                 | J                       | G                  | Field duplicate imprecision.                                                |
| S23GWMPM-03-D | TOTAL XYLENES                | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                          |
| S23GWMPM-03-D | TRANS-1,3-DICHLOROPROPENE    | 0.5                  | UJ                      | R                  | Surrogate recovery non-compliance.                                          |
| S23GWMPM-03-D | TRICHLOROETHENE              | 0.3                  | J                       | PR                 | Uncertainty near the detection limit and surrogate recovery non-compliance. |
| S23GWMPM-03-D | TRICHLOROFLUOROMETHANE       | 0.5                  | UJ                      | С                  | Calibration non-compliance.                                                 |
| S23GWMPM04    | 1-METHYLNAPHTHALENE          | 0.093                | J                       | Р                  | Uncertainty near the detection limit.                                       |
| S23GWMPM04    | 2,2'-OXYBIS(1-CHLOROPROPANE) | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2,4,5-TRICHLOROPHENOL        | 26                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2,4,6-TRICHLOROPHENOL        | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance.                 |
| S23GWMPM04    | 2,4-DICHLOROPHENOL           | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance.                 |
| S23GWMPM04    | 2,4-DIMETHYLPHENOL           | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance.                 |
| S23GWMPM04    | 2,4-DINITROPHENOL            | 26                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2,4-DINITROTOLUENE           | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2,6-DINITROTOLUENE           | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2-CHLORONAPHTHALENE          | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2-CHLOROPHENOL               | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2-METHYLNAPHTHALENE          | 0.21                 | UJ                      | С                  | Calibration non-compliance.                                                 |
| S23GWMPM04    | 2-METHYLNAPHTHALENE          | 0.2                  | UJ                      | С                  | Calibration non-compliance.                                                 |
| S23GWMPM04    | 2-METHYLPHENOL               | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2-NITROANILINE               | 26                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 2-NITROPHENOL                | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 3&4-METHYLPHENOL             | 10                   | UJ                      | DH                 | MS/MSD recovery non-compliance and holding time exceedance.                 |
| S23GWMPM04    | 3,3'-DICHLOROBENZIDINE       | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 3-NITROANILINE               | 26                   | UJ                      | H                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 4,6-DINITRO-2-METHYLPHENOL   | 26                   | UJ                      | H                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 4-BROMOPHENYL PHENYL ETHER   | 10                   | UJ                      | Н                  | Holding time exceedance.                                                    |
| S23GWMPM04    | 4-CHLORO-3-METHYLPHENOL      | 10                   | UJ                      | H                  | Holding time exceedance.                                                    |

TABLE 3-2

# DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 8 OF 9

| SAMPLE NUMBER | PARAMETER                   | SAMPLE RESULT (μG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION                                          |
|---------------|-----------------------------|----------------------|-------------------------|--------------------|-------------------------------------------------------------------|
| S23GWMPM04    | 4-CHLOROANILINE             | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | 4-CHLOROPHENYL PHENYL ETHER | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | 4-NITROANILINE              | 1                    | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | 4-NITROANILINE              | 1                    | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | 4-NITROPHENOL               | 26                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | ACENAPHTHENE                | 0.031                | J                       | Р                  | Uncertainty near the detection limit.                             |
| S23GWMPM04    | BENZENE                     | 0.2                  | J                       | Р                  | Uncertainty near the detection limit.                             |
| S23GWMPM04    | BENZO(G,H,I)PERYLENE        | 0.13                 | J                       | Р                  | Uncertainty near the detection limit.                             |
| S23GWMPM04    | BIS(2-CHLOROETHOXY)METHANE  | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | BIS(2-CHLOROETHYL)ETHER     | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | BIS(2-ETHYLHEXYL)PHTHALATE  | 1                    | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | BIS(2-ETHYLHEXYL)PHTHALATE  | 1                    | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | BUTYL BENZYL PHTHALATE      | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | CARBAZOLE                   | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | CIS-1,2-DICHLOROETHENE      | 0.2                  | J                       | Р                  | Uncertainty near the detection limit.                             |
| S23GWMPM04    | DIBENZOFURAN                | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | DIETHYL PHTHALATE           | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | DIMETHYL PHTHALATE          | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | DI-N-BUTYL PHTHALATE        | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | DI-N-OCTYL PHTHALATE        | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | FLUORENE                    | 0.21                 | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | FLUORENE                    | 0.2                  | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | HEXACHLOROCYCLOPENTADIENE   | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | HEXACHLOROETHANE            | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | INDENO(1,2,3-CD)PYRENE      | 0.22                 | J                       | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | INDENO(1,2,3-CD)PYRENE      | 0.21                 | UJ                      | С                  | Calibration non-compliance.                                       |
| S23GWMPM04    | ISOPHORONE                  | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | NAPHTHALENE                 | 0.069                | J                       | Р                  | Uncertainty near the detection limit.                             |
| S23GWMPM04    | NITROBENZENE                | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | N-NITROSO-DI-N-PROPYLAMINE  | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | N-NITROSODIPHENYLAMINE      | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | PENTACHLOROPHENOL           | 1                    | UJ                      | CR                 | Calibration non-compliance and surrogate recovery non-compliance. |
| S23GWMPM04    | PHENOL                      | 10                   | UJ                      | Н                  | Holding time exceedance.                                          |
| S23GWMPM04    | TETRACHLOROETHENE           | 0.3                  | J                       | P                  | Uncertainty near the detection limit.                             |
| S23GWMPM04    | TRICHLOROETHENE             | 0.4                  | J                       | Р                  | Uncertainty near the detection limit.                             |
| TB061807      | CHLOROETHANE                | 0.5                  | ÜJ                      | C                  | Calibration non-compliance.                                       |
| TB061807      | METHYLENE CHLORIDE          | 0.6                  | J                       | C                  | Calibration non-compliance.                                       |

#### TABLE 3-2

#### DATA QUALIFICATION AND REASONS FOR QUALIFICATIONS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 9 OF 9

| SAMPLE NUMBER | PARAMETER              | SAMPLE RESULT (µG/L) | VALIDATION<br>QUALIFIER | QUALIFICATION CODE | REASON FOR QUALIFICATION              |
|---------------|------------------------|----------------------|-------------------------|--------------------|---------------------------------------|
| TB061807      | TOLUENE                | 0.2                  | J                       | Р                  | Uncertainty near the detection limit. |
| TB061807      | TRICHLOROFLUOROMETHANE | 0.5                  | UJ                      | С                  | Calibration non-compliance.           |
| TB121807-01   | TRICHLOROFLUOROMETHANE | 0.5                  | UJ                      | С                  | Calibration non-compliance.           |

MS/MSD = Matrix spike/matrix spike duplicate

TABLE 3-3

## SUMMARY OF POSITIVE DETECTIONS FOR YEAR 1 MONITORING EVENTS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 3

| PARAMETER                | Surface Water<br>Protection Criteria <sup>(1)</sup> | Residential<br>Volatilization<br>Criteria <sup>(2)</sup> | Stormwater<br>Discharge<br>Permit Criteria <sup>(3)</sup> | ROU<br>JUNE 1 | ND 1<br>8, 2006 | ROUND 2<br>SEPTEMBER 6, 2007 | ROU!<br>DECEMBE |           | ROUND 4<br>FEBRUARY 21, 2008 |
|--------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------|-----------------|------------------------------|-----------------|-----------|------------------------------|
|                          |                                                     | omona                                                    | 1 omit omona                                              | Sample        | Duplicate       | Sample                       | Sample          | Duplicate | Sample                       |
| Volatile Organics (μg/L) |                                                     |                                                          |                                                           |               |                 |                              |                 |           |                              |
| BENZENE                  | 710                                                 | 130                                                      | NA                                                        | 0.5 U         | 0.5 U           | 0.5 U                        | 0.5 U           | 0.5 U     | 0.2 J                        |
| BROMODICHLOROMETHANE     | 2.3                                                 | NE                                                       | NA                                                        | 0.3 J         | 0.5 U           | 0.5 U                        | 0.5 U           | 0.5 U     | 0.5 U                        |
| CHLOROFORM               | 14100                                               | 26                                                       | NA                                                        | 3 J           | 2 J             | 0.5 U                        | 0.5 U           | 0.5 U     | 0.5 U                        |
| CYCLOHEXANE              | NE                                                  | NE                                                       | NA                                                        | 0.5 U         | 0.5 U           | 0.1 J                        | 0.5 U           | 0.5 U     | 0.5 U                        |
| CIS-1,2-DICHLOROETHENE   | NE                                                  | 830                                                      | NA                                                        | 0.3 J         | 0.2 J           | 0.3 J                        | 0.2 J           | 0.5 U     | 0.2 J                        |
| ISOPROPYLBENZENE         | NE                                                  | 2800                                                     | NA                                                        | 0.1 J         | 0.09 J          | 0.1 J                        | 0.5 U           | 0.5 UJ    | 0.5 U                        |
| METHYL TERT-BUTYL ETHER  | NE                                                  | 21000                                                    | NA                                                        | 1             | 0.9             | 0.4 J                        | 0.6             | 0.6       | 0.7                          |
| TETRACHLOROETHENE        | 88                                                  | 340                                                      | NA                                                        | 0.3 J         | 0.3 J           | 0.4 J                        | 0.3 J           | 0.2 J     | 0.3 J                        |
| TRICHLOROETHENE          | 2340                                                | 27                                                       | NA                                                        | 0.4 J         | 0.3 J           | 0.5 J                        | 0.4 J           | 0.3 J     | 0.4 J                        |
| PAHs (μg/L)              |                                                     |                                                          |                                                           |               |                 | 1                            |                 | •         |                              |
| 1-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.96 J          | 0.048 J   | 0.21 U                       |
| 2-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA                                                        | 0.17 J        | 0.16 J          | 0.2 U                        | 1.1 J           | 0.2 UJ    | 0.21 UJ                      |
| 4-NITROANILINE           | NE                                                  | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 1 UJ                         | 0.75 J          | 1.0 UR    | 1.0 UJ                       |
| ACENAPHTHENE             | NE                                                  | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.83 J          | 0.029 J   | 0.21 U                       |
| ACENAPHTHYLENE           | 0.3                                                 | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.90 J          | 0.20 UJ   | 0.21 U                       |
| ANTHRACENE               | 1,100,000                                           | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.92 J          | 0.20 UJ   | 0.21 U                       |
| BENZO(A)ANTHRACENE       | 0.3                                                 | NE                                                       | NA                                                        | 0.07 U        | 0.07 U          | 0.041 U                      | 1.0 J           | 0.042 UJ  | 0.045 U                      |
| BENZO(A)PYRENE           | 0.3                                                 | NE                                                       | NA                                                        | 0.2 UJ        | 0.2 U           | 0.2 U                        | 0.35 J          | 0.20 U    | 0.21 U                       |
| BENZO(B)FLUORANTHENE     | 0.3                                                 | NE                                                       | NA                                                        | 0.08 U        | 0.08 U          | 0.075 U                      | 0.64 J          | 0.078 UJ  | 0.082 U                      |
| BENZO(G,H,I)PERYLENE     | NE                                                  | NE                                                       | NA                                                        | 0.2 UJ        | 0.2 U           | 0.2 U                        | 0.31            | 0.20 U    | 0.21 U                       |
| BENZO(K)FLUORANTHENE     | 0.3                                                 | NE                                                       | NA                                                        | 0.2 UJ        | 0.2 UJ          | 0.2 U                        | 0.53 J          | 0.20 U    | 0.21 U                       |
| CHRYSENE                 | NE                                                  | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.76 J          | 0.20 UJ   | 0.21 U                       |
| DIBENZO(A,H)ANTHRACENE   | NE                                                  | NE                                                       | NA                                                        | 0.2 UJ        | 0.2 U           | 0.2 U                        | 0.14 J          | 0.20 U    | 0.21 U                       |
| FLUORANTHENE             | 3,700                                               | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 1.1 J           | 0.20 UJ   | 0.21 U                       |
| FLUORENE                 | 140,000                                             | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.97 J          | 0.20 UJ   | 0.21 UJ                      |
| HEXACHLOROBENZENE        | 0.077                                               | NE                                                       | NA                                                        | 1 U           | 1 U             | 0.2 U                        | 1.2 J           | 0.20 UJ   | 0.21 U                       |
| HEXACHLOROBUTADIENE      | NE                                                  | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.48 U                       | 0.64 J          | 0.099 U   | 0.21 U                       |
| INDENO(1,2,3-CD)PYRENE   | NE                                                  | NE                                                       | NA                                                        | 0.2 UJ        | 0.2 U           | 0.2 U                        | 0.22            | 0.20 U    | 0.21 UJ                      |
| NAPHTHALENE              | NE                                                  | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 1.0 J           | 0.088 J   | 0.21 U                       |
| PHENANTHRENE             | 0.3                                                 | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.98 J          | 0.20 UJ   | 0.21 U                       |
| PYRENE                   | 110,000                                             | NE                                                       | NA                                                        | 0.2 U         | 0.2 U           | 0.2 U                        | 0.84 J          | 0.20 UJ   | 0.21 U                       |
| PAHs, Filtered (μg/L)    | i ' '                                               |                                                          |                                                           | 5. <b>L</b> 0 | 1 3.2 3         | J U                          |                 | 1         | L                            |
| 1-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA                                                        | NA            | NA              | NA                           | NA              | NA        | 0.093 J                      |
| 2-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA                                                        | NA            | NA              | NA                           | NA              | NA        | 0.2 UJ                       |
| 4-NITROANILINE           | NE                                                  | NE                                                       | NA                                                        | NA            | NA              | NA                           | NA              | NA        | 1.0 UJ                       |
| ACENAPHTHENE             | NE                                                  | NE                                                       | NA                                                        | NA            | NA              | NA                           | NA              | NA        | 0.031 J                      |
| ACENAPHTHYLENE           | 0.3                                                 | NE                                                       | NA                                                        | NA            | NA              | NA                           | NA              | NA        | 0.2 U                        |

TABLE 3-3

## SUMMARY OF POSITIVE DETECTIONS FOR YEAR 1 MONITORING EVENTS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 3

| PARAMETER                         | Surface Water<br>Protection Criteria <sup>(1)</sup> | Residential<br>Volatilization<br>Criteria <sup>(2)</sup> | Stormwater<br>Discharge<br>Permit Criteria <sup>(3)</sup> |        | IND 1<br>18, 2006 | ROUND 2<br>SEPTEMBER 6, 2007 | ROUI<br>DECEMBE |           | ROUND 4<br>FEBRUARY 21, 2008 |
|-----------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|--------|-------------------|------------------------------|-----------------|-----------|------------------------------|
|                                   |                                                     |                                                          |                                                           | Sample | Duplicate         | Sample                       | Sample          | Duplicate | Sample                       |
| PAHs, Filtered (continued) (μg/L) |                                                     |                                                          |                                                           |        |                   |                              |                 |           |                              |
| ANTHRACENE                        | 1,100,000                                           | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| BENZO(A)ANTHRACENE                | 0.3                                                 | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.042 U                      |
| BENZO(A)PYRENE                    | 0.3                                                 | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| BENZO(B)FLUORANTHENE              | 0.3                                                 | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.078 U                      |
| BENZO(G,H,I)PERYLENE              | NE                                                  | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.13 J                       |
| BENZO(K)FLUORANTHENE              | 0.3                                                 | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| CHRYSENE                          | NE                                                  | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| DIBENZO(A,H)ANTHRACENE            | NE                                                  | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| FLUORANTHENE                      | 3,700                                               | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| FLUORENE                          | 140,000                                             | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 UJ                       |
| HEXACHLOROBENZENE                 | 0.077                                               | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| HEXACHLOROBUTADIENE               | NE                                                  | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| INDENO(1,2,3-CD)PYRENE            | NE                                                  | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.22 J                       |
| NAPHTHALENE                       | NE                                                  | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.069 J                      |
| PHENANTHRENE                      | 0.3                                                 | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| PYRENE                            | 110,000                                             | NE                                                       | NA                                                        | NA     | NA                | NA                           | NA              | NA        | 0.2 U                        |
| Inorganics, Total (μg/L)          |                                                     |                                                          |                                                           |        |                   |                              |                 |           | <u> </u>                     |
| ALUMINUM                          | NE                                                  | NA                                                       | NA                                                        | 473    | 115               | 322                          | 38.1            | 21.8      | 29.4                         |
| ARSENIC                           | 4                                                   | NA                                                       | NA                                                        | 3.7 U  | 3 U               | 13.9                         | 2.2 U           | 4.7 U     | 3.1                          |
| BARIUM                            | NE                                                  | NA                                                       | NA                                                        | 48.2   | 52.4              | 87                           | 55.2            | 53.4      | 55.9                         |
| CALCIUM                           | NUT                                                 | NA                                                       | NA                                                        | 33800  | 35800             | 32000                        | 35,500          | 34,700    | 34,300                       |
| CHROMIUM                          | 110 (4)                                             | NA                                                       | NA                                                        | 0.94 U | 0.81 U            | 2                            | 0.41            | 0.28 U    | 0.38 U                       |
| COBALT                            | NE                                                  | NA                                                       | NA                                                        | 0.84 U | 0.64 U            | 0.26 U                       | 0.66            | 0.53      | 0.6                          |
| COPPER                            | 48                                                  | NA                                                       | 60                                                        | 3 U    | 3 U               | 4.2                          | 0.44 U          | 0.22 U    | 0.8 U                        |
| IRON                              | NUT                                                 | NA                                                       | NA                                                        | 9,190  | 11,900            | 70,800                       | 9,860           | 10,200    | 4,380                        |
| LEAD                              | 13                                                  | NA                                                       | 30                                                        | 2.2    | 9.3               | 8.4                          | 2.5 U           | 2.2 U     | 1.4 U                        |
| MAGNESIUM                         | NUT                                                 | NA                                                       | NA                                                        | 7,260  | 7660              | 7,020                        | 7,660           | 7,490     | 7,450                        |
| MANGANESE                         | NE                                                  | NA                                                       | NA                                                        | 661    | 715               | 845                          | 858             | 815       | 784                          |
| NICKEL                            | 880                                                 | NA                                                       | NA                                                        | 1.1 U  | 0.88 U            | 0.41 U                       | 0.53            | 0.46      | 0.64                         |
| POTASSIUM                         | NUT                                                 | NA                                                       | NA                                                        | 5210   | 5490              | 5,270                        | 5,590           | 5,490     | 5,150                        |
| SELENIUM                          | 50                                                  | NA                                                       | NA                                                        | 1.5 U  | 2 J               | 1.5 U                        | 1.5 U           | 1.5 U     | 2.2 U                        |
| SILVER                            | 12                                                  | NA                                                       | NA                                                        | 0.46 U | 0.46 U            | 1.5                          | 0.46 U          | 0.46 U    | 0.54 U                       |
| SODIUM                            | NUT                                                 | NA                                                       | NA                                                        | 46,900 | 49,600            | 52,100                       | 53,400          | 52,300    | 50,100                       |
| VANADIUM                          | NE                                                  | NA                                                       | NA                                                        | 1.3 U  | 1.4 U             | 3.7                          | 0.34 U          | 0.29 U    | 0.52 U                       |
| ZINC                              | 123                                                 | NA                                                       | 200                                                       | 21.3 J | 22.3              | 47.1                         | 22.8            | 20.0      | 26.6                         |

TABLE 3-3

### SUMMARY OF POSITIVE DETECTIONS FOR YEAR 1 MONITORING EVENTS SITE 23 UNDERDRAIN METERING PIT **NSB-NLON, GROTON, CONNECTICUT** PAGE 3 OF 3

| PARAMETER                               | Surface Water<br>Protection Criteria <sup>(1)</sup> | Residential<br>Volatilization<br>Criteria <sup>(2)</sup> | Stormwater Discharge Permit Criteria <sup>(3)</sup> | ROUI<br>JUNE 18 |           | ROUND 2<br>SEPTEMBER 6, 2007 | ROU<br>DECEMBE |           | ROUND 4<br>FEBRUARY 21, 2008 |
|-----------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------|-----------|------------------------------|----------------|-----------|------------------------------|
|                                         |                                                     | Onteria                                                  | T erinit Criteria                                   | Sample          | Duplicate | Sample                       | Sample         | Duplicate | Sample                       |
| Inorganics, Filtered (μg/L)             |                                                     |                                                          |                                                     |                 |           |                              |                |           |                              |
| ALUMINUM                                | NE                                                  | NA                                                       | NA                                                  | 20.4 J          | 36.7 J    | 21.3 J                       | 19.0 U         | 19.0 U    | 35.4                         |
| ARSENIC                                 | 4                                                   | NA                                                       | NA                                                  | 3.5 U           | 2.2 U     | 1.2 J                        | 1.9 U          | 1.1 U     | 2.8                          |
| BARIUM                                  | NE                                                  | NA                                                       | NA                                                  | 44.6            | 46.4      | 50.1                         | 48.9           | 49.6      | 56.8                         |
| CALCIUM                                 | NUT                                                 | NA                                                       | NA                                                  | 33,600          | 34,700    | 31,400                       | 33,100         | 33,400    | 36,000                       |
| CHROMIUM                                | 110 (4)                                             | NA                                                       | NA                                                  | 1.2 U           | 0.44 U    | 0.3 J                        | 0.29           | 0.48      | 0.38 U                       |
| COBALT                                  | NE                                                  | NA                                                       | NA                                                  | 0.67 U          | 0.86 U    | 0.47 J                       | 0.48           | 0.51      | 0.64                         |
| IRON                                    | NUT                                                 | NA                                                       | NA                                                  | 3,470           | 3,630     | 3,600                        | 4,190          | 4,140     | 3,750                        |
| LEAD                                    | 13                                                  | NA                                                       | 30                                                  | 1.3 J           | 1.8 J     | 1.1 U                        | 2.1 U          | 2.8 U     | 1.4 U                        |
| MAGNESIUM                               | NUT                                                 | NA                                                       | NA                                                  | 7,200           | 7,480     | 6,980                        | 7,250          | 7,300     | 8,020                        |
| MANGANESE                               | NE                                                  | NA                                                       | NA                                                  | 645             | 664       | 708                          | 764            | 770       | 815                          |
| NICKEL                                  | 880                                                 | NA                                                       | NA                                                  | 1.1 U           | 0.88 U    | 0.78 J                       | 1.0            | 0.64      | 0.66                         |
| POTASSIUM                               | NUT                                                 | NA                                                       | NA                                                  | 5,090           | 5,390     | 5,320                        | 5,360          | 5,390     | 5,390                        |
| SELENIUM                                | 50                                                  | NA                                                       | NA                                                  | 1.5 U           | 1.7 J     | 2.4 U                        | 1.5 U          | 2.3 U     | 2.2 U                        |
| SODIUM                                  | NUT                                                 | NA                                                       | NA                                                  | 46,600          | 48,400    | 52,600                       | 50,400         | 51,400    | 52,100                       |
| ZINC                                    | 123                                                 | NA                                                       | 200                                                 | 21.4 J          | 19.5 J    | 15                           | 18.6           | 20.8      | 26                           |
| Petroleum Hydrocarbons (μg/L)           |                                                     |                                                          | •                                                   |                 |           |                              |                |           |                              |
| ETPH (C09-C36)                          | NE                                                  | NE                                                       | 2500 <sup>(5)</sup>                                 | 55 J            | 79 U      | 140 J                        | 160 U          | 1600 J    | 75 U                         |
| Petroleum Hydrocarbons, Filtered (μg/L) |                                                     |                                                          |                                                     |                 |           |                              |                |           |                              |
| ETPH (C09-C36)                          | NE                                                  | NE                                                       | 2500 <sup>(5)</sup>                                 | NA              | NA        | NA                           | NA             | NA        | 75 U                         |

- Connecticut Remediation Standard Regulations (January 1996) and Comprehensive List of Approved Additional Polluting Substances Criteria and Alternative Criteria (October 2005). Proposed Revisions to Connecticut's Remediation Standard Regulations, Volatilization Criteria (March 2003).

  NSB-NLON General Permit for the Discharge of Stormwater Associated with Industrial Activity (DEP-PERD-GP-014, Issuance Date: October 1, 2002 and Modified Date: July 15, 2003).
- Criterion is for hexavalent chromium
- Criterion is for oil and grease.
- Sample results that exceed a criterion are shown in bold font. Not applicable. BOLD
- NE Not established.
- NUT Essential nutrient.

#### 4.0 CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 CONCLUSIONS

This Year 1 Annual Groundwater Monitoring Report summarizes groundwater data collected from the underdrain metering pit at Site 23 during Rounds 1 through 4. The results are used to determine the quality of groundwater being collected and conveyed by the underdrain piping and whether constituent levels in the water pose potential risks to human health or the environment.

The Site 23 underdrain metering pit was sampled in June, September, and December 2007, and February 2008, and samples were analyzed for TCL VOCs, TCL SVOCs, TCL PAHs, TAL metals (total or dissolved), oil and grease, and ETPH. Conclusions based on evaluation of the results of these sampling events are as follows:

- All four rounds of data were similar and in general all concentrations were established Connecticut
  criteria with the exception of arsenic in Round 2 and seven PAHs (acenaphthylene,
  benzo(a)anthracene, benzo(a)pyrene, benzo(b)flouranthene, benzo(k) flouranthene,
  hexachlorobenzene, and phenanthrene) in Round 3.
- No contaminants were detected at concentrations greater than any established Connecticut criteria during Rounds 1 and 4.
- Arsenic was detected at a concentration greater than the Surface Water Protection Criterion in an
  unfiltered sample during the Round 2 sampling event. However, arsenic was not detected in the
  filtered sample at a concentration that exceeded the criterion. Therefore, the filtered result, which is
  more indicative of groundwater quality, does not indicate that arsenic in groundwater presents a
  significant threat to human health and the environment.
- It is thought that the PAH detections in the Round 3 are related to sediment particles being present in
  the groundwater sample because no PAH detections concentration exceeded the criteria in the field
  duplicate or in the Round 4 sample, which was collected using a new sampling technique. Therefore,
  the PAH results in the original Round 3 sample from do not appear indicative of groundwater quality.
- Site 23 groundwater being collected and conveyed in the storm sewer system does not pose a significant current threat to human health or the environment by comparison of results to CTDEP criteria.

• Based on the Human Health Risk Assessment, under current and expected land use, Site 23 groundwater does not pose a significant threat to human health from direct exposure by construction workers or vapor intrusion into buildings. Adverse health effects are possible under hypothetical residential land use if the groundwater is used as a potable source.

#### 4.2 RECOMMENDATIONS

The following recommendation are made for Site 23 groundwater:

- Based on the analytical results from Rounds 1 through 4 and the human health risk evaluation, implementation of institutional controls are required at Site 23 to identify the location and magnitude of groundwater contamination and to restrict extraction and use of the groundwater for residential purposes. These controls should be implemented as part of the remedies for OU 9.
- Additional monitoring is not required at Site 23 because there are no long-term monitoring requirements; however, collecting of additional rounds of data may clarify some of the anomalous results identified during Year 1.
- If additional monitoring is conducted, the analytical program should remain the same and the Round 4 sampling technique should be used to minimize impacts of suspended solids on sample results.

#### REFERENCES

Foster Wheeler Environmental Corporation (FWEC), 2001. Final Closeout Report for Storm Sewer Rehabilitation, Naval Submarine Base New London, Groton, Connecticut. May.

Tetra Tech, 2002. Basewide Groundwater Operable Unit Remedial Investigation Report, Naval Submarine Base New London, Groton, Connecticut. King of Prussia, Pennsylvania.

Tetra Tech NUS, Inc.(Tetra Tech), 2006. Second Five-year Review Report for CERCLA Sites at Naval Submarine Base new London, Groton, Connecticut. King of Prussia, Pennsylvania. December.

Tetra Tech, 2007a. Work Plan for Site 23 Underdrain Metering Pit Sampling, Naval Submarine Base New London, Groton, Connecticut. King of Prussia, Pennsylvania. April.

Tetra Tech, 2007b. Letter Report for June 2007 Sampling Event, Site 23 Underdrain Metering Pit, Naval Submarine Base New London, Groton, Connecticut. King of Prussia, Pennsylvania. August.

Tetra Tech, 2007c. Letter Report for September 2007 Sampling Event, Site 23 Underdrain Metering Pit, Naval Submarine Base New London, Groton, Connecticut. King of Prussia, Pennsylvania. October.

Tetra Tech, 2008. Letter Report for December 2007 Sampling Event, Site 23 Underdrain Metering Pit, Naval Submarine Base New London, Groton, Connecticut. King of Prussia, Pennsylvania. February.

Tetra Tech, 2008a. Human Health Risk Assessment Memo - Site 23 Groundwater, Site 23 Underdrain Metering Pit, Naval Submarine Base New London, Groton, Connecticut, May 19.

Tetra Tech, 2008b. Memorandum Regarding Vapor Intrusion Evaluation for Groundwater at Operable Unit 9, Site 23 Underdrain Metering Pit, Naval Submarine Base New London, Groton, Connecticut. May 30.

USEPA, 1989 - U.S. EPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses. February.

USEPA, 1996 - U.S. EPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses. December.

USEPA, 2001 - U.S. EPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review. June.

USEPA, 2008. EPA Comments on the Basewide Groundwater Vapor Intrusion Analyses. Email from Kymberlee Kecker of USEPA Region I to Corey Rich of Tetra Tech NUS, Inc. April 24.



**APPENDIX A** 

**FIELD FORMS** 

## **APPENDIX A.1**

**ROUND 1 - FIELD FORMS** 

|          | OSE    | D TC         | AN       | bΰ        | NBE      | RSTO       | 00     | BY       |      |          |        |            |           |      | DAI  | E   | Terrescon Trace |      | WIT     | NESS     |      | OPIOACE PRO TOO | ******* | A COMPANY OF THE PERSON NAMED IN | de No. of State of St | *************************************** | ·        | DATE         | -        | To burnessee and and | *************************************** | reserve. |
|----------|--------|--------------|----------|-----------|----------|------------|--------|----------|------|----------|--------|------------|-----------|------|------|-----|-----------------|------|---------|----------|------|-----------------|---------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|--------------|----------|----------------------|-----------------------------------------|----------|
|          | ATU    |              |          | 2         |          | /<br>2/    |        |          | 1    |          |        |            |           |      |      |     |                 |      |         |          |      |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          | DATE         |          | 07                   | <i>-</i>                                | -        |
| SCIE!    | ITIFIC | BING         | PERY     | PRO       | DUCT     | IONS       | CHI    | CAGO     | ) 6( | 0605     | MAI    | DE IN I    | JSA       |      |      |     |                 |      |         |          |      |                 |         | Wo                               | rk c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onti                                    | nuec     | 1 to         | Pag      | e<br>e               | I                                       |          |
|          |        |              |          |           |          |            |        |          |      |          |        | J          |           |      | 1    | 1   | 7               |      | _       |          |      | 1               | $\top$  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              | 7        |                      |                                         |          |
|          |        |              |          |           |          |            |        |          |      | 1        | 1      |            | /         |      | 7    |     | -               |      |         |          | +    |                 | +       | +                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                       |          |              |          | +                    |                                         |          |
|          |        |              |          |           |          |            |        |          | 1    | 1        | 7      |            |           | 1    | 1    |     | $\dashv$        | +    |         |          |      | _               |         | +                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |              |          | _                    | $\dashv$                                |          |
| 1        |        |              |          | -         | :        |            |        |          | 1    |          | +      |            |           |      | 1    | +   | $\neg \dagger$  | _    |         | +        | -    |                 |         |                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                       |          |              |          |                      |                                         |          |
| 7        |        |              |          | +         |          |            |        |          |      | +        | $\neg$ |            | +         |      |      |     | +               |      |         |          |      | -               |         |                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |              |          |                      |                                         | _        |
| +        |        |              |          | +         | 7        |            | ****   | <u> </u> | 1    | -        | +      |            |           |      |      |     |                 |      |         |          |      | -               |         | $\dashv$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |          |              |          |                      |                                         | _        |
| 1        |        |              | 1-       | $\dagger$ |          |            |        |          | +    | -        | +      |            | +         | +    |      |     |                 |      |         |          |      | *               |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | -        |
| -        |        |              | +        | +         |          |            |        | -        | +    | +        |        | +          |           | -    |      |     |                 |      |         |          |      |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | -        |
| $\dashv$ |        |              | -        | +         |          |            |        | -        | +    | $\dashv$ |        | $\dashv$   |           |      |      |     |                 |      |         |          |      | 4               |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          | -            |          |                      |                                         | _        |
| -        |        | -            | +-       | +         |          |            |        | -        | +-   | +        |        |            |           |      |      |     |                 |      |         |          |      |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         |          |
|          | *****  | <del> </del> | -        | +         |          |            |        |          | +    | $\dashv$ | -      |            |           |      |      |     | _               |      |         |          |      | _               |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | -        |
|          |        |              | +-       | -         |          |            |        | -        | +    | +        |        |            |           |      |      |     |                 |      |         |          |      |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | L        |
| _        |        | -            | -        | 1         |          |            |        | <u> </u> | 1    | $\perp$  |        |            |           | Els  | 0    |     |                 |      |         |          |      | _               |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      | _                                       | Ļ        |
| 1        | 70     | 0,           | 4/25     | -         |          | _Z         | 2      | 110      | E    | 2        | 0      | 5          | 9 100     | r /E | 5    | 1   | ,               | لمحر | 50.     |          | X    |                 | 5E      | ح                                | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٠                                       | #        | 97           | 79       | ر                    | ~                                       | 1        |
| _        |        | -            | +        | 1         |          |            | Ä      | Hx       | 4.   | _        | 41     | 101        | 181       | 7 0  | 20 A | .8  |                 | V    | 4       |          | -2   | 0               | 5 X     |                                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T.                                      | 83       | 319          | 4.8      | 37                   | 70                                      | 1        |
| _        |        | _            | 1        | _         | •        |            | -      | 1        | 1    | 1        |        | - 1        | 1         | •    | 1    | - 1 | 1               | 1    | حرر     | 1        | ری   | //              | _       | <b>⊬</b> o                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KA                                      | +        | h            | 1,.      |                      |                                         |          |
| 1        | 33     | 0            | HA       | S         | -        | 1          | R      | riv      | 12   | -        | a      | ) ]        | DA        | ورز  | U    | 1/2 | -               | 5    | 176     | ء        | -    | 2 92            | - 1     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | +        |
| 7        | 20     | 5            | í        | i         |          |            | !      | 1        | ł    |          | 1      | - 1        | 1         | 1 1  |      |     |                 |      | 6       |          |      | - {             | - 1     | , ,                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                     | TA       | مم           |          |                      | ······································  | +        |
|          |        | -            | 1        | 0         | RP       | -          | 4      | 7        | V    | 4        | /      |            |           |      |      |     | m 5             |      | Us      |          |      | · 9.            |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          | TE           | rs p     | /                    | 5.6                                     | 1        |
|          |        | +            |          |           |          | <i>S K</i> |        |          |      |          | 7      | ŗ          |           |      | A == | 20  | _}              | 1-   |         |          | ) c' |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | +        |
|          |        | -            | 1        |           |          | م عد       | -      |          | 7    | $\neg$   |        | 1          | UK        | 7 3  |      | ED  | d               | 16,  | 18      | 17       |      |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | +        |
| _C       | 9      | 30           | 1        | x         | <b>S</b> | -          | -      | 1        | •    | 1        |        |            |           |      |      |     |                 |      | 1       |          |      | 0               |         | =                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                      | 51       | 1            | 10       | 40                   | /                                       | +        |
|          |        | +-           | -        |           |          |            | ļ.<br> | C.       | 9 e  | ey       |        | <b>5</b> Q | \$        |      | 54,0 | ple | چ_              | Co   | n to    | in       | بريم | 2_              | 4       | ٥                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sa.                                     | 100      | þ            |          |                      |                                         | +        |
|          |        | +            |          | -         |          | <u> </u>   | -      | +-       | 1    | _        | _7     | UB         | . /       | ME:  | LEA  |     | 11              | m    | H       | <u>-</u> | 20   |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              | (        | 54                   | )                                       |          |
|          |        | -            | -        |           |          | ļ          | -1     | 1        | - 1  |          |        |            | ļ.        | f .  | }    | ļ.  | 1               | !    | 63      |          | 1 .  |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |          |              |          |                      |                                         | 1        |
|          |        |              |          |           |          |            |        |          |      |          |        |            |           |      |      |     |                 |      |         |          |      |                 |         | Hr                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |              |          |                      |                                         | +        |
|          | _      | Г            | - 1      | - 1       |          | 1          |        |          |      |          |        |            |           |      |      |     |                 |      | S       |          |      |                 |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | <u> </u> |              |          |                      |                                         | -        |
|          | 2      | 30           | 1        | 10        | 5        | _          |        | 1        | - 1  | - 1      |        | ,          | ſ         | 1    | 1 '  | 1   |                 | :    |         | i        | 1    | 1               | 1       |                                  | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>e</u> _                              |          | <del> </del> | <u> </u> |                      |                                         | -        |
|          | -      |              |          |           |          | <b> </b>   | 1      | - 1      | . i  | 1        |        | 1          | ì         |      | !    | 1   | i               | l    | 17      | i        |      |                 |         |                                  | , ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          | <del> </del> |          |                      |                                         | -        |
|          |        |              |          |           |          |            |        |          |      |          |        |            |           |      |      |     |                 |      | D<br>wz |          | VE.  | w               | Loi     | 40                               | بره                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                       | (,       | WS.          | 8        | WZ                   | 0^                                      | 1        |
|          | 7      | X            | ر ر<br>ر | 10        | -S.      | <u> </u>   | 12     | EA       | 1    | <u>ح</u> |        | DAI        | )15.<br>D | 111  | IE.  | عر  | مره             |      | N.      | Ek/      |      | سر              | 00      | مد                               | بح                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | cx       | -            | _م       | 10                   |                                         | -        |
| C        |        |              |          |           |          |            |        |          |      |          |        |            |           |      |      | 1   | 1               |      | i       |          |      | 1               | 1       | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1        | 5            |          | 7                    |                                         | í        |

|    | 1                    |
|----|----------------------|
| TŁ | Tetra Tech NUS, Inc. |
|    |                      |

## **DOCUMENTATION OF FIELD CALIBRATION**

| PROJ                                  | ECT NAME :           | NSB           | NEW LO    | NDON                                  | ·<br>•                                  |               | INSTRU   | JMENT N | IAME/MO | DDEL:  |            | U-22          |             | -                     |               |       |
|---------------------------------------|----------------------|---------------|-----------|---------------------------------------|-----------------------------------------|---------------|----------|---------|---------|--------|------------|---------------|-------------|-----------------------|---------------|-------|
| SITE                                  | IAME:                |               | 23        |                                       | •                                       | ٠             | MANUF    | ACTUR   | ER:     |        |            | Horiba        |             | _                     |               |       |
| PROJI                                 | ECT No.:             | 1             | 12G0077   | 77                                    | •                                       |               | SERIAL   | . NUMBE | iR:     |        | 4          | 0630          | 29          | ·<br>•                |               |       |
| Date<br>of                            | Person<br>Performing | PH            |           | AL READ                               | <del></del>                             | TEME          | 0.41     | 511     |         | L READ |            |               |             | Calibration           | Remarks       | S.    |
| Calibration                           | Calibration          |               | COND      | TURB                                  | DO                                      | TEMP          | SAL      | PH      | COND    | TURB   | DO         | TEMP          | SAL         | Standard<br>(Lot No.) | and<br>Commen | ts    |
| 6/18/07                               | TR                   | 4.00          | 4.62      | WA                                    | 7.52                                    | <i>22.</i> 83 | <b>~</b> | 4.60    | 4.49    | WA     | *<br>7.47  | <i>22</i> .86 | <b>46</b>   | 5585                  | Exp. Date Z   | ///08 |
|                                       |                      |               |           | -                                     |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         | · .    |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        |            |               | · · · · · · |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           | · · · · · · · · · · · · · · · · · · · |                                         | . ,           |          | ·       |         |        |            |               |             |                       |               |       |
|                                       | * Pei                | > <i>T</i> ), | حرث ریح ۱ | SIGN)                                 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | יי.<br>יידי   | Day      |         | r en i  | e ludi | י<br>אר די | HE AST        | ERISI       | !<br>/ (4e) -         |               |       |
| · · · · · · · · · · · · · · · · · · · |                      |               |           |                                       |                                         |               |          |         |         |        | •          | NG F          |             |                       |               |       |
|                                       | _                    |               |           |                                       |                                         |               |          |         |         |        |            |               |             |                       |               |       |
|                                       |                      |               |           |                                       |                                         |               |          |         |         |        | _          | BASED         |             | -                     |               |       |
|                                       | _ Te                 | >WPB          | RAN       | NE                                    | o                                       | DIE (         | CALI     | BRAT    | now     | Soli   | MON        | 2 - TH        | E LC        | nor_                  |               |       |
| · · · · · · · · · · · · · · · · · · · | _                    |               |           |                                       |                                         |               |          |         |         |        |            |               |             | BE -                  |               |       |
|                                       | F                    | UNCT          | ואטר      | NG                                    | Pro                                     | PERL          | Ч.       | C.      | RICH    | 8/1    | 6/07       |               |             |                       |               |       |



## **EQUIPMENT CALIBRATION LOG**

| PROJECT NAME : | NSB NEW LONDON | INSTRUMENT NAME/MODEL: | LAMOTTE 2020   |
|----------------|----------------|------------------------|----------------|
| SITE NAME:     | 23             | MANUFACTURER:          | LAMOTTE        |
| PROJECT No.:   | 112G00777      | SERIAL NUMBER: 3594    | - 350 <i>2</i> |

| Date              | Instrument     | Person                    | 0 N                 | TUs                  | 10 1                                  | NTUs                 | Calibration           | Remarks            |
|-------------------|----------------|---------------------------|---------------------|----------------------|---------------------------------------|----------------------|-----------------------|--------------------|
| of<br>Calibration | I.D.<br>Number | Performing<br>Calibration | Pro.<br>Calibration | Post-<br>calibration | Pre-<br>calibration                   | Post-<br>calibration | Standard<br>(Lot No.) | and<br>Comments    |
| 6/13/07           | SAME           | TR                        | 0.00                | 0.00                 | 9.78                                  | 10.00                | 0 * P676              | 590 Exp. Date Z/ce |
|                   |                |                           |                     |                      |                                       |                      | 10 = P 674 :          | 931                |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   | ÷              |                           |                     |                      |                                       |                      |                       |                    |
|                   | <del></del>    |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      | <u> </u>                              |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      | -                     |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      | 1.0                   |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                | <del></del>               | · ·                 |                      |                                       |                      |                       |                    |
|                   |                | <del></del>               |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           | 1                   |                      | · · · · · · · · · · · · · · · · · · · |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      |                       |                    |
| ;                 |                |                           |                     |                      |                                       |                      |                       |                    |
|                   |                |                           |                     |                      |                                       |                      | -                     |                    |
|                   | <b>-</b>       |                           |                     |                      |                                       |                      | <del></del>           |                    |
|                   |                |                           |                     | <del></del>          |                                       |                      |                       |                    |



## SURFACE WATER SAMPLE LOG SHEET

Page of Project Site Name: **NSB NEW LONDON** Sample ID No .: S23GWMPM01 Project No.: 112GN00777 Sample Location: Site 23 Sampled By: T. Rojahn Stream C.O.C. No.: 4779 [] Spring □ Pond Type of Sample: Lake [X] Low Concentration [X] Other: Manhole - monitoring Pit | High Concentration [] QA Sample Type: TO STANDED METERS OF THE STANDARD OF THE STAND Date: 6/18/2007 Color рH S.C. Temp. **Turbidity** DO Salinity Other Time: 9:30 Visual Standard mS/cm Degrees C NTU mg/l NA Depth: NA 6.18 0.709 16.63 55.6 9.00 NA NA Method: precip. S.S. Beaker Samere en le la comparte de la compa Preservative **Container Requirements** Collected Volatiles 4ºC/HCI (3) 40 ml VOA Vial Yes TCL SVOCS, PAHS & SIM 4ºC (2) 1 L Glass Amber Yes Total Oil and Grease 4ºC/H₂SO₄ (2) 1 L Glass Amber Yes ETPH 4ºC (2) 1 L Glass Amber Yes Total TAL Metals 4ºC/HNO<sub>3</sub> (1) 500 ml HDPE Yes Dissolved TAL Metals 4ºC/HNO<sub>3</sub> (1) 500 ml HDPE Yes SEIKOVANKSVAOTASEED Circle if Applicable: Signature(s): Twylgoh MS/MSD **Duplicate ID No.:** YES FD-061807

| TŁ      | TETRA | A TECH N | US, INC. |
|---------|-------|----------|----------|
| DDO IEC | TNO   |          |          |

CHAIN OF CUSTODY

NUMBER 4779

PAGE 1 OF 1

| 1/2       | DJECT NO:<br>2600<br>MPLERS (S    |             | NEW LOW                               | BON          | PRO.           | JECT M            | RICH<br>RATIONS              | R<br>S LEADE                              | - 4               | 412                                              | NUMBE<br>921- &<br>NUMBE | 3984                                 |         | LABO                                    | RATORY<br>TAH | NAME<br>D/~ | AND C                                        | CONTACT:    | 37              |
|-----------|-----------------------------------|-------------|---------------------------------------|--------------|----------------|-------------------|------------------------------|-------------------------------------------|-------------------|--------------------------------------------------|--------------------------|--------------------------------------|---------|-----------------------------------------|---------------|-------------|----------------------------------------------|-------------|-----------------|
|           |                                   |             | 11                                    |              | TER            | RIER/W            | AYBILL                       | H M<br>NUMBE                              | R                 | 412 9                                            | 21-8                     | 857                                  |         | CITY, S                                 | 0 7           | ECH         | NOL                                          | osy h       | VAY             |
|           |                                   | Twy 1       | John                                  |              | FE.            | DE                | XA                           | B                                         | 83                | CO                                               | NTAINE                   | TYPE                                 |         | Sch                                     | RBO           | ROU         | GH.                                          | ME          | 04074           |
| RUS       | NDARD TA<br>H TAT []<br>24 hr. [] | -           | hr. 🗌 7 day 📋                         | 14 day       |                |                   | SD, QC,                      |                                           |                   | PLA                                              | ASTIC (P<br>ESERVA       | or GLA                               | ASS (G) |                                         | 6/00/<br>×/v  | C/125       | ()/W/V                                       | er HHO3     | MARCA           |
| DATE 2007 | TIME                              | SA          | MPLE ID                               | LOCATION ID  | ТОР DЕРТН (FT) | ВОТТОМ DEPTH (FT) | MATRIX (GW, SO, SW,<br>ETC.) | COLLECTION METHOD<br>GRAB (G)<br>COMP (C) | No. OF CONTAINERS | 46                                               | E OF ANN                 | 6100<br>6100<br>6100<br>6100<br>6100 | JAN.    | 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 | ASE ALBERTA   | 250         | 10/4/20/20/20/20/20/20/20/20/20/20/20/20/20/ |             | COMMENTS        |
| 6/18      | 0900                              | TRAC        |                                       | QC.          |                |                   | QC                           | G                                         | 2                 | 2                                                | //                       |                                      | / 🐶     | /20                                     | /QX           |             |                                              | <del></del> |                 |
| 9/18      | 0930                              | 52361       | VMPMOI                                | MANH         | _              |                   | GW                           | 6                                         | 31                | 9                                                | 6                        | 6                                    | 6       | 2                                       | 2             |             |                                              | Ī           | BIANK<br>MS/MSD |
| 9/18      | 0000                              | FD-06       | 1807                                  | MANH         | OLE            |                   | GW                           | G                                         | 11                | 3                                                | 2                        | 2                                    | 2       | 1                                       | 1             |             |                                              | 8014        | MSIMSD          |
|           |                                   |             |                                       |              |                |                   | ļ                            |                                           |                   |                                                  |                          |                                      |         |                                         |               |             |                                              |             |                 |
|           |                                   | <del></del> | · · · · · · · · · · · · · · · · · · · | <u> </u>     | <u> </u>       | ļ                 |                              |                                           | ļ                 |                                                  |                          |                                      |         | ļ ·                                     |               |             | pi.                                          |             |                 |
|           |                                   |             |                                       |              |                | <u> </u>          |                              |                                           |                   |                                                  | ļ                        |                                      |         |                                         |               |             |                                              |             | j.              |
|           |                                   |             |                                       | <del> </del> |                | -                 | ļ .                          |                                           |                   |                                                  |                          |                                      |         |                                         |               |             |                                              |             |                 |
|           |                                   |             |                                       | <u> </u>     |                |                   |                              |                                           |                   | <del>                                     </del> | <u> </u>                 |                                      | ļ       |                                         |               |             | ļ                                            |             |                 |
|           | _                                 |             |                                       |              | <i>ŧ</i>       |                   |                              |                                           |                   |                                                  |                          |                                      |         |                                         |               |             |                                              |             |                 |
|           |                                   | - 4,        | -                                     |              |                |                   |                              |                                           |                   | <del></del>                                      |                          |                                      |         |                                         |               |             |                                              |             | · ·             |
|           |                                   |             |                                       | j            |                |                   |                              |                                           |                   |                                                  | <del> </del>             |                                      |         |                                         |               |             |                                              |             | •               |
|           |                                   |             |                                       |              |                |                   |                              |                                           |                   | <del>                                     </del> |                          |                                      |         |                                         | 1             |             |                                              |             |                 |
|           | INQUISHE                          | 7000        | Rojih                                 |              | DATE           | 18-0              | 7 1                          | IME<br>1700                               | - 1               | ECEIVE                                           | _FE                      | DERA                                 | 1L E    | XPRE                                    | <br>:55       |             | DA                                           | TE<br>18-07 | TIME /700       |
|           | INQUISHE                          |             |                                       |              | DATE           |                   |                              | IME                                       |                   | ECEIVE                                           | D BY                     |                                      |         |                                         |               |             | DA                                           | TE          | TIME            |
|           | MENTS                             |             |                                       |              | DATE           | <del></del>       |                              | IME                                       | 3. R              | ECEIVE                                           | D BY                     |                                      |         |                                         |               |             | DA                                           | TE          | TIME            |
| DISTR     | IBUTION:                          | WHITE       | (ACCOMPANIES SAM                      | (PLE)        |                | ,                 | YELLOV                       | V (FIELD                                  | COPY              | )                                                | <u>Y</u>                 |                                      | PIN     | K (FILE                                 | COPY)         |             |                                              |             | 4/02R           |

## **APPENDIX A.2**

**ROUND 2 - FIELD FORMS** 

121

ROUND Z

BOOK NO. 1398

|          |          |           |            |                 |            |          | רס           | na estadoro                                      | ·         | Siz            | 75  |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UG.              | R D | KA I                                  | ~   |          | 47            | ERI                 | NG       |     | J.Z.  |      | 230        | NA                | 101            | <u>ک</u>                   | THE WILL      |
|----------|----------|-----------|------------|-----------------|------------|----------|--------------|--------------------------------------------------|-----------|----------------|-----|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|---------------------------------------|-----|----------|---------------|---------------------|----------|-----|-------|------|------------|-------------------|----------------|----------------------------|---------------|
| Wo       | rk<br>—  | con       | tinue      | d fro           | om         | Page     | <del>}</del> | <del></del>                                      | ļ         | ļ              | ļ   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
| 10       | :        | <u>30</u> | Н          | R.S             |            | <u> </u> | 19           | RR.                                              | UZ        | -              | @   |    | Da         | vi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vì               | 1/e |                                       | TRI | 1/2      | مر            |                     | رمي      | lik | XA    | to   | ور         | 757               | Lex            | ς                          |               |
| $\perp$  |          |           |            |                 |            |          |              |                                                  |           | b              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            | ~             |
|          |          |           |            |                 |            |          | 1            | 1                                                | ŧ         | 5              | 1   |    |            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |     | i                                     | 1   | :        | 1             | 4                   | 1        |     | 1     | 1    | ī          | ļ                 | ŧ ·            |                            | 7,            |
| 7        | 5        | Ò         | Hes        |                 |            | _        |              | ţ                                                | 1         | DA             |     | 1  |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |     |                                       | 1   |          | i             | 1                   |          |     |       |      |            |                   |                |                            |               |
| 1        | - 1      |           | HR         | 1 1             |            | 1        | 1            | 1                                                | ļ         | _              | İ   | l  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       | _   |          |               |                     |          |     |       |      |            |                   |                |                            |               |
| - 1      |          |           | 4x         | 1 5             |            | 1        | 1            | 1 .                                              | 1         | -              | 1   | 1  | £          | co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | مددد             |     |                                       | _ أ | نج       |               | 4.                  | - 11     |     |       |      | ,          |                   |                |                            | 1             |
| -        | - 1      | İ         | 1/2        |                 |            | _        |              |                                                  |           | 0              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          | <del>-</del>  |                     |          |     | ~     |      |            | _ <               | 0/             | a.a.                       |               |
|          | - 1      | _         | 25         |                 |            |          | 1            | 1                                                | 1         | 54             | 1   | l  | 1          | 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>         | 200 | .47                                   | 20. |          |               |                     |          |     |       |      |            |                   | -              |                            |               |
|          |          |           |            |                 |            |          | į.           | 1                                                | 1         | 1              | 1   | i  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     | <u> </u> | ļ             |                     | ļ        |     |       |      |            | ,                 |                |                            |               |
| 1        | 2)       | 77        | <b>e</b> 5 |                 |            | -        | i            | 1                                                | 1         | 0              | 4   | ١. | -          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |     |                                       | 1   | 1        |               | •                   | -        | RE  | ه حر  |      |            | ال                |                |                            |               |
| 士        |          |           |            | $\vdash \vdash$ |            | _        |              | 1                                                |           | na             | 1   | -  | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |     |                                       |     | 1        | •             |                     | ļ        |     |       |      |            | <u> </u>          | -              |                            |               |
| 15       | ٥        | 0.6       | as.        |                 |            |          | Į.           | 1                                                | 1.        | N              | ł   | 1  | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |     |                                       | Į.  | į :      | •             | 1                   | TX       | ررو | EX    |      | \ <u>\</u> | صر                | -0             | cs.                        | <u> </u>      |
| +        | _        |           |            |                 |            |          |              |                                                  |           | E              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   | -              |                            |               |
| 16:      | 05       | 5 /       | 125        | $\vdash$        | _          | -        |              |                                                  |           | -              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      | ļ          | -                 | -              |                            |               |
| +        | -        |           |            |                 |            |          | TE           | RFU                                              | RM        | 2              | 115 | 1  | -          | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d le             | 19  |                                       | £   | Ps       | ck            | 119                 | 2        | 54  | קנונ  | 18   | ح.         | 0,                | <del> </del>   |                            |               |
| +        |          |           |            |                 |            |          |              |                                                  |           | 4              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   | 111            | ica                        | /             |
| +        | $\dashv$ |           |            |                 |            |          | 1            | 1                                                | 1         | EI             | ſ   | ş  | 1          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |     | #                                     | -   | 85       | 4:            | 5                   | 6        | 73  | 2     | 9:   | 2          | 9_                | <u> </u>       |                            |               |
| 18       | 3        | 5/        | Yes        |                 |            |          | Da           | ap                                               | 08        | 2              | 5   | m  | o/£        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                | 2   | Į,                                    | 30  |          | X.            | <u> </u>            | ļ        |     |       |      |            |                   | ļ              |                            |               |
|          |          |           |            |                 |            |          |              | ļ                                                | ļ         | <u> </u>       | 6   | NE | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                | _                          |               |
| _        | _        |           |            | •               |            |          | ļ            |                                                  | ļ         | ļ              |     | ļ  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     | ļ        |     |       |      |            |                   |                |                            |               |
| _        | _        |           |            |                 |            |          | ļ            | ļ                                                | ļ         | ļ              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     | ļ        |               |                     | ļ        |     |       |      |            |                   | <u> </u>       |                            |               |
|          |          |           |            |                 |            |          | ļ            | ļ                                                |           | ļ              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     | /     |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          | ļ.<br>       |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          |              |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          |              |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     | <u> </u> |     |       |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          |              |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          |              |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          |              |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
|          |          |           |            |                 |            |          |              |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   | -              | ·                          |               |
|          | Ì        |           |            |                 |            |          |              |                                                  | <b></b>   |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                |     |                                       |     |          |               |                     |          |     |       |      |            |                   | <b> </b>       |                            |               |
| - -      |          |           |            |                 |            |          |              |                                                  | <br> <br> |                |     |    | /          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   | <u> </u>       |                            |               |
| 1        | 7        |           |            |                 |            |          |              | <del>                                     </del> |           | <b></b>        |     |    | / <u>-</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      |            |                   | <del> </del> - |                            |               |
| $\dashv$ | $\dashv$ |           |            |                 | 1          |          |              | <u> </u>                                         |           | <del> </del> - |     | /  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       | ~   |          |               |                     |          |     |       |      |            |                   | ļ              |                            |               |
| +        | -+       |           |            |                 |            |          |              | <del> </del>                                     |           |                | /   |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     | · · · · · · · · · · · · · · · · · · · |     |          |               |                     |          |     |       |      |            |                   | ļ              |                            |               |
| +        | $\dashv$ |           |            |                 |            |          |              | <u> </u>                                         |           | /              |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     | -,                                    |     |          |               |                     |          |     |       |      |            |                   |                |                            |               |
| +        | _        |           |            |                 |            |          |              |                                                  | /         | <del></del>    | · · |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     | la:      |     | 00:-1 |      | ند الم     | n-                | <u> </u>       |                            |               |
|          |          |           | ERY PR     | ODUCI           | IONS       | СН       | CAGO         | 606                                              | 05 M      | IADE IN        | USA | -  |            | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | Hillian I payers |     | WINELPYS 47*                          |     |          | (venetra a t- | #677/10 <b>4/10</b> | VV       | ork | cont  | inue |            | -                 | ge             | <b>20. 20.</b> 20.20.20.20 | د سنة كسلامان |
| ign/     | ATUI     | RE        | en         | 1.              |            | 1        | ,            | L ,                                              |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       |      | DAT        | E<br>) - <u>/</u> | <b>-</b>       | ・フ                         | •             |
|          |          |           |            | 111             | <b>つ</b> # | 11       | -1           |                                                  |           |                |     |    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |     |                                       |     |          |               |                     |          |     |       | - 1  | _          | ~                 | , "            | -                          |               |

| PROJ      | ECT NO:  | 777                                   | FACILITY:   | NSB                                   | aN           | PROJ           | ECT MA                                       | NAGE!                             | ₹                          | PH                | IONE NI                                          | JMBER            | 9984                                         | •      | LABOR       | ATORY  | NAME                                    | AND CO                                          | NTACT:                                  |             |
|-----------|----------|---------------------------------------|-------------|---------------------------------------|--------------|----------------|----------------------------------------------|-----------------------------------|----------------------------|-------------------|--------------------------------------------------|------------------|----------------------------------------------|--------|-------------|--------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|-------------|
| SAME      | LERS (SI | 777<br>GNATURE)                       |             |                                       |              | FIELD          | OPER                                         | ATIONS                            | LEADER                     | PH                | IONE N                                           | JMBER            |                                              |        | ADDRE       | SS     | •                                       |                                                 |                                         | M-25 T      |
| ٠.        |          | -/                                    | /           |                                       |              | TEF            | RY                                           | Ros                               | AHM<br>NUMBER              | (4)               | 12)92                                            | 1-8              | 857                                          | 7      | රථර         | ) 7E   | CHN                                     | 040                                             | sy h                                    | VAY         |
|           | len      | Mark                                  |             |                                       |              |                |                                              |                                   |                            |                   |                                                  |                  |                                              | - 1 (  | CITY. S     | TATE   |                                         |                                                 |                                         | 1071        |
|           |          |                                       |             |                                       |              | AB             |                                              | <u>854</u>                        | 56                         | <u>732</u>        | 95                                               | <u> 29</u>       |                                              |        | SCA         | BOR    | 046                                     |                                                 | ME O                                    | <del></del> |
| STAN      | DARD TA  | <del>-</del> 157                      |             |                                       |              |                |                                              |                                   |                            |                   |                                                  | AINER<br>TIC (P) | Or GLA                                       | SS (G) |             | 0/     | 6                                       | 6/                                              | 9/0/                                    | (2//        |
| RUSH      | TAT      | 48 hr.                                | hr. 🔲 7 day | y 🗆 1                                 | l4 day       |                |                                              | SD, QC                            |                            |                   | PRES                                             | ERVAT            | IVE                                          | 6      | WHO.        | ×××    | 9%                                      | o C                                             | 2 2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 |             |
| DATE 2007 | TIME     | S/                                    | AMPLE ID    |                                       | LOCATION ID  | тор вертн (FT) | ВОТТОМ DEPTH (FT)                            | MATRIX (GW, SO, SW, SD, QC, ETC.) | COLLECTION METHOD GRAB (G) | No. OF CONTAINERS | THE                                              | OF AVAIL         | SIR SIR SIR SIR SIR SIR SIR SIR SIR SIR      | 2000   | 360         | SE AND | AND AND AND AND AND AND AND AND AND AND | 1. 6. 8. S. |                                         | NIMENTS     |
| 9/6       | 1315     | TBOS                                  | 0667        |                                       | QC           |                | •                                            | QC.                               | G                          | 2                 |                                                  |                  |                                              |        |             |        |                                         |                                                 | TRIPE                                   | LANK        |
| 9/6       | 1325     | 523GV                                 |             | 2                                     | MAN          |                | -                                            | GW                                | G                          | 31                | 9                                                | 6                | 6                                            | 6      | 2           | 2      |                                         |                                                 | Ť                                       | IS/MSD      |
|           |          |                                       |             |                                       |              |                |                                              |                                   |                            |                   |                                                  |                  |                                              |        |             |        | .**                                     |                                                 | 1 100 100                               | <del></del> |
|           |          | · · · · · · · · · · · · · · · · · · · | <del></del> |                                       |              |                | <u>                                     </u> |                                   |                            |                   |                                                  | <u></u>          |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          |                                       |             | <del></del>                           |              |                |                                              |                                   |                            | <del></del>       |                                                  |                  |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          |                                       |             |                                       |              |                |                                              | -                                 |                            |                   |                                                  |                  |                                              |        |             |        |                                         |                                                 |                                         |             |
| -         |          |                                       |             | <del> </del>                          |              |                |                                              |                                   | <u> </u>                   |                   | <u> </u>                                         | <u>.</u>         |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          |                                       |             |                                       |              |                |                                              |                                   |                            |                   | ļ                                                |                  |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          |                                       |             |                                       |              |                |                                              |                                   |                            |                   |                                                  |                  |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          |                                       |             |                                       |              |                |                                              |                                   |                            |                   |                                                  |                  |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          |                                       |             | *                                     |              |                |                                              |                                   |                            |                   |                                                  |                  |                                              |        |             |        |                                         |                                                 |                                         |             |
|           |          | <del></del>                           | ·           |                                       |              | <u> </u>       |                                              |                                   |                            |                   | <del> </del>                                     |                  |                                              | • .    |             |        |                                         |                                                 |                                         |             |
|           |          |                                       | ·           | · · · · · · · · · · · · · · · · · · · |              |                |                                              |                                   |                            |                   | <del>                                     </del> |                  |                                              |        |             |        |                                         | · · ·                                           |                                         | ·           |
|           |          |                                       |             |                                       | <del> </del> |                | <u> </u>                                     |                                   |                            | <del></del>       |                                                  | <del></del>      |                                              |        |             |        |                                         |                                                 |                                         |             |
| 1. REI    | INQUISHE | D BY                                  | - 1         |                                       | L            | DATE           | <u> </u>                                     | <u> </u>                          | IME                        | 1 PF              | <br>ECEIVE                                       | ) BY             | <u>.                                    </u> |        | <u></u>     |        |                                         | . DA                                            | re                                      | TIME        |
|           |          | 10                                    | Moze        | 1                                     |              | 9-6            | 6-0                                          | 7                                 | 1900                       |                   |                                                  |                  | ED                                           | ERA    | L E         | XPR    | 527                                     |                                                 | -6-07                                   | TIME        |
|           | INQUISH  |                                       |             |                                       |              | DATE           |                                              |                                   | IME .                      |                   | ECEIVE                                           |                  | · · · · · · · · · · · · · · · · · · ·        | -      |             |        |                                         | DA.                                             | Γ <b>Ε</b>                              | TIME        |
| 3. REI    | INQUISH  | D BY                                  |             |                                       |              | DATE           |                                              | T                                 | IME                        | 3. RE             | CEIVE                                            | BY               |                                              |        |             |        |                                         | DA                                              | TE .                                    | TIME        |
| COMN      | MENTS    |                                       |             |                                       |              |                |                                              |                                   |                            | -1                |                                                  |                  |                                              |        | <del></del> |        |                                         | <u> l</u>                                       |                                         |             |



|                                                                                                                 | ·                  |             |                                       |            | · · · · · · · · · · · · · · · · · · · |           | Page     | e of                                  |
|-----------------------------------------------------------------------------------------------------------------|--------------------|-------------|---------------------------------------|------------|---------------------------------------|-----------|----------|---------------------------------------|
| Project Site Name:                                                                                              |                    | NGR NEV     | / I ONDO                              |            | Čamul-                                | ID No     |          |                                       |
| Project No.:                                                                                                    |                    |             | V LONDON                              | N          | -                                     | ID No.:   |          | VMPM02                                |
|                                                                                                                 |                    | 1120        | 00777                                 |            | •                                     | Location: |          | te 23                                 |
| [] Stream                                                                                                       |                    |             |                                       |            | Sample                                | •         |          | Rojahn                                |
| [] Spring                                                                                                       | •                  |             |                                       |            | C.O.C.                                | NO.:      | 425      | <u> </u>                              |
| [] Pond                                                                                                         |                    |             |                                       |            | <b>-</b>                              |           |          |                                       |
| [] Lake                                                                                                         |                    |             |                                       | •          |                                       | Sample:   |          | e e e e e e e e e e e e e e e e e e e |
| [X] Other:                                                                                                      |                    | look-l- *   | Annie -                               | Dia        |                                       | w Concent |          | •                                     |
| [] QA Sample Type:                                                                                              |                    | Manhole - M | nonitoring                            | Pit        | . U Higr                              | Concentra | ation    | ,                                     |
| g GA Campie Type.                                                                                               |                    | ·           | · · · · · · · · · · · · · · · · · · · |            |                                       |           |          |                                       |
| STANDSTELLES EXECUTES                                                                                           |                    |             |                                       |            |                                       |           |          |                                       |
| Date: 9-6-07                                                                                                    | Color              | рΗ          | S.C.                                  | Temp.      | Turbidity                             | DO        | Salinity | Other .                               |
| Time: /325                                                                                                      | Visual             | Standard    | mS/cm                                 | Degrees C  | NTU                                   | mg/l      | %        | Other<br>ORP MV                       |
| Depth: NA                                                                                                       | CLEAR W/<br>ORANGE | 6.61        | 5.8                                   | 177        | 21                                    | 4.7       |          |                                       |
| Method: S.S. Beaker                                                                                             | PERCIP.            |             |                                       | 17.3       | 26                                    | 7. /      | 0.0      | 15                                    |
| SAMPLE (COLLECTED MINIS                                                                                         | an Employed        |             |                                       |            |                                       |           |          | termen i montre aktivit sustanti.     |
| Analysis Volatiles                                                                                              |                    | Preserv     |                                       |            | Container R                           |           |          | Collected                             |
| Volatiles TCL SVOCS, PAHS & SIM                                                                                 |                    | 4°C/        | /HCI                                  | 3 ×        | (3) 40 ml                             |           | <u> </u> | Yes                                   |
| Total Oil and Grease                                                                                            |                    |             | U<br>I₂SO₄                            | 3 ×<br>3 × | (2) 1 L Gla                           |           | ·        | Yes                                   |
| ЕТРН                                                                                                            |                    | 40          |                                       | 3 ×        | (2) 1 L Gla                           |           |          | Yes<br>Yes                            |
| Total TAL Metals                                                                                                |                    | 4ºC/l       |                                       | ZX         | (1) 500 n                             |           |          | Yes                                   |
| Dissolved TAL Metals                                                                                            |                    | 4ºC/F       | 1NO <sub>3</sub>                      | 2 ×        | (1) 500 n                             |           |          | Yes                                   |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           | <u> </u> |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       | 1.        | ·        |                                       |
| GIBABANANA GINGVAN ORTESA                                                                                       |                    |             |                                       | 8 MAPES    |                                       |           | X.       |                                       |
| and the state of the second second second second second second second second second second second second second |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          | * .                                   |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 | •                  |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             | • 1                                   |            |                                       | •         |          | -                                     |
|                                                                                                                 |                    |             | 1                                     |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             |                                       |            |                                       | •         |          |                                       |
|                                                                                                                 |                    |             | ł                                     |            |                                       |           |          |                                       |
| •                                                                                                               |                    |             | 1                                     |            |                                       |           |          |                                       |
|                                                                                                                 |                    |             | . [                                   |            |                                       |           |          |                                       |
| <del></del>                                                                                                     |                    |             |                                       |            |                                       |           |          |                                       |
| Circle if Applicable:                                                                                           |                    |             |                                       |            | Signature                             | (s):      |          | · · · · · · · · · · · · · · · · · · · |
| MS/MSD Duplicate ID No.:                                                                                        |                    |             |                                       |            |                                       |           |          |                                       |
| YES                                                                                                             |                    |             |                                       | - 1        | Tends                                 | 2/        |          | •                                     |



## **EQUIPMENT CALIBRATION LOG**

| PROJI                     | ECT NAME:                    | NSB NEW L                           | ONDON                                 | <b>-</b>                   | INSTRUME                   | NT NAME/MC                       | DDEL:                                | LAMOTTE 2020                        |
|---------------------------|------------------------------|-------------------------------------|---------------------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------------|-------------------------------------|
| SITE                      | NAME:                        | 23                                  | · · · · · · · · · · · · · · · · · · · | <u>.</u>                   | MANUFACT                   | URER:                            | · .                                  | LAMOTTE                             |
| PROJ                      | ECT No.:                     | 112G00                              | 777                                   | <u>-</u>                   | SERIAL NUI                 | MBER:                            |                                      | 39-0501                             |
| Date<br>of<br>Calibration | Instrument<br>I.D.<br>Number | Person<br>Performing<br>Calibration | Filet*                                | ITUs<br>Fost<br>calleialon | 10 l<br>Pre<br>ealle Pulen | NUTs<br>  Post<br>  Gellbietieni | Calibration<br>Standard<br>(Lot No.) | Remarks<br>and<br>Comments          |
| 9-6-07                    | SAME                         | 7×<br>•                             | 0.00                                  | 0.00                       | 9.83                       | 10.00                            | 0 =                                  | NA BNP 7/1/08<br>GFS # 8184-P780246 |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      | EX. 7/2008                          |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            | ì                          |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            | ,                                |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |
|                           |                              |                                     |                                       |                            |                            |                                  |                                      |                                     |



## **DOCUMENTATION OF FIELD CALIBRATION**

| PROJECT NAME: | NSB NEW LONDON | INSTRUMENT NAME/MODEL: | U-22     |
|---------------|----------------|------------------------|----------|
| SITE NAME:    | 23             | MANUFACTURER:          | Horiba   |
| PROJECT No.:  | 112G00777      | SERIAL NUMBER:         | 1100520X |

| Date              | Person                    |                           | INITIA        | L READ      | INGS |      |     |      | FIN/ | L READI | NGS                                    | ĺ.   | I     | Calibration           | Remarks                                |
|-------------------|---------------------------|---------------------------|---------------|-------------|------|------|-----|------|------|---------|----------------------------------------|------|-------|-----------------------|----------------------------------------|
| of<br>Calibration | Performing<br>Calibration | PH<br><b>≲</b> <i>U</i> . | COND<br>ms/cm | TURB<br>NTU |      | TEMP | SAL | PH   | COND | TURB    | DO                                     | TEMP | SAL   | Standard<br>(Lot No.) | and<br>Comments                        |
| 9/6/07            | T.R.                      | 4.79                      | 460           | l           | 9.3  | 21.9 | WA  | 4.00 | 4,50 |         | 8.90                                   | 21.9 | NΑ    | 5585                  | Exp 2-1-08                             |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               |             | •    |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      | ·     |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       | ************************************** |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      | ····· |                       | <u></u>                                |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       | ·                     |                                        |
| ·                 |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   | ·                         |                           |               |             |      | ·    |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               | ·           |      |      |     | · ·  |      |         | ······································ |      |       |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
|                   |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |
| -                 |                           |                           |               |             |      |      |     |      |      |         |                                        |      |       |                       |                                        |

## **APPENDIX A.3**

**ROUND 3 – FIELD FORMS** 

BOOK NO. 1398 THES 12.18.07 SITE 23 Work continued from Page WEATHEN SUNNY KEUTH SIMPSON 12.17.07 PM TRAVEL TO GROTON CT & LanoTTE 0635 CAL HUNBA PASS Z TO 10 0655 MEET DICK CONANT SIGN IN /PICK-UP PASS TO MAN HOLE OF SITE 23 CLEAN FROM MAN HOLE AREA TRANSPORT BOTTLES Z TO MH & EQ. STANT 0810 SAMPLING (SEE PS 122) COMPLETE 1100 SAMPUN9 CLEAN-4P & CLOSE TO EXUNDRATENTAL & LET DICK KNOW 10 Sampling COMPLETE TO 2 LMW 36B + ABANDON MW-ANEA SKOU coverien could not the til JOB PATCH TO GAS STATION & PUCIL-UP ICE TO 1130 HOTEL PACK SAMPLES & EQ. LUNCH & CHECK OUT 15 70 1330 OF HOTEL FEN EX AB # 8631 2568 3070 6-AS 1440 RENTAL CAR TO TE GUEEN AINPOUT WORK PAPEN P9H1 20 25 30 35 SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 MADE IN USA Work continued to Page **SIGNATURE** DATE 12.19.07 DATE WITNESS

12-18-07

REMIN SIMPSON

SAMPIED SD3G-WMPM-03 @, 0840

+ COUNECTED DUP & MS/MSD

PH S.67 S.C. O. S94 HEMP 13.2

THURS 3. 4 DO 4.15 SAC 76 O

ORP +52

EST. FLOW RATE 6 GPM

NUMBER

| PROJECT NO: FACILITY:<br>CTO 73 1126-00777 NSB-NCON                     | PROJE                | CT MA             | NAGER                         |                            | PH<br>41          | ONE NU                                           | JMBER      | 984                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABOR                                                     | ATORY<br>AH AL                           | NAME /   | AND CO                  | NTACT:                                |              |
|-------------------------------------------------------------------------|----------------------|-------------------|-------------------------------|----------------------------|-------------------|--------------------------------------------------|------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|----------|-------------------------|---------------------------------------|--------------|
| SAMPLERS (SIGNATURE)                                                    | FIELD                | OPERA             | TIONS                         | LEADER                     | PH                |                                                  |            |                                                | . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADDRE                                                    | SS                                       | <u> </u> |                         |                                       |              |
| 7/7/5/2                                                                 | KEI                  | TH                | SIM                           | PSUX<br>NUMBER             | 41                | 2 92                                             | 11 8       | <u> 131                                   </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                                                       | 0 1                                      | ECHI     | 1010                    | by w                                  | AY           |
|                                                                         | CARRI                | ER/WA             | YBILL I                       | NUMBER                     | 7~/               | a -                                              | ا سب       | $\cap$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CITY, ST                                                 |                                          |          |                         | ,                                     |              |
|                                                                         | fel                  | ) EX              | 06                            | 3/                         | <u> </u>          |                                                  | AINER      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SCAI                                                     |                                          |          |                         | E 040                                 | 74           |
| CTANDARD TAT SV                                                         |                      |                   |                               |                            |                   | PLAS                                             | TIC (P)    | or GLA                                         | SS (G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\angle$                                                 |                                          | 8/       | · /                     | 5/2/                                  | <b>V</b> /// |
| STANDARD TAT ☑  RUSH TAT ☐  □ 24 hr. □ 48 hr. □ 72 hr. □ 7 day □ 14 day |                      |                   | , oc,                         |                            |                   | PRES<br>USED                                     | ERVAT      | IVE                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \ <u>`</u> `                                             | K.                                       | ×.0/     | /5                      | NA KEN                                |              |
| VEAR LOOY  WELEN DLL  BONN D  COCATION ID  COCATION ID                  | тор рертн (ғт)       | ВОТТОМ DEPTH (FT) | MATRIX (GW, SO, SW, SD, ETC.) | COLLECTION METHOD GRAB (G) | No. OF CONTAINERS | THE                                              | OF AMALY   | \$\$ 150 th                                    | Kride Control of the | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | 2000     | (, 0 / x)<br>(x)<br>(x) | co                                    | MMENTS       |
| 12/18 0730 TB 121807 - 01 QC                                            |                      |                   | QC                            |                            | 2                 | 2                                                |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          |                         |                                       | -            |
| 12/10 0840 5236WMPM-03 MAN HOLE                                         |                      |                   | GW                            | 1                          | 31                | 9                                                | 6          | 6                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                        | 2                                        |          | ·                       | RUN /                                 | ACSO         |
| 12/18 0000 FD 121807-0/                                                 |                      |                   | J                             |                            | 11                | 3                                                | 2          | 2                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                        | 1                                        |          |                         | (4, 3)                                | - 30         |
| 710 0000   B (21007 07                                                  |                      |                   |                               |                            |                   | <del>                                     </del> |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          |                         |                                       |              |
|                                                                         |                      | · · · · ·         |                               |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          | - 43                    |                                       |              |
|                                                                         |                      |                   |                               |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                    |                                          |          |                         |                                       |              |
|                                                                         |                      |                   |                               |                            | <del></del>       |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          |                         |                                       |              |
|                                                                         |                      |                   |                               |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          |                         | · · · · · · · · · · · · · · · · · · · |              |
|                                                                         |                      |                   |                               |                            |                   |                                                  |            |                                                | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                          |          |                         |                                       |              |
|                                                                         |                      |                   | <u></u>                       |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          |                         |                                       |              |
|                                                                         |                      |                   |                               |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          | :                       |                                       |              |
|                                                                         |                      |                   |                               |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          |                         |                                       |              |
|                                                                         |                      |                   |                               |                            |                   |                                                  |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | _                                        |          |                         |                                       |              |
|                                                                         |                      |                   |                               |                            |                   | <u> </u>                                         |            | -                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | ,                                        |          |                         |                                       | · .          |
| 1. RELINQUISHEDIBY                                                      | DATE<br>(入・)<br>DATE | H. 07             | , ,,,                         | 450                        | 1. RE             | CEIVE                                            | DBY<br>ECA | EΧ                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                        |                                          |          | DAT<br>()               | E 5. 07                               | T14530       |
| 2. RELINQUISHED BY                                                      | DATE                 | <u> </u>          | T                             | IME                        | 2. RE             | CEIVE                                            | O BY       | <u> </u>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          | DAT                     | E                                     | TIME         |
| 3. RELINQUISHED BY                                                      | DATE                 |                   | T                             | IME                        | 3. RE             | CEIVE                                            | D BY       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          | DAT                     | Έ                                     | TIME         |
| COMMENTS                                                                | 1                    |                   |                               |                            |                   |                                                  |            | •                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                          |          | <u>-1</u>               | · .                                   |              |



## SURFACE WATER SAMPLE LOG SHEET

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          |                              | Page                  | <u> of</u>   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|-----------------------|-----------------------------------------------------------------------------------|--------------------------|------------------------------|-----------------------|--------------|
| Project Site Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                     | NSB NFV                        | W LONDO               | N                                                                                 | Sample                   | e ID No.:                    | 00001                 | 4/1.4D1.400  |
| Project No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                | 300777                |                                                                                   | -                        | Location:                    |                       | VMPM03       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                             | - 1120                         | 200777                | · · · · · · · · · · · · · · · · · · ·                                             | _ Sample                 |                              |                       | le 23        |
| [] Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | ·                              |                       |                                                                                   | C.O.C.                   |                              | K. Si                 | mpson        |
| [] Spring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rour                                    | 10 3                           | 3                     |                                                                                   | 0.0.0.                   | INU                          |                       |              |
| [] Pond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                |                       | • • •                                                                             | Type of                  | Sample:                      | •                     |              |
| [] Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • *                                     |                                |                       |                                                                                   |                          | w Concent                    | ration                |              |
| [X] Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                       | Vanhole - N                    | <b>Monitorina</b>     | Pit                                                                               |                          | h Concentr                   |                       | •            |
| [] QA Sample Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                | <u></u> .g            |                                                                                   |                          | ii Ooneenii                  | auon                  |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   | •                        | <u> </u>                     | <u> </u>              |              |
| Date: 12.18.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the state of the second of the          |                                |                       |                                                                                   | ( <u></u>                |                              |                       |              |
| Time: 0840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Color                                   | pH                             | s.c.                  | Temp.                                                                             | Turbidity                | DO                           | Salinity              | 8ther p      |
| Depth: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Visual                                  | Standard                       |                       | Degrees C                                                                         | NTU                      | mg/l                         | %                     | NA           |
| Method: S.S. Beaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COUPY                                   | 5.67                           | 0.544                 | 13.2                                                                              | 3.4                      | 4.15                         | 0                     | +52          |
| PART & CONTART TO THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                | market and the second |                                                                                   | rase Thyletina           |                              |                       |              |
| Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | Preser                         | vative                | a tina na sana tanbilatan basang a di "<br>Basang a sana tanbilatan basang a di " |                          | equirements                  |                       | Collected    |
| Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | <del></del>                    | /HCI                  | 9-                                                                                | 4                        | VOA Vial                     |                       | Yes          |
| TCL SVOCS, PAHS & SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 4 <sup>0</sup>                 | ,c                    | 6+                                                                                |                          | ass Amber                    |                       | Yes          |
| Total Oil and Grease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                | I₂SO₄                 | ' 6-1                                                                             | <sup>L</sup> (2) 1 L Gla | ass Amber                    |                       | Yes          |
| ETPH Total TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                | ,c                    |                                                                                   | ا (2) 1 L Gla            | ass Amber                    |                       | Yes          |
| Dissolved TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                | -INO <sub>3</sub>     | 2 -                                                                               |                          |                              |                       | Yes          |
| DISCOTTOR TAL METAIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·   | 4 C/I                          | -INO <sub>3</sub>     | 2+                                                                                | (1) 500 r                | nl HDPE                      |                       | Yes          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                             |                                |                       |                                                                                   | ·                        |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       | <del></del>                                                                       |                          |                              |                       | <u> </u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       | 4×                                                                                | VOC                      | FOR A                        | A &                   | <del> </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          | Shup                         | •                     |              |
| COSTRUMENTO METERS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the same and a green company            | The state of the second second |                       |                                                                                   |                          |                              |                       |              |
| The Committee Committee Control of the Control of t | San San San San San San San San San San | allow and the sales            |                       | MAN.                                                                              |                          | and the second of the second | Company of the second |              |
| SAMPIE - CLEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a wit                                   | H TRA                          | CE .                  | ECT                                                                               | 7 (14)                   | . 14-                        | F .                   |              |
| ORAX TE/RUST CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR B                                    | 1C.                            | - 1                   | U31.                                                                              | 1-000                    | V RATI                       | 6                     | GPM          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | core fice                               | ,                              |                       |                                                                                   |                          |                              |                       | ٠.           |
| NO ODON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                | 1                     |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                | I                     |                                                                                   |                          | •                            |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          |                              |                       |              |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       |                                | I                     |                                                                                   | ٠.                       |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                | İ                     |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                |                       |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                | 1                     |                                                                                   |                          |                              |                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                | 1                     |                                                                                   |                          |                              |                       | İ            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                |                       |                                                                                   |                          |                              |                       |              |
| ircle if Applicable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                |                       |                                                                                   | Signature(               | (s):                         |                       |              |
| MS/MSD Duplicate ID No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YES                                     |                                |                       |                                                                                   |                          |                              |                       | : I          |
| VFS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1807 -                                  | 01                             |                       |                                                                                   | 1/1                      | 51                           |                       |              |

|   | TŁ. | Tetra | Tech | NUS, | Inc. |
|---|-----|-------|------|------|------|
| ı |     |       |      | ,    |      |

## **EQUIPMENT CALIBRATION LOG**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT N    | NAME: .      | NSB NEW L                 |          | <u> </u>   | INSTRUME   | NT NAME/MO | DEL:             |                | AMOTTE 202 | 20 E             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------------------|----------|------------|------------|------------|------------------|----------------|------------|------------------|
| Date of I.D. Performing Person ONTUS 10 NUTS Calibration Standard (Lot No.)  Calibration Number Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SITE NAME:   | <b>=</b> : . | 23                        | ROUM     | ) <u>3</u> | MANUFACT   | URER:      |                  |                | LAMOTTE    |                  |
| of I.D. Performing Post Post Pres Standard and Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibra | PROJECT N    | No.:         | 112G00                    | 777      | _          | SERIAL NUI | MBER:      | SN - 1           | 4E 12          | 179        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of I         | I.D.         | Performing<br>Calibration | SauPress | Post       | 1976       | 1970       | Standard         |                | and        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.18.07 123 | 279          | K' ZIWBZAK                | 0.0      | 0.0        | 10.0       |            | 0= P7<br>10 = P6 | 81115<br>77870 |            | 9/2008<br>8/2008 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                           |          |            |            |            |                  |                |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                           |          |            |            |            |                  |                |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                           |          |            |            |            |                  |                |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                           |          |            |            |            |                  |                |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                           |          |            |            |            |                  |                |            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                           |          |            |            |            |                  |                |            |                  |

RENTED FROM
EAGLE INSTRUMENTS
PO# 1027271

| Tetra Tech NUS, Inc. | Tetra Tech NUS, | Inc. |
|----------------------|-----------------|------|
|----------------------|-----------------|------|

## **DOCUMENTATION OF FIELD CALIBRATION**

| PROJECT NAME | : NSB NEW LONDON | INSTRUMENT NAME/MODEL: | U-22   |
|--------------|------------------|------------------------|--------|
| SITE NAME:   | 23 ROUND 3       | MANUFACTURER:          | Horiba |
| PROJECT No.: | 112G00777        | SERIAL NUMBER:         | 701025 |

| Date     | Person                                |          | INITIA        | L READ | INGS | <u> </u>   |           |      | FINA      | AL READI | NGS  | 1    | <u> </u> | Calibration           | Remarks         |
|----------|---------------------------------------|----------|---------------|--------|------|------------|-----------|------|-----------|----------|------|------|----------|-----------------------|-----------------|
|          | Performing<br>Calibration             | PH<br>54 | COND<br>MS/CM | TURB   | DO   | TEMP<br>OC | SAL<br>70 | PH   | COND      |          | DO   | TEMP | SAL      | Standard<br>(Lot No.) | and<br>Comments |
| 12.18.07 | K. SIMPSON                            | 3,99     | 4.30          | 0      | 7.73 | 25.4       | 0.2       | 4.00 | 4.49      | 0        | 7.70 | 25.4 | 0.1      | 5741                  | EXP 5/2008      |
|          | · · · · · · · · · · · · · · · · · · · |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          | i.            |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           | ·        | ·    |      |          |                       |                 |
|          |                                       |          |               |        |      | ·          |           |      |           |          |      | ,    |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      | -         |          |      |      |          |                       |                 |
|          |                                       |          |               |        | . ·  |            |           |      |           | ·        |      |      | ;        |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          | ·                                     |          |               | ٠.     |      |            | ,         |      | _         |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      |           |          |      |      |          |                       |                 |
|          |                                       |          |               |        |      |            |           |      | <u> -</u> |          |      |      |          |                       |                 |

RENTED FROM
EAGLE INSTRUMENTS
PO# 1027271

## **APPENDIX A.4**

**ROUND 4 - FIELD FORMS** 

ROUND 4 SITE 23 PROJECT NO. //2G00777

125

BOOK NO. 1398 WED 2-20-08 Work continued from Page PIT AIRPORT 1100 HRS ARRIVE @ DAUISVILLE 1400 HES - ARRIVE TRAILEX Buckets liell etc sampling 60. PACKAGE FOR PAUISUILLE SHIR TO OFFICE PACICAGE 3 PACKAGES + FED EX AB CA GROTON HOTEL ARRIVE @ PAPERWORK 1910 HRS 15 20 25 30 35 Work continued to Page SCIENTIFIC BINDERY PRODUCTIONS CHICAGO 60605 MADE IN USA SIGNATURE 2-20-08 DISCLOSED TO AND UNDERSTOOD BY DATE DATE WITNESS

DATE

WITNESS

DISCLOSED TO AND UNDERSTOOD BY

| TŁ | Tetra Tech NUS, I | Inc. |
|----|-------------------|------|
|----|-------------------|------|

## **DOCUMENTATION OF FIELD CALIBRATION**

| PROJECT NAME : | NSB NEW LONDON | INSTRUMENT NAME/MODEL: | U-22    |   |  |
|----------------|----------------|------------------------|---------|---|--|
| SITE NAME:     | 23             | MANUFACTURER:          | Horiba  | _ |  |
| PROJECT No.:   | 112G00777      | SERIAL NUMBER:         | 3073010 |   |  |

| Date              | Person                    |      | INITI | AL READ | INGS  |       |          |     | FIN                                   | AL READI | NGS  |       | l                                      | Calibration                           | Remarks                               |
|-------------------|---------------------------|------|-------|---------|-------|-------|----------|-----|---------------------------------------|----------|------|-------|----------------------------------------|---------------------------------------|---------------------------------------|
| of<br>Calibration | Performing<br>Calibration | PH   | COND  | TURB    | DO    | TEMP  | SAL      | PH  | COND                                  | TURB     | DO   | TEMP  | SAL                                    | Standard<br>(Lot No.)                 | and<br>Comments                       |
| 2/21              | TR                        | 4.00 | 4.48  |         | 10.53 | 20.23 |          | 400 | 448                                   | 0,0      | 9.01 | 20.24 |                                        | 5843                                  | Exp 7/31/08                           |
|                   |                           |      |       |         |       |       | 7        |     | }                                     |          |      |       |                                        |                                       |                                       |
| ,                 | -                         |      |       |         |       |       |          |     |                                       |          |      |       |                                        |                                       | · · · · · · · · · · · · · · · · · · · |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       |                                        |                                       |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       |                                        |                                       |                                       |
| 1                 |                           |      |       |         |       |       |          |     |                                       |          |      |       |                                        |                                       |                                       |
|                   |                           |      |       | ٠.      |       |       |          |     |                                       |          |      |       |                                        |                                       |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       |                                        | i i                                   |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       | ······································ |                                       |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       | <del> </del>                           |                                       |                                       |
|                   |                           |      |       |         |       |       | -        |     |                                       |          |      |       |                                        |                                       |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       | ,                                      |                                       |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       |                                        |                                       |                                       |
|                   |                           |      |       |         |       |       | <u> </u> |     | <del></del>                           |          |      |       |                                        |                                       |                                       |
|                   |                           |      |       |         |       |       |          |     | · · · · · · · · · · · · · · · · · · · |          |      |       |                                        | · · · · · · · · · · · · · · · · · · · |                                       |
|                   |                           |      |       |         |       |       |          |     |                                       |          |      |       |                                        |                                       |                                       |



# **EQUIPMENT CALIBRATION LOG**

| PROJECT NAME : | NSB NEW LONDON | INSTRUMENT NAME/MODEL: | LAMOTTE 2020 |   |
|----------------|----------------|------------------------|--------------|---|
| SITE NAME:     | 23             | MANUFACTURER:          | LAMOTTE      | • |
| PROJECT No     | 112000777      | SERIAL NUMBER          | 5915 - 2445  |   |

|                   |                | 112007                                |                       | • •                                   | OLI IIAL IVOI       |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|----------------|---------------------------------------|-----------------------|---------------------------------------|---------------------|----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date              | Instrument     | Person                                | 0 N                   |                                       |                     | lUTs                 | Calibration                           | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of<br>Calibration | I.D.<br>Number | Performing<br>Calibration             | Pre-La<br>calibration |                                       | Pre-<br>calibration | Post-<br>calibration | Standard<br>(Lot No.)                 | and<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/21              | SAME           | <i>7</i> e                            | 0.00                  | 0.00                                  | 10.09               | 10.00                | ت ت<br>ت                              | P676590 EXP 11/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                 | <u> </u>       |                                       | <u> </u>              |                                       | <u> </u>            |                      | 10 =                                  | P784629 5/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     | -                    |                                       | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | · · · ·        |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | `.             |                                       | <u> </u>              |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                | - to the second second                |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | :              |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       | · · · · · · · · · · · · · · · · · · · |                     |                      | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                | · · · · · · · · · · · · · · · · · · · |                       |                                       | <u> </u>            |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| :                 |                |                                       |                       |                                       | <u> </u>            |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                |                                       |                       |                                       |                     |                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# **SURFACE WATER SAMPLE LOG SHEET**

Page of / Project Site Name: **NSB NEW LONDON** Sample ID No.: S23GWMPM04 Project No.: Sample Location: 112G00777 Site 23 Sampled By: T. Rojahn 4719 [] Stream C.O.C. No.: [] Spring [] Pond Type of Sample: [] Lake [X] Low Concentration [X] Other: ∏ High Concentration Manhole - Monitoring Pit [] QA Sample Type: SAMPLING/DATA: 2-21-08 Other NA W Date: Color На S.C. **Turbidity** DO Salinity Temp. Time: 0925 Visual Standard mS/cm Degrees C NTU mg/l % Depth: NA PLEAK 6.33 0.648 11.76 4c 2.43 18,26 Method: S.S. Beaker SAMPLE COLLECTION IN FORMATION AS Analysis Preservative Collected **Container Requirements** (3) 40 ml VOA Vial 4ºC/HCI Volatiles 3× Yes TCL SVOCS, PAHS & SIM 4°C 3x (2) 1 L Glass Amber Yes Total Oil and Grease 4ºC/H<sub>2</sub>SO<sub>4</sub> (2) 1 L Glass Amber 3X Yes 4ºC <u>3x</u> **ETPH** (2) 1 L Glass Amber Yes 4ºC/HNO<sub>3</sub> Total TAL Metals 2X (1) 500 ml HDPE Yes 40C/HNO3 Dissolved TAL Metals 2× (1) 500 ml HDPE Yes Dissolved PAHs 4ºC (2) 1 L Glass Amber Yes 3xDissolved ETPH 4ºC 3X (2) 1 L Glass Amber Yes OBSERVATIONS/INOTES: -MAP:

| Circle if App | licable:          |                                         | Signature(s): | < | • |
|---------------|-------------------|-----------------------------------------|---------------|---|---|
| MS/MSD<br>YES | Duplicate ID No.: | *************************************** | Tylly         | M |   |

|     |              |      |        |       |       | 20 May 1 |  |
|-----|--------------|------|--------|-------|-------|----------|--|
| - 1 |              |      |        |       |       |          |  |
| i   |              |      |        |       |       |          |  |
| 1   | <b>34</b> -1 | 1.00 |        |       |       |          |  |
| 1   |              | TET  | DA TI  | ECH N | II IQ | INC      |  |
|     |              |      | 177 II |       | .00,  | 1170.    |  |
|     |              | Sec  | 100    |       |       |          |  |

| NUMBER 4719

PAGE \_\_\_\_ OF \_\_\_\_\_

| 1126      | ECT NO:           |                                          | 3 ·<br>'O^/ | COR            | EY I              | NAGER<br>RICA                 | 1                                         | 41                | IONE NU<br>Z) 92<br>IONE NU | 7-8              | 184    |        |          | AHD           |                                          |                                             | NTACT:        |           |
|-----------|-------------------|------------------------------------------|-------------|----------------|-------------------|-------------------------------|-------------------------------------------|-------------------|-----------------------------|------------------|--------|--------|----------|---------------|------------------------------------------|---------------------------------------------|---------------|-----------|
| SAMF      | 'LERS (SI         | GNATURE)                                 |             | T. F           | ₹0J               | AHN                           | HIMBER                                    | (4                | 12)92                       | ?1-8             | 857    | -      | 600      | 7ZE           | 7 7 7 7                                  |                                             | ey k          |           |
|           |                   |                                          |             | FE             | 0. E)             | K. AB                         | <b>#</b> 8                                | 631               | 388                         | 7 8              | 469    |        | SCA      | RBC           | ROLL                                     | GH,                                         | ME            | 04074     |
|           |                   | Teny Rogali                              |             |                |                   |                               |                                           |                   | CONT                        | AINER<br>TIC (P) | TYPE   | SS (G) | /        | 6/            | 6/                                       | 6/                                          | 2/9/          | 2/6/6     |
| RUSH      | DARD TA           | T №                                      |             |                |                   | SD, QC,                       |                                           |                   | PRES<br>USED                | ERVAT            | IVE    | /0     | che      | k k           | الما لا الما الما الما الما الما الما ا  |                                             | THE SE H      | MO3 CC KC |
| DATE 2008 | TIME              | SITE Z3 ROUND 4                          | LOCATION ID | тор ДЕРТН (FT) | ВОТТОМ DEPTH (FT) | MATRIX (GW, SO, SW, SD, ETC.) | COLLECTION METHOD<br>GRAP (G)<br>COMP (C) | No. OF CONTAINERS | THE                         | C AMA            | A VICE | 15 AN  | 75-      | Ande<br>Lande | 19 19 19 19 19 19 19 19 19 19 19 19 19 1 | 170 B 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | solved solved | MANENTS   |
| 2/21      | 0900              | TB022108-01                              | QC          | -              | -                 | QC.                           | G                                         | 2                 | 2                           |                  |        |        |          |               |                                          |                                             | TRIP !        | BLANK     |
| 2/21      | 0925              | SZSGWMPMO4                               | HOLE        | -              | •                 | GW                            | Ġ                                         | 43                | 9                           | 6                | 6      | 6      | 2        | *2            | *6                                       | *6                                          | RUM M         | S/MSD     |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  | 3.     |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               | ,         |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          | T           |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               | *         |
|           |                   |                                          |             |                |                   |                               |                                           |                   |                             |                  |        |        |          |               |                                          |                                             |               |           |
| 510       | LINQUISH          | terlow                                   |             | DATE           | 21/0.             | 9                             | TIME<br>1500<br>TIME                      |                   | ECEIVE                      | 1                | FEDE   | ERAL   | EX       | PRE           | 55                                       | D/<br>2                                     | /21/08<br>TE  | TIME /500 |
|           | LINQUISH          |                                          |             | DATE           |                   |                               | ГІМЕ                                      |                   | ECEIVE                      |                  |        |        |          |               |                                          | _                                           | ATE           | TIME      |
|           | MENTS<br>RIBUTION | * FIRLU FILLERS S. WHITE (ACCOMPANIES S. | AMPLE)      |                |                   | YELLO                         | W (FIEL                                   | D COPY            | "                           |                  |        | PII    | NK (FILI | E COPY        | <b>')</b>                                |                                             |               | 4/02R     |

# APPENDIX B

**ROUND 4 DATA VALIDATION LETTER** 



# **Tetra Tech NUS**

# INTERNAL CORRESPONDENCE

TO:

C. RICH

DATE:

**APRIL 16, 2008** 

FROM:

**MATTHEW D. KRAUS** 

COPIES:

DV FILE

SUBJECT:

**INORGANIC/ORGANIC DATA VALIDATION - TAL METALS** 

/VOC/SVOC/PAH/TPH/HEM NSB NEW LONDON - CTO 0073

SDG - SB0921

SAMPLES:

2/Aqueous/

S23GWMPM04

TB022108-01

#### Overview

The sample set for CTO 0073, NSB New London, SDG: SB0921, consists of one aqueous environmental sample and one field quality control blank.

Both samples were analyzed for target compound list (TCL) volatile organic compounds (VOCs). Sample S23GWMPM04 was also analyzed for semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), total and dissolved total petroleum hydrocarbons (TPH), total and dissolved target analyte list (TAL) metals and oil and grease: hexane extractable materials (O&G:HEM). The samples were collected by Tetra Tech NUS on February 21, 2008 and analyzed by Katahdin Analytical under Naval Facilities Engineering Service Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The VOC, SVOC/PAH, TPH, metals, mercury and O&G: HEM analyses were conducted in accordance with SW-846 methods OLC03.2, 8270C, CT-ETPH, 6010B, 7470A and EPA method 1664, respectively. Gas chromatography/Mass Spectrometer (GC/MS), GC/MS with a Selective Ion Monitor (SIM), GC/Flame Ionization Detector (FID), Inductively Couple Plasma-Atomic Emission Spectrometer (ICP-AES), Cold Vapor Atomic Absorption (CVAA) and gravimetric instrumentation and methodologies were used to evaluate VOCs/SVOCs, PAHs, TPHs, metals, mercury, and O&G: HEM, respectively.

Data were evaluated based on the following parameters:

- Data Completeness
  - Holding Times
- GC/MS Instrument Tuning
  - Initial and Continuing Calibration Recoveries
  - Laboratory Method/Preparation Blank Analyses
    - Matrix Spike Recoveries
    - Laboratory Control Sample Recoveries
- ICP Serial Dilution
  - Surrogate Recoveries
- Internal Standard Recoveries
  - Detection Limits
- Sample Quantitation
- \* All quality control criteria were met for this parameter.

TO: RICH, C. – PAGE 2 DATE: APRIL 16, 2008

## VOC

The percent recoveries (%Rs) reported for the surrogate chloroethane-D5 were greater than the upper quality control limit (126%) for all samples. No validation action was required because all results associated with this surrogate were reported as non-detected.

# **SVOC**

The %Rs of the acid extractable SVOC surrogates 2-fluorophenol, phenol-D6 and 2,4,6-tribromophenol were less than the respective lowest quality control limits for sample S23GWMPM04 on instrument GCMS-R on 02/07/08. The %R's of 2-fluorophenol and phenol-D6 were less than 10%. According to the case narrative, sample S23GWMPM04 was re-extracted for SVOCs six days beyond on the holding time and re-analyzed as instructed by the client. A re-analysis of sample S23GWMPM04 for SVOCs occurred on 03/06/08. All SVOC sample results are reported from the 03/06/08 analysis because using the 02/29/08 data would result in the rejection of acid extractable compound data. The non-detected results reported for SVOCs results are qualified as estimated, "UJ", due to extraction holding time exceedance.

The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) %Rs for 3,3'-dichlorobenzidine were greater than the upper quality control for WG48980-LCS and WG48980-LCSD on instrument GCMS-R at 11:59 on 03/06/08 affecting sample S23GWMPM04. No data was qualified because the affected 3,3'-dichlorobenzidine result was reported as non-detected.

The LCS %R for bis(2-chloroethoxy)methane was greater than the upper quality control for WG48980-LCS on instrument GCMS-R at 11:59 on 03/06/08 affecting sample S23GWMPM04. No data was qualified because the affected bis(2-chloroethoxy)methane result was reported as non-detected.

The matrix spike (MS) and matrix spike duplicate analyses (MSD) of sample S23GWMPM04 yielded %Rs for 2,4-dimethylphenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol that were less than respective lower quality control limits but greater than 10%. The affected non-detected results reported for the aforementioned compounds were qualified as estimated, "UJ".

The MSD analysis of sample S23GWMPM04 yielded a %R for 3&4-methylphenol that was less than the lower quality control limit but greater than 10%. The MS analysis of sample S23GWMPM04 yielded a %R for 3&4-methylphenol that was within quality control limits. The affected non-detected results reported for the aforementioned compounds were qualified as estimated, "UJ".

### <u>PAH</u>

The continuing calibration percent differences (%Ds) for 2-methynaphthalene, acenaphthene, fluorene, 4-nitroaniline, pentachlorophenol, benzo(b)fluoranthene and benzo(a)pyrene were outside of the ±25% criteria on instrument GCMS-U at 12:07 on 03/05/08. No environmental data was qualified because only the laboratory control sample (LCS) WG48714-LCS was affected.

The continuing calibration %Ds for 2-methylnaphthalene, fluorene, 4-nitroaniline, pentachlorophenol, bis(2-ethylhexyl)phthalate, and indeno(1,2,3-cd)pyrene were outside of the ±25% criteria on instrument GCMS-U at 09:08 on 03/06/08 affecting the total and dissolved analyses of sample S23GWMPM04. The positive and non-detected results reported for the aforementioned compounds were qualified as estimated, "J" or "UJ", respectively, except for the affected dissolved pentachlorophenol result which was qualified as rejected, "UR", due to surrogate noncompliance.

TO: RICH, C. – PAGE 3
DATE: APRIL 16, 2008

The initial calibration percent relative standard deviation (%RSD) for 4-nitroaniline on instrument GCMS-U on 03/08/08 was greater than 30%. No environmental data was qualified because only the PAH method blank was affected.

Six compounds yielded %Ds outside of the ±25% criteria on instrument GCMS-U at 10:40 on 03/11/08. No environmental data was qualified because only the PAH method blank was affected.

The %R of the surrogate 2,4-dibromophenol was less than the lower quality control limit but greater than 10% for the total PAH analysis of sample S23GWMPM04. The total non-detected result reported for pentachlorophenol was qualified as estimated, "UJ".

The %R of the surrogate 2,4-dibromophenol was less than 10% for the dissolved PAH analysis of sample S23GWMPM04. The dissolved non-detected result reported for pentachlorophenol was qualified as rejected. "UR".

The %R for 2,4-dibromophenol was less than 10% in all MS and MSD analyses. No validation action was taken.

The MS and MSD %Rs for dissolved pentachlorophenol from sample S23GWMPM-04 were less than the lower quality control limit and greater than 10%. No validation action was taken because the affected pentachlorophenol result was previously qualified due to a more severe noncompliance.

The PAH MS/MSD filtered relative percent difference (RPD) for hexachlorobutadiene was greater than the upper quality control limit. No action was taken because the %Rs for both the MS and MSD for hexachlorobutadiene were acceptable.

### Metals

The following contaminants were detected in laboratory method/preparation blanks at the following maximum concentrations:

|                | <u>Maximum</u> | <u>Action</u> |
|----------------|----------------|---------------|
| <u>Analyte</u> | Concentration  | <u>Level</u>  |
| Barium         | 0.59 μg/L      | 2.95 μg/L     |
| Cadmium        | 0.19 μg/L      | 0.95 μg/L     |
| Iron           | 7.21 μg/L      | 36.0 μg/L     |
| Magnesium      | 8.64 μg/L      | 43.2 μg/L     |
| Sodium (1)     | 307 μg/L       | 1535 μg/L     |
| Thallium       | 14.2 μg/L      | 71.0 µg/L     |
| Zinc (1)       | 1.80 μg/L      | 9.00 μg/L     |
|                |                |               |

<sup>(1)</sup> Maximum concentration present in a laboratory method preparation blank affecting all samples.

An action level of five times the maximum contaminant level has been used to evaluate sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. No data was qualified due to laboratory blank contamination.

### **Detection Limits**

The required quantitation limit (RQL) listed in the laboratory SOW of 1.0 mg/L for O&G:HEM was not met by the laboratory which reported an O&G: HEM method detection limit (MDL) of 1.2 mg/L.

TO: RICH, C. – PAGE 4
DATE: APRIL 16, 2008

#### **Notes**

Several results were qualified as estimated, "J", due to uncertainty near the detection limit.

The %Rs for the surrogate 2-fluorophenol were less than the lower quality control limit but greater than 10% the matrix spike (MS) and matrix spike duplicate (MSD) analysis of sample S23GWMPM04. No data was qualified because no environmental samples were directly affected.

The compounds bis(2-ethylhexyl)phthalate, 4-nitroaniline, hexachlorobenzene, hexachlorobutadiene and pentachlorophenol were analyzed and reported with the PAHs by the laboratory instead of a SVOCs as listed in the laboratory scope-of-work (SOW). The laboratory used GC/MS SIM instrumentation in order to achieve detection limits required in the laboratory SOW. The required detection limits listed for bis(2-ethylhexyl)phthalate, 4-nitroaniline, hexachlorobenzene, hexachlorobutadiene and pentachlorophenol in the laboratory SOW were achieved.

Several dissolved PAH compound and dissolved metal analyte results were slightly greater than corresponding total PAH and total metal analyte results which is theoretically impossible.

The Practical Quantitation Limit (PQL) standard analyzed on 02/27/08 at 14:26 yielded a %R for barium that was above quality control limits. No data was qualified because the PQL with the noncompliant barium %R was not associated with the environmental samples contained in this SDG.

# **Executive Summary**

**Laboratory Performance:** Several SVOC compound results were qualified due to calibration noncompliance. All SVOC results were qualified as estimated due to holding time exceedance.

Other Factors Affecting Data Quality: The dissolved pentachlorophenol result was qualified as rejected due to surrogate recovery noncompliance.

The data for these analyses were reviewed with reference to the "USEPA CLP National Functional Guidelines for Low Concentration Organic Data Review", June 2001, "USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", December 1996, "USEPA Region 1 Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses", June 1988, and the (DOD) QSM document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006).

The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the (DOD) QSM Guidelines."

Tetra Tech NUS Matthew D. Kraus Environmental Chemist

Terra Tech NUS Joseph A. Samchuck Quality Assurance Officer

Attachments:

TO: RICH, C. - PAGE 5 **APRIL 16, 2008** DATE:

1.

Appendix A - Qualified Analytical Results
Appendix B - Results as reported by the Laboratory
Appendix C - Regional Worksheets
Appendix D - Support Documentation

2. 3. 4.

# APPENDIX A QUALIFIED ANALYTICAL RESULTS

# **Data Validation Qualifier Codes:**

Υ

Ζ

= Percent solids <30%

= Uncertainty at 2 sigma deviation is greater than sample activity

Α = Lab Blank Contamination В = Field Blank Contamination С = Calibration Noncompliance (e.g. %RSDs, %Ds, ICVs, CCVs, RRFs, etc.) C01 = GC/MS Tuning Noncompliance D = MS/MSD Recovery Noncompliance Ε = LCS/LCSD Recovery Noncompliance F = Laboratory Duplicate Imprecision G = Field Duplicate Imprecision Н = Holding Time Exceedance = ICP Serial Dilution Noncompliance = GFAA PDS - GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance J Κ = IPC Interference - included ICS %R Noncompliance L = Instrument Calibration Range Exceedance М = Sample Preservation Noncompliance = Internal Standard Noncompliance Ν N<sub>0</sub>1 = Internal Standard Recovery Noncompliance Dioxins N<sub>0</sub>2 = Recovery Standard Noncompliance Dioxins N<sub>0</sub>3 = Clean-up Standard Noncompliance Dioxins 0 = Poor Instrument Performance (e.g. base-line drifting) P = Uncertainty near detection limit ( < 2 x IDL for inorganics and < CRDL for organics) Q = Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.) R = Surrogate Recovery Noncompliance S = Pesticide/PCB Resolution T = % Breakdown Noncompliance for DDT and Endrin U = % Difference between columns/detectors > 25% for positive results determined via GC/HPLC = Non-linear calibrations; correlation coefficient r < 0.995 W = EMPC result Х = Signal to noise response drop

SDG: SB0921 MEDIA: WATER DATA FRACTION: OV

 nsample
 \$23GWMPM04

 samp\_date
 2/21/2008

 lab\_id
 \$B0921-2

 qc\_type
 NM

 units
 UG/L

 Pct\_Solids
 0.0

nsample samp\_date lab\_id qc\_type units Pct\_Solids DUP\_OF: S23GWMPM04 2/21/2008 SB0921-2 NM UG/L

0.0

qc\_type units Pct\_Solids DUP\_OF:

nsample

lab\_id

samp\_date

TB022108-01 2/21/2008 SB0921-1 NM UG/L

0.0

|                                |        | Val  | Qual |
|--------------------------------|--------|------|------|
| Parameter                      | Result | Qual | Code |
| 1,1,1-TRICHLOROETHANE          | 0.5    | U    |      |
| 1,1,2,2-TETRACHLOROETHANE      | 0.5    | U    |      |
| 1,1,2-TRICHLOROETHANE          | 0.5    | U    |      |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 0.5    | U    | -    |
| 1,1-DICHLOROETHANE             | 0.5    | U    |      |
| 1,1-DICHLOROETHENE             | 0.5    | U    |      |
| 1,2,3-TRICHLOROBENZENE         | 0.5    | U    |      |
| 1,2,4-TRICHLOROBENZENE         | 0.5    | U    |      |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 0.5    | U    |      |
| 1,2-DIBROMOETHANE              | 0.5    | U    |      |
| 1,2-DICHLOROBENZENE            | 0.5    | U    |      |
| 1,2-DICHLOROETHANE             | 0.5    | U    |      |
| 1,2-DICHLOROPROPANE            | 0.5    | U    |      |
| 1,3-DICHLOROBENZENE            | 0.5    | U    |      |
| 1,4-DICHLOROBENZENE            | 0.5    | U    |      |
| 2-BUTANONE                     | 5.0    | Ü    |      |
| 2-HEXANONE                     | 5.0    | U    |      |
| 4-METHYL-2-PENTANONE           | 5.0    | U    |      |
| ACETONE                        | 5.0    | Ų    |      |
| BENZENE                        | 0.2    | J    | Р    |
| BROMOCHLOROMETHANE             | 0.5    | Ü.   |      |
| BROMODICHLOROMETHANE           | 0.5    | U    |      |
| BROMOFORM                      | 0.5    | U    |      |
| BROMOMETHANE                   | 0.5    | U    |      |
| CARBON DISULFIDE               | 0.5    | U    |      |
| CARBON TETRACHLORIDE           | 0.5    | U    |      |
| CHLOROBENZENE                  | 0.5    | U    |      |
| CHLORODIBROMOMETHANE           | 0.5    | U    |      |
| CHLOROETHANE                   | 0.5    | U    |      |
| CHLOROFORM                     | 0.5    | U    |      |
| CHLOROMETHANE                  | 0.5    | U    |      |
| CIS-1,2-DICHLOROETHENE         | 0.2    | J    | Р    |

|   | Parameter                 | Result | Val<br>Qual | Qual<br>Code |
|---|---------------------------|--------|-------------|--------------|
| 1 | CIS-1,3-DICHLOROPROPENE   | 0.5    | U           |              |
| 1 | CYCLOHEXANE               | 0.5    | U           |              |
| 1 | DICHLORODIFLUOROMETHANE   | 0.5    | U           |              |
| 1 | ETHYLBENZENE              | 0.5    | U           |              |
| 1 | ISOPROPYLBENZENE          | 0.5    | U           |              |
| 1 | METHYL ACETATE            | 0.5    | U           |              |
| ١ | METHYL CYCLOHEXANE        | 0.5    | U           |              |
|   | METHYL TERT-BUTYL ETHER   | 0.7    |             |              |
|   | METHYLENE CHLORIDE        | 0.5    | U           |              |
| 1 | STYRENE                   | 0.5    | υ           |              |
| 1 | TETRACHLOROETHENE         | 0.3    | J           | P            |
|   | TOLUENE                   | 0.5    | U           |              |
| 1 | TOTAL XYLENES             | 0.5    | U           | ,            |
| 1 | TRANS-1,2-DICHLOROETHENE  | 0.5    | Ū           |              |
| ٦ | TRANS-1,3-DICHLOROPROPENE | 0.5    | U           |              |
| 1 | TRICHLOROETHENE           | 0.4    | J           | Р            |
|   | TRICHLOROFLUOROMETHANE    | 0.5    | Ú           |              |
|   | VINYL CHLORIDE            | 0.5    | υ           |              |

| Parameter                      | Result | Val<br>Qual | Qual<br>Code |
|--------------------------------|--------|-------------|--------------|
| 1,1,1-TRICHLOROETHANE          | 0.5    | U           |              |
| 1,1,2,2-TETRACHLOROETHANE      | 0.5    | U           |              |
| 1,1,2-TRICHLOROETHANE          | 0.5    | U           |              |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 0.5    | . U         |              |
| 1,1-DICHLOROETHANE             | 0.5    | U           |              |
| 1,1-DICHLOROETHENE             | 0.5    | U           |              |
| 1,2,3-TRICHLOROBENZENE         | 0.5    | U           |              |
| 1,2,4-TRICHLOROBENZENE         | 0.5    | U           |              |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 0.5    | U           |              |
| 1,2-DIBROMOETHANE              | 0.5    | U           |              |
| 1,2-DICHLOROBENZENE            | 0.5    | U           |              |
| 1,2-DICHLOROETHANE             | 0.5    | U           |              |
| 1,2-DICHLOROPROPANE            | 0.5    | U           |              |
| 1,3-DICHLOROBENZENE            | 0.5    | U           |              |
| 1,4-DICHLOROBENZENE            | 0.5    | U           |              |
| 2-BUTANONE                     | 5.0    | U           |              |
| 2-HEXANONE                     | 5.0    | U           |              |
| 4-METHYL-2-PENTANONE           | 5.0    | U           |              |
| ACETONE                        | 5.0    | . U         |              |
| BENZENE                        | 0.5    | U           |              |
| BROMOCHLOROMETHANE             | 0.5    | υ           |              |
| BROMODICHLOROMETHANE           | 0.5    | U           |              |
| BROMOFORM                      | 0.5    | U           |              |
| BROMOMETHANE                   | 0.5    | U           |              |
| CARBON DISULFIDE               | 0.5    | U           |              |
| CARBON TETRACHLORIDE           | 0.5    | U           |              |
| CHLOROBENZENE                  | 0.5    | U           |              |
| CHLORODIBROMOMETHANE           | 0.5    | U           |              |
| CHLOROETHANE                   | 0.5    | U           |              |
| CHLOROFORM                     | 0.5    | U           |              |
| CHLOROMETHANE                  | 0.5    | U           |              |
| CIS-1,2-DICHLOROETHENE         | 0.5    | U           |              |
|                                |        |             |              |

00777 SDG: SB0921 MEDIA: WATER DATA FRACTION: OV

nsample

TB022108-01

samp\_date

2/21/2008

lab\_id

SB0921-1

qc\_type

NM

units

UG/L

Pct\_Solids

0.0

|                           |        | Val  | Qual |
|---------------------------|--------|------|------|
| Parameter                 | Result | Qual | Code |
| CIS-1,3-DICHLOROPROPENE   | 0.5    | U    |      |
| CYCLOHEXANE               | 0.5    | U    |      |
| DICHLORODIFLUOROMETHANE   | 0.5    | U    |      |
| ETHYLBENZENE              | 0.5    | U    |      |
| ISOPROPYLBENZENE          | 0.5    | U    |      |
| METHYL ACETATE            | 0.5    | U    |      |
| METHYL CYCLOHEXANE        | 0.5    | U    |      |
| METHYL TERT-BUTYL ETHER   | 0.5    | U    |      |
| METHYLENE CHLORIDE        | 0.5    | U    |      |
| STYRENE                   | 0.5    | U    |      |
| TETRACHLOROETHENE         | 0.5    | U    |      |
| TOLUENE                   | 0.5    | U    |      |
| TOTAL XYLENES             | 0.5    | U .  |      |
| TRANS-1,2-DICHLOROETHENE  | 0.5    | U    |      |
| TRANS-1,3-DICHLOROPROPENE | 0.5    | U    |      |
| TRICHLOROETHENE           | 0.5    | U    |      |
| TRICHLOROFLUOROMETHANE    | 0.5    | U    |      |
| VINYL CHLORIDE            | 0.5    | U    |      |
|                           |        |      |      |

# SDG: SB0921 MEDIA: WATER DATA FRACTION: OS

S23GWMPM04 nsample 2/21/2008 samp\_date SB0921-2RE lab\_id NM qc\_type UG/L units

Pct\_Solids 0.0

DUP\_OF:

| nsample    | S23GWMPM04 |
|------------|------------|
| samp_date  | 2/21/2008  |
| lab_id     | SB0921-2RE |
| qc_type    | NM         |
| units      | UG/L       |
| Pct_Solids | 0.0        |

|                              |        | Val  | Qual |
|------------------------------|--------|------|------|
| Parameter                    | Result | Qual | Code |
| 2,2'-OXYBIS(1-CHLOROPROPANE) | 10.0   | UJ   | Н    |
| 2,4,5-TRICHLOROPHENOL        | 26.0   | UJ   | Н    |
| 2,4,6-TRICHLOROPHENOL        | 10     | UJ   | DH   |
| 2,4-DICHLOROPHENOL           | 10     | UJ   | DH   |
| 2,4-DIMETHYLPHENOL           | 10.0   | UJ   | DH   |
| 2,4-DINITROPHENOL            | 26.0   | UJ   | Н    |
| 2,4-DINITROTOLUENE           | 10.0   | UJ   | Н    |
| 2,6-DINITROTOLUENE           | 10     | UJ   | Н    |
| 2-CHLORONAPHTḤALENE          | 10.0   | UJ   | Н    |
| 2-CHLOROPHENOL               | 10.0   | UJ   | Н    |
| 2-METHYLPHENOL               | 10     | IJ   | Н    |
| 2-NITROANILINE               | 26     | UJ   | Н    |
| 2-NITROPHENOL                | 10.0   | UJ   | Н    |
| 3&4-METHYLPHENOL             | 10.0   | UJ   | DH   |
| 3,3'-DICHLOROBENZIDINE       | 10.0   | UJ   | Н    |
| 3-NITROANILINE               | 26.0   | UJ   | Н    |
| 4,6-DINITRO-2-METHYLPHENOL   | 26.0   | UJ   | Н    |
| 4-BROMOPHENYL PHENYL ETHER   | 10.0   | UJ   | Н    |
| 4-CHLORO-3-METHYLPHENOL      | 10.0   | ŲJ   | Н    |
| 4-CHLOROANILINE              | 10.0   | UJ   | Н    |
| 4-CHLOROPHENYL PHENYL ETHER  | 10.0   | UJ   | Н    |
| 4-NITROPHENOL                | 26.0   | UJ   | Н    |
| BIS(2-CHLOROETHOXY)METHANE   | 10     | UJ   | Н    |
| BIS(2-CHLOROETHYL)ETHER      | 10     | UJ   | Н    |
| BUTYL BENZYL PHTHALATE       | 10     | UJ   | Н    |
| CARBAZOLE                    | 10     | IJ   | Н    |
| DIBENZOFURAN                 | 10.0   | UJ   | Н    |
| DIETHYL PHTHALATE            | 10.0   | UJ   | Н    |
| DIMETHYL PHTHALATE           | 10     | UJ   | Н    |
| DI-N-BUTYL PHTHALATE         | 10     | UJ   | Н    |
| DI-N-OCTYL PHTHALATE         | 10     | UJ   | Н    |
| HEXACHLOROCYCLOPENTADIENE    | 10     | UJ   | Н    |

| Parameter                  | Result | Val<br>Qual | Qual<br>Code |
|----------------------------|--------|-------------|--------------|
| HEXACHLOROETHANE           | 10     | UJ          | Н            |
| ISOPHORONE                 | 10.0   | UJ          | Н            |
| NITROBENZENE               | 10     | UJ          | Н            |
| N-NITROSO-DJ-N-PROPYLAMINE | 10.0   | UJ          | Н            |
| N-NITROSODIPHENYLAMINE     | 10     | UJ          | Н            |
| PHENOL                     | 10     | UJ          | Н            |

00777

SDG: SB0921 MEDIA: WATER DATA FRACTION: PET

nsample

S23GWMPM04

samp\_date

2/21/2008

lab\_id

SB0921-2

qc\_type

NM

0.0

Pct\_Solids

| Parameter                | units | Result |   | Qual<br>Code |
|--------------------------|-------|--------|---|--------------|
| TOTAL PETROLEUM HYDROCAR | UG/L  | 75.0   | U |              |

00777

SDG: SB0921 MEDIA: WATER DATA FRACTION: PETF

nsample

S23GWMPM04-F

samp\_date

2/21/2008

lab\_id

SB0921-4

qc\_type

NM

Pct\_Solids

0.0

| Parameter                | units | Result |     | Qual<br>Code |
|--------------------------|-------|--------|-----|--------------|
| TOTAL PETROLEUM HYDROCAR | UG/L  | 75.0   | · U |              |

SDG: SB0921 MEDIA: WATER DATA FRACTION: PAH

 nsample
 \$23GWMPM04

 samp\_date
 2/21/2008

 lab\_id
 \$B0921-3

 qc\_type
 NM

units UG/L
Pct\_Solids 0.0

DUP\_OF:

nsample S23GWMPM04-F samp date 2/21/2008

 samp\_date
 2/21/2008

 lab\_id
 SB0921-4

 qc\_type
 NM

 qc\_type
 NM

 units
 UG/L

 Pct\_Solids
 0.0

| Parameter                  | Result | Val<br>Qual | Qual<br>Code |
|----------------------------|--------|-------------|--------------|
| 1-METHYLNAPHTHALENE        | 0.21   | U           |              |
| 2-METHYLNAPHTHALENE        | 0.21   | UJ          | С            |
| 4-NITROANILINE             | 1.0    | UJ          | С            |
| ACENAPHTHENE               | 0.21   | U           |              |
| ACENAPHTHYLENE             | 0.21   | U           |              |
| ANTHRACENE                 | 0.21   | U           |              |
| BENZO(A)ANTHRACENE         | 0.045  | U           |              |
| BENZO(A)PYRENE             | 0.21   | U           |              |
| BENZO(B)FLUORANTHENE       | 0.082  | U           |              |
| BENZO(G,H,I)PERYLENE       | 0.21   | U           |              |
| BENZO(K)FLUORANTHENE       | 0.21   | U.          |              |
| BIS(2-ETHYLHEXYL)PHTHALATE | 1.0    | UJ          | C.           |
| CHRYSENE                   | 0.21   | U           |              |
| DIBENZO(A,H)ANTHRACENE     | 0.21   | U           |              |
| FLUORANTHENE               | 0.21   | U           |              |
| FLUORENE                   | 0.21   | UJ          | С            |
| HEXACHLOROBENZENE          | 0.21   | U           |              |
| HEXACHLOROBUTADIENE        | 0.21   | Ú.          |              |
| INDENO(1,2,3-CD)PYRENE     | 0.21   | UJ          | С            |
| NAPHTHALENE                | 0.21   | U           |              |
| PENTACHLOROPHENOL          | 1.0    | 3           | CR           |
| PHENANTHRENE               | 0.21   | ٥           |              |
| PYRENE                     | 0.21   | ט           |              |

| Parameter                  | Result | Val<br>Qual | Qual<br>Code |
|----------------------------|--------|-------------|--------------|
| 1-METHYLNAPHTHALENE        | 0.093  | J           | P.           |
| 2-METHYLNAPHTHALENE        | 0.2    | UJ          | С            |
| 4-NITROANILINE             | 1.0    | UJ          | С            |
| ACENAPHTHENE               | 0.031  | J           | Р            |
| ACENAPHTHYLENE             | 0.2    | U           |              |
| ANTHRACENE                 | 0.2    | U           |              |
| BENZO(A)ANTHRACENE         | 0.042  | U           |              |
| BENZO(A)PYRENE             | 0.2    | U           |              |
| BENZO(B)FLUORANTHENE       | 0.078  | U           |              |
| BENZO(G,H,I)PERYLENE       | 0.13   | J           | · P          |
| BENZO(K)FLUORANTHENE       | 0.2    | U           |              |
| BIS(2-ETHYLHEXYL)PHTHALATE | 1.0    | ŲĴ          | С            |
| CHRYSENE                   | 0.2    | U           |              |
| DIBENZO(A,H)ANTHRACENE     | 0.2    | U           |              |
| FLUORANTHENE               | 0.2    | U           |              |
| FLUORENE                   | 0.2    | ÚJ          | С            |
| HEXACHLOROBENZENE          | 0.2    | U           |              |
| HEXACHLOROBUTADIENE        | 0.2    | Ü           |              |
| INDENO(1,2,3-CD)PYRENE     | 0.22   | J           | С            |
| NAPHTHALENE                | 0.069  | J           | Р            |
| PENTACHLOROPHENOL          | 1.0    | UR          | R            |
| PHENANTHRENE               | 0.2    | U           |              |
| PYRENE                     | 0.2    | U           |              |

SDG: SB0921 MEDIA: WATER DATA FRACTION: M

nsample

S23GWMPM04

samp\_date

2/21/2008

lab\_id

SB0921-002

qc\_type

NM

units

UG/L

Pct\_Solids

0.0

|           |        | Val  | Qual |
|-----------|--------|------|------|
| Parameter | Result | Qual | Code |
| ALUMINUM  | 29.4   |      |      |
| ANTIMONY  | 1.5    | U    |      |
| ARSENIC   | 3.1    |      |      |
| BARIUM    | 55.9   |      |      |
| BERYLLIUM | 0.12   | U    |      |
| CADMIUM   | 0.1    | U    |      |
| CALCIUM   | 34300  |      |      |
| CHROMIUM  | 0.38   | U.   |      |
| COBALT    | 0.6    |      |      |
| COPPER    | 0.8    | U    |      |
| IRON      | 4380   |      |      |
| LEAD      | 1.4    | Ų    |      |
| MAGNESIUM | 7540   |      |      |
| MANGANESE | 784    |      |      |
| MERCURY   | 0.02   | U    |      |
| NICKEL    | 0.64   |      |      |
| POTASSIUM | 5150   |      |      |
| SELENIUM  | 2.2    | U    |      |
| SILVER    | 0.54   | U    |      |
| SODIUM    | 50100  |      |      |
| THALLIUM  | 2.0    | U    |      |
| VANADIUM  | 0.52   | U    |      |
| ZINC      | 26.6   |      |      |

SDG: SB0921 MEDIA: WATER DATA FRACTION: MF

nsample

S23GWMPM04-F

samp\_date

2/21/2008

lab\_id

SB0921-004

qc\_type

NM

units

UG/L

Pct\_Solids

0.0

| Parameter | Result | Val<br>Qual | Qual<br>Code |
|-----------|--------|-------------|--------------|
| ALUMINUM  | 35.4   | ****        |              |
| ANTIMONY  | 1.5    | U           |              |
| ARSENIC   | 2.8    |             |              |
| BARIUM    | 56.8   |             |              |
| BERYLLIUM | 0.12   | U           |              |
| CADMIUM   | 0.1    | U           |              |
| CALCIUM   | 36000  |             |              |
| CHROMIUM  | 0.38   | U           |              |
| COBALT    | 0.64   |             |              |
| COPPER    | 0.8    | U           |              |
| IRON      | 3750   |             |              |
| LEAD      | 1.4    | U           |              |
| MAGNESIUM | . 8020 |             |              |
| MANGANESE | 815    |             |              |
| MERCURY   | 0.02   | U           |              |
| NICKEL    | 0.66   |             |              |
| POTASSIUM | 5390   |             |              |
| SELENIUM  | 2.2    | U           |              |
| SILVER    | 0.54   | U           |              |
| SODIUM    | 52100  |             |              |
| THALLIUM  | 2.0    | U           |              |
| VANADIUM  | 0.52   | U           |              |
| ZINC      | 26.0   |             |              |
|           |        |             |              |

00777

SDG: SB0921 MEDIA: WATER DATA FRACTION: MISC

nsample

S23GWMPM04

samp\_date

2/21/2008

lab\_id

SB0921-2

qc\_type

NM

0.0

Pct\_Solids

| Parameter          | units | Result |   | Val<br>Qual | Qual<br>Code |
|--------------------|-------|--------|---|-------------|--------------|
| OIL & GREASE - HEM | MG/L  | 1.2    | U | U           |              |

YEAR 1 ANALYTICAL DATABASE

# COMPLETE ANALYTICAL DATABASE - ROUNDS 1 THROUGH 4 SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 1 OF 4

| nsample                        | S23GWMPM01 | S23GWMPM01-AVG | S23GWMPM01-D | S23GWMPM02 | S23GWMPM-03 | S23GWMPM-03-AVG | S23GWMPM-03-D | S23GWMPM04 |
|--------------------------------|------------|----------------|--------------|------------|-------------|-----------------|---------------|------------|
| location                       | 23MP01     | 23MP01         | 23MP01       | 23MP01     | 23MP01      | 23MP01          | 23MP01        | 23MP01     |
| sample_coc                     | S23GWMPM01 | S23GWMPM01-AVG | FD-061807    | S23GWMPM02 | S23GWMPM-03 | S23GWMPM-03-AVG | FD121807-01   | S23GWMPM04 |
| sample_dat                     | 20070618   | 20070618       | 20070618     | 20070906   | 20071218    | 20071218        | 20071218      | 20080221   |
| sacode                         | ORIG       | AVG            | DUP          | NORMAL     | ORIG        | AVG             | DUP           | NORMAL     |
| duplicate                      |            |                | S23GWMPM01   |            |             |                 | S23GWMPM-03   | ŀ          |
| Volatile Organics (ug/L)       |            |                |              |            |             |                 |               |            |
| 1,1,1-TRICHLOROETHANE          | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,1,2,2-TETRACHLOROETHANE      | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,1,2-TRICHLOROETHANE          | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| 1,1,2-TRICHLOROTRIFLUOROETHANE | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,1-DICHLOROETHANE             | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,1-DICHLOROETHENE             | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2,3-TRICHLOROBENZENE         | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2,4-TRICHLOROBENZENE         | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2-DIBROMO-3-CHLOROPROPANE    | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2-DIBROMOETHANE              | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2-DICHLOROBENZENE            | 0.5 U      | 0.5 U          | 0.5 Ų        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2-DICHLOROETHANE             | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,2-DICHLOROPROPANE            | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,3-DICHLOROBENZENE            | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 1,4-DICHLOROBENZENE            | 0.5 U      | Q.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| 2-BUTANONE                     | 5 U        | 5 U            | 5 U          | 5 U        | 5 U         | 5 U             | 5 U           | 5 U        |
| 2-HEXANONE                     | 5 U        | 5 U            | 5 U          | 5 U        | 5 U         | 5 U             | 5 U           | 5 U        |
| 4-METHYL-2-PENTANONE           | 5 U        | 5 U            | 5 U          | 5 U        | 5 U         | 5 U             | 5 U           | 5 U        |
| ACETONE                        | 5 U        | 5 U            | 5 U          | 5 U        | 5 U         | 5 U             | 5 U           | 5 U        |
| BENZENE                        | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.2 J      |
| BROMOCHLOROMETHANE             | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| BROMODICHLOROMETHANE           | 0.3 J      | 0.3 J          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| BROMOFORM                      | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| BROMOMETHANE                   | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CARBON DISULFIDE               | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CARBON TETRACHLORIDE           | 0.5 U      | 0.5 U          | 0.5 Ü        | 0.5· U     | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CHLOROBENZENE                  | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CHLORODIBROMOMETHANE           | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CHLOROETHANE                   | 0.5 UJ     | 0.5 UJ         | Q.5 UJ       | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CHLOROFORM                     | 3 J        | 2.5 J          | 2 J          | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CHLOROMETHANE                  | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| CIS-1,2-DICHLOROETHENE         | 0.3 J      | 0.25 J         | 0.2 J        | 0.3 J      | 0.2 J       | 0.2 J           | 0.5 U         | 0.2 J      |
| CIS-1,3-DICHLOROPROPENE        | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| CYCLOHEXANE                    | 0.5 U      | 0.5 U          | 0.5 U        | 0.1 J      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| DICHLORODIFLUOROMETHANE        | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| ETHYLBENZENE                   | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| ISOPROPYLBENZENE               | 0.1 J      | 0.095 J        | 0.09 J       | 0.1 J      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| METHYL ACETATE                 | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| METHYL CYCLOHEXANE             | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| METHYL TERT-BUTYL ETHER        | 1          | 0.95           | 0.9          | 0.4 J      | 0.6         | 0.6             | 0.6           | 0.7        |
| METHYLENE CHLORIDE             | 0.5 UJ     | 0.5 UJ         | 0.5 UJ       | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| STYRENE                        | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| TETRACHLOROETHENE              | 0.3 J      | 0.3 J          | 0.3 J        | 0.4 J      | 0.3 J       | 0.25 J          | 0.2 J         | 0.3 J      |
| TOLUENE                        | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| TOTAL XYLENES                  | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| TRANS-1,2-DICHLOROETHENE       | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |
| TRANS-1,3-DICHLOROPROPENE      | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| TRICHLOROETHENE                | 0.4 J      | 0.35 J         | 0.3 J        | 0.5 J      | 0.4 J       | 0.35 J          | 0.3 J         | 0.4 J      |
| TRICHLOROFLUOROMETHANE         | 0.5 UJ     | 0.5 UJ         | 0.5 UJ       | 0.5 U      | 0.5 UJ      | 0.5 UJ          | 0.5 UJ        | 0.5 U      |
| VINYL CHLORIDE                 | 0.5 U      | 0.5 U          | 0.5 U        | 0.5 U      | 0.5 U       | 0.5 U           | 0.5 U         | 0.5 U      |

# COMPLETE ANALYTICAL DATABASE - ROUNDS 1 THROUGH 4 SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 2 OF 4

|                                              | T                | ····           |              |            |             |                 |               |            |
|----------------------------------------------|------------------|----------------|--------------|------------|-------------|-----------------|---------------|------------|
| nsample                                      | S23GWMPM01       | S23GWMPM01-AVG | S23GWMPM01-D | S23GWMPM02 | S23GWMPM-03 | S23GWMPM-03-AVG | S23GWMPM-03-D | S23GWMPM04 |
| location                                     | 23MP01           | 23MP01         | 23MP01       | 23MP01     | 23MP01      | 23MP01          | 23MP01        | 23MP01     |
| sample_coc                                   | S23GWMPM01       | S23GWMPM01-AVG | FD-061807    | S23GWMPM02 | S23GWMPM-03 | S23GWMPM-03-AVG | FD121807-01   | S23GWMPM04 |
| sample_dat                                   | 20070618         | 20070618       | 20070618     | 20070906   | 20071218    | 20071218        | 20071218      | 20080221   |
| sacode                                       | ORIG             | AVG            | DUP          | NORMAL     | ORIG        | AVG             | DUP           | NORMAL     |
| duplicate                                    |                  |                | S23GWMPM01   |            |             | •               | S23GWMPM-03   |            |
| Semivolatile Organics (ug/L)                 |                  |                |              |            |             |                 | •             |            |
| 2,2'-OXYBIS(1-CHLOROPROPANE)                 | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2,4,5-TRICHLOROPHENOL                        | 25 U             | 25 U           | 25 U         | 25 U       | 25 UJ       | 25 UJ           | 25 U          | 26 UJ      |
| 2,4,6-TRICHLOROPHENOL                        | 10 U             | 10 U           | 10 U         | 10 UJ      | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2,4-DICHLOROPHENOL                           | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2,4-DIMETHYLPHENOL                           | 10 UJ            | 10 UJ          | 10 U         | 10 UJ      | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2,4-DINITROPHENOL                            | 25 UJ            | 25 UJ          | 25 UJ        | 25 UJ      | 25 UJ       | 25 UJ           | 25 UJ         | 26 UJ      |
| 2,4-DINITROTOLUENE                           | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2,6-DINITROTOLUENE                           | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2-CHLORONAPHTHALENE                          | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2-CHLOROPHENOL                               | 10 U             | 10 U           | 10 U         | 10 UJ      | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2-METHYLPHENOL                               | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 2-NITROANILINE                               | 25 U             | 25 U           | 25 U         | 25 U       | 25 UJ       | 25 UJ           | 25 U          | 26 UJ      |
| 2-NITROPHENOL                                | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 3&4-METHYLPHENOL                             | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 3,3'-DICHLOROBENZIDINE                       | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 UJ         | 10 UJ      |
| 3-NITROANILINE                               | 25 U             | 25 U           | 25 U         | 25 U       | 25 UJ       | 25 UJ           | 25 UJ         | 26 UJ      |
| 4,6-DINITRO-2-METHYLPHENOL                   | 25 U             | 25 U           | 25 U         | 25 UJ      | 25 UJ       | 25 UJ           | 25 UJ         | 26 UJ      |
| 4-BROMOPHENYL PHENYL ETHER                   | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 4-CHLORO-3-METHYLPHENOL                      | 25 U             | 25 U           | 25 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 4-CHLOROANILINE                              | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 4-CHLOROPHENYL PHENYL ETHER                  | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| 4-NITROPHENOL                                | 25 UJ            | 25 UJ          | 25 UJ        | 25 U       | 25 UJ       | 25 W            | 25 UJ         | 26 UJ      |
| BIS(2-CHLOROETHOXY)METHANE                   | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| BIS(2-CHLOROETHYL)ETHER                      | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| BUTYL BENZYL PHTHALATE                       | 10 U             | 10 U           | 10 U         | 10 UJ      | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| CARBAZOLE                                    | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| DI-N-BUTYL PHTHALATE                         | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| DI-N-OCTYL PHTHALATE                         | 10 UJ            | 10 UJ          | 10 UJ        | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| DIBENZOFURAN                                 | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| DIETHYL PHTHALATE                            | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| DIMETHYL PHTHALATE                           | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| HEXACHLOROCYCLOPENTADIENE                    | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 UJ         | 10 UJ      |
| HEXACHLOROETHANE                             | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| ISOPHORONE                                   | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| N-NITROSO-DI-N-PROPYLAMINE                   | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| N-NITROSODIPHENYLAMINE                       | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| NITROBENZENE                                 | 10 U             | 10 U           | 10 U         | 10 U       | 10 UJ       | 10 UJ           | 10 U          | 10 UJ      |
| PHENOL                                       | 10 U             | 10 Ü           | 10 U         | 10 U       | 10 ÚJ       | 10 UJ           | 10 U          | 10 UJ      |
| PAHs (ug/L)                                  |                  |                |              |            |             |                 |               |            |
| 1-METHYLNAPHTHALENE                          | 0.2 U            | 0.2 U          | 0.2 U        | 0.2 U      | 0.96 J      | 0.504 J         | 0.048 J       | 0.21 U     |
| 2-METHYLNAPHTHALENE                          | 0.17 J           | 0.165 J        | 0.16 J       | 0.2 U      | 1.1 J       | 0.6 J           | 0.2 UJ        | 0.21 UJ    |
| 4-NITROANILINE                               | 0.2 U            | 0.2 U          | 0.2 U        | 1 UJ       | 0.75 J      | 0.75 J          | 1 UR          | 1 UJ       |
| ACENAPHTHENE                                 | 0.2 U            | 0.2 U          | 0.2 U        | 0.2 U      | 0.83 J      | 0.4295 J        | 0.029 J       | 0.21 U     |
| ACENAPHTHYLENE                               | 0.2 U            | 0.2 U          | 0.2 U        | 0.2 U      | 0.9 J       | 0.5 J           | 0.2 UJ        | 0.21 U     |
| ANTHRACENE PENZO(A) ANTHRACENE               | 0.2 U            | 0.2 U          | 0.2 U        | 0.2 U      | 0.92 J      | 0.51 J          | 0.2 W         | 0.21 U     |
| BENZO(A)ANTHRACENE<br>BENZO(A)PYRENE         | 0.07 U           | 0.07 U         | 0.07 U       | 0.041 U    | 1 J         | 0.5105 J        | 0.042 UJ      | 0.045 U    |
|                                              | 0.2 UJ           | 0.2 UJ         | 0.2 U        | 0.2 U      | 0.35 J      | 0.225 J         | 0.2 U         | 0.21 U     |
| BENZO(B) FLUORANTHENE                        | 0.08 U           | 0.08 U         | 0.08 U       | 0.075 U    | 0.64 J      | 0.3395 J        | 0.078 UJ      | 0.082 U    |
| BENZO(G,H,I)PERYLENE<br>BENZO(K)FLUORANTHENE | 0.2 UJ<br>0.2 UJ | 0.2 UJ         | 0.2 U        | 0.2 U      | 0.31        | 0.205           | 0.2 U         | 0.21 U     |
| BIS(2-ETHYLHEXYL)PHTHALATE                   | 0.2 UJ<br>1 UJ   | 0.2 UJ         | 0.2 UJ       | 0.2 U      | 0.53 J      | 0.315 J         | 0.2 U         | 0.21 U     |
| DIO(2-ETHTEREATE)FHITHALATE                  | 1 00             | 1 UJ           | 1 UJ         | 1 U        | 1 U         | . 1 U           | 1 U           | 1 UJ       |

# COMPLETE ANALYTICAL DATABASE - ROUNDS 1 THROUGH 4 SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 3 OF 4

| nsample                    | S23GWMPM01                                       | S23GWMPM01-AVG                        | S23GWMPM01-D         | S23GWMPM02 | S23GWMPM-03                           | S23GWMPM-03-AVG | S23GWMPM-03-D | S23GWMPM04 |
|----------------------------|--------------------------------------------------|---------------------------------------|----------------------|------------|---------------------------------------|-----------------|---------------|------------|
| location                   | 23MP01                                           | 23MP01                                | 23MP01               | 23MP01     | 23MP01                                | 23MP01          | 23MP01        | 23MP01     |
| sample_coc                 | S23GWMPM01                                       | S23GWMPM01-AVG                        | FD-061807            | S23GWMPM02 | S23GWMPM-03                           | S23GWMPM-03-AVG | FD121807-01   | S23GWMPM04 |
| sample_dat                 | 20070618                                         | 20070618                              | 20070618             | 20070906   | 20071218                              | 20071218        | 20071218      | 20080221   |
| sacode                     | ORIG                                             | AVG                                   | DUP                  | NORMAL     | ORIG                                  | AVG             | DUP           | NORMAL     |
| duplicate                  |                                                  |                                       | S23GWMPM01           |            |                                       |                 | S23GWMPM-03   |            |
| PAHs (continued) (ug/L)    |                                                  |                                       |                      |            |                                       |                 |               |            |
| CHRYSENE                   | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.2 U      | 0.76 J                                | 0.43 J          | 0.2 UJ        | 0.21 U     |
| DIBENZO(A,H)ANTHRACENE     | 0.2 UJ                                           | 0.2 UJ                                | 0.2 U                | 0.2 U      | 0.14 J                                | 0.14 J          | 0.2 U         | 0.21 U     |
| FLUORANTHENE               | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.2 U      | 1.1 J                                 | 0.6 J           | 0.2 UJ        | 0.21 U     |
| FLUORENE                   | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.2 U      | 0.97 J                                | 0.535 J         | 0.2 UJ        | 0.21 UJ    |
| HEXACHLOROBENZENE          | 1 U                                              | 1 U                                   | 1 U                  | 0.2 U      | 1.2 J                                 | 0.65 J          | 0.2 UJ        | 0.21 U     |
| HEXACHLOROBUTADIENE        | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.48 U     | 0.64 J                                | 0.3448 J        | 0.099 U       | 0.21 U     |
| INDENO(1,2,3-CD)PYRENE     | 0.2 UJ                                           | 0.2 UJ                                | 0.2 U                | 0.2 U      | 0.22                                  | 0.16            | 0.2 U         | 0.21 UJ    |
| NAPHTHALENE                | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.2 U      | 1 J                                   | 0.544 J         | 0.088 J       | 0.21 U     |
| PENTACHLOROPHENOL          | 1 UR                                             | 1 UR                                  | 1 UR                 | 1 UR       | 1 UR                                  | 1 UR            | 1 UR          | 1 UJ       |
| PHENANTHRENE               | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.2 U      | 0.98 J                                | 0.54 J          | 0.2 UJ        | 0.21 U     |
| PYRENE                     | 0.2 U                                            | 0.2 U                                 | 0.2 U                | 0.2 U      | 0.84 J                                | 0.47 J          | 0.2 UJ        | 0.21 U     |
| PAHs, Filtered (ug/L)      |                                                  |                                       |                      |            |                                       |                 |               |            |
| 1-METHYLNAPHTHALENE        | T                                                | · · · · · · · · · · · · · · · · · · · |                      |            |                                       |                 |               | 0.093 J    |
| 2-METHYLNAPHTHALENE        |                                                  |                                       |                      |            |                                       |                 |               | 0.2 UJ     |
| 4-NITROANILINE             | 1                                                |                                       |                      |            |                                       |                 |               | 1 UJ       |
| ACENAPHTHENE               | ·                                                |                                       |                      |            |                                       |                 | •             | 0.031 J    |
| ACENAPHTHYLENE             | 1                                                |                                       |                      |            | · · · · · · · · · · · · · · · · · · · |                 |               | 0.2 U      |
| ANTHRACENE                 | *                                                |                                       |                      |            |                                       |                 |               | 0.2 U      |
| BENZO(A)ANTHRACENE         |                                                  |                                       |                      |            |                                       |                 |               | 0.042 U    |
| BENZO(A)PYRENE             |                                                  |                                       |                      |            |                                       |                 |               | 0.2 U      |
| BENZO(B)FLUORANTHENE       |                                                  |                                       | *********** <b>†</b> |            |                                       |                 |               | 0.078 U    |
| BENZO(G,H,I)PERYLENE       | -                                                |                                       |                      |            |                                       |                 |               | 0.13 J     |
| BENZO(K)FLUORANTHENE       | +                                                |                                       |                      |            |                                       |                 |               | 0.2 U      |
| BIS(2-ETHYLHEXYL)PHTHALATE | <del>                                     </del> |                                       |                      |            |                                       |                 |               | 1 UJ       |
| CHRYSENE                   | <del>                                     </del> |                                       |                      |            |                                       |                 |               | 0.2 U      |
| DIBENZO(A,H)ANTHRACENE     | <del> </del>                                     |                                       |                      |            |                                       |                 |               | 0.2 U      |
| FLUORANTHENE               |                                                  | <u> </u>                              |                      |            |                                       |                 |               | 0.2 U      |
| FLUORENE                   |                                                  | <del></del>                           |                      |            |                                       |                 |               | 0.2 UJ     |
| HEXACHLOROBENZENE          | <del> </del>                                     |                                       |                      |            |                                       |                 |               | 0.2 U      |
| HEXACHLOROBUTADIENE        | <del></del>                                      |                                       |                      |            |                                       |                 |               | 0.2 U      |
| INDENO(1,2,3-CD)PYRENE     | -                                                |                                       |                      |            |                                       |                 |               | 0.22 J     |
| NAPHTHALENE                | <del> </del>                                     |                                       |                      |            |                                       |                 |               | 0.069 J    |
| PENTACHLOROPHENOL          |                                                  |                                       |                      |            |                                       |                 |               | 1 UR       |
| PHENANTHRENE               | <del></del>                                      |                                       |                      |            |                                       | ·····           |               | 0.2 U      |
| PYRENE                     | <del> </del>                                     |                                       | ****                 |            |                                       |                 |               | 0.2 U      |
| Inorganics (ug/L)          |                                                  |                                       | L                    |            | اا                                    |                 |               | 0.2 0      |
| ALUMINUM                   | 473                                              | 294                                   | 115                  | 322        | 38.1                                  | 29.95           | 21.8          | 29.4       |
| ANTIMONY                   | 2.3 U                                            | 1.9 U                                 | 1.5 U                | 0.87 U     | 1.8 U                                 | 1.45 U          | 1.1 U         | 1.5 U      |
| ARSENIC                    | 3.7 U                                            | 3.35 U                                | 3.0 U                | 13.9       | 2.2 U                                 | 3.45 U          | 4.7 U         | 3.1        |
| BARIUM                     | 48.2                                             | 50.3                                  | 52.4                 | 87         | 55.2                                  | 54.3            | 53.4          | 55.9       |
| BERYLLIUM                  | 0.12 U                                           | 0.12 U                                | 0.12 U               | 0.12 U     | 0.12 U                                | 0.12 U          | 0.12 U        | 0.12 U     |
| CADMIUM                    | 0.12 U                                           | 0.12 U                                | 0.12 U               | 0.64 U     | 0.12 U                                | 0.1 U           | 0.12 U        | 0.1 U      |
| CALCIUM                    | 33800                                            | 34800                                 | 35800                | 32000      | 35500                                 | 35100           | 34700         | 34300      |
| CHROMIUM                   | 0.94 U                                           | 0.875 U                               | 0.81 U               | 2          | 0.41                                  | 0.275           | 0.28 U        | 0.38 U     |
| COBALT                     | 0.94 U                                           | 0.875 U                               | 0.64 U               | 0.26 U     | 0.66                                  | 0.595           | 0.53          | 0.6        |
| COPPER                     | 3.0 U                                            | 3.0 U                                 | 3.0 U                | 4.2        | 0.44 U                                | 0.33 U          | 0.22 U        | 0.8 U      |
| IRON                       | 9190                                             | 10545                                 | 11900                | 70800      | 9860                                  | 10030           | 10200         | 4380       |
| LEAD                       | 2.2                                              | 5.75                                  | 9.3                  | 8.4        | 2.5 U                                 | 2.35 U          | 2.2 U         | 1.4 U      |
|                            | 7260                                             | 7460                                  | 7660                 | 7020       | 7660                                  | 7575            | 7490          | 7540       |
| MAGNESIUM                  | 7260<br>661                                      | 7460<br>688                           | 7660<br>715          | 845        | 858                                   | 836.5           | 7490<br>815   | 784        |
| MANGANESE                  |                                                  |                                       |                      | 0.02 U     | 0.02 U                                | 836.5<br>0.02 U | 0.02 U        | 0.02 U     |
| MERCURY                    | 0.03 U                                           | 0.035 U                               | 0.04 U               | 0.02 U     | 0.02 0                                | 0.02 U          | 0.02 0        | 0.02 0     |

# COMPLETE ANALYTICAL DATABASE - ROUNDS 1 THROUGH 4 SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNETICUT PAGE 4 OF 4

| nsample                                 | S23GWMPM01  | S23GWMPM01-AVG                        | S23GWMPM01-D | S23GWMPM02                            | S23GWMPM-03 | S23GWMPM-03-AVG | S23GWMPM-03-D | S23GWMPM04   |
|-----------------------------------------|-------------|---------------------------------------|--------------|---------------------------------------|-------------|-----------------|---------------|--------------|
| location                                | 23MP01      | 23MP01                                | 23MP01       | 23MP01                                | 23MP01      | 23MP01          | 23MP01        | 23MP0        |
| sample_coc                              | S23GWMPM01  | S23GWMPM01-AVG                        | FD-061807    | S23GWMPM02                            | S23GWMPM-03 | S23GWMPM-03-AVG | FD121807-01   | S23GWMPM0    |
| sample_dat                              | 20070618    | 20070618                              | 20070618     | 20070906                              | 20071218    | 20071218        | 20071218      | 2008022      |
| sacode                                  | ORIG        | AVG                                   | DUP          | NORMAL                                | ORIG        | AVG             | DUP           | NORMA        |
| duplicate                               |             |                                       | S23GWMPM01   |                                       |             |                 | S23GWMPM-03   |              |
| Inorganics (continued) (ug/L)           |             |                                       |              |                                       |             |                 |               |              |
| NICKEL                                  | 1.0 U       | 0.885 U                               | 0.77 U       | 0.41 U                                | 0.53        | 0.495           | 0.46          | 0.64         |
| POTASSIUM                               | 5210        | 5350                                  | 5490         | 5270                                  | 5590        | 5540            | 5490          | 5150         |
| SELENIUM                                | 1.5 U       | 1.375 J                               | 2.0 J        | 1.5 U                                 | 1.5 U       | 1.5 U           | 1.5 U         | 2.2 U        |
| SILVER                                  | 0.46 U      | 0.46 U                                | 0.46 U       | 1.5                                   | 0.46 U      | 0.46 U          | 0.46 U        | 0.54 U       |
| SODIUM                                  | 46900       | 48250                                 | 49600        | 52100                                 | 53400       | 52850           | 52300         | 50100        |
| THALLIUM                                | 0.99 U      | 1.645 U                               | 2.3 U        | 0.98 U                                | 0.71 U      | . 0.71 U        | 0.71 U        | 2.0 U        |
| VANADIUM                                | 1.3 U       | 1.35 U                                | 1.4 U        | 3.7                                   | 0.34 U      | 0.315 U         | 0.29 U        | 0.52 U       |
| ZINC                                    | 21.3 J      | 21.8 J                                | 22.3         | 47.1                                  | 22.8        | 21.4            | 20            | 26.6         |
| Inorganics, Filtered (ug/L)             |             | <u> </u>                              | <del></del>  |                                       | <u></u> 1.  |                 |               | 20.0         |
| ALUMINUM                                | 20.4 J      | 28.55 J                               | 36.7 J       | 21.3 J                                | 19 U        | . 19 U          | 19 U          | 35.4         |
| ANTIMONY                                | 0.87 U      | 1.235 U                               | 1.6 U        | 0.87 U                                | 0.87 U      | 1.085 U         | 1.3 U         | 1.5 U        |
| ARSENIC                                 | 3.5 U       | 2.85 U                                | 2.2 U        | 1.2 J                                 | 1.9 U       | 1.5 U           | 1.1 U         | 2.8          |
| BARIUM                                  | 44.6        | 45.5                                  | 46,4         | 50.1                                  | 48.9        | 49.25           | 49.6          | 56.8         |
| BERYLLIUM                               | 0.12 Ü      | 0.12 U                                | 0.12 U       | 0.12 U                                | 0.12 U      | 0.12 U          | 0.12 U        | 0.12 U       |
| CADMIUM                                 | 0.1 U       | 0.1 U                                 | 0.1 U        | 0.1 U                                 | 0.1 U       | 0.1 U           | 0.1 U         | 0.1 U        |
| CALCIUM                                 | 33600       | 34150                                 | 34700        | 31400                                 | 33100       | 33250           | 33400         | 36000        |
| CHROMIUM                                | 1.2 U       | 0.82 U                                | 0.44 U       | 0.3 J                                 | 0.29        | 0.385           | 0.48          | 0.38 U       |
| COBALT                                  | 0.67 U      | 0.765 U                               | 0.86 U       | 0.47 J                                | 0.48        | 0.495           | 0.51          | 0.36 0       |
| COPPER                                  | 14.9 U      | 8.55 U                                | 2.2 U        | 0.7 U                                 | 0.22 U      | 0.45 U          | 0.68 U        | 0.8 U        |
| IRON                                    | 3470        | 3550                                  | 3630         | 3600                                  | 4190        | 4165            | 4140          | 3750         |
| LEAD                                    | 1.3 J       | 1.55 J                                | 1.8 J        | 1,1 U                                 | 2.1 U       | 2.45 U          | 2.8 U         | 1.4 U        |
| MAGNESIUM                               | 7200        | 7340                                  | 7480         | 6980                                  | 7250        | 7275            | 7300          |              |
| MANGANESE                               | 645         | 654.5                                 | 664          | 708                                   | 764         | 767             | 770           | 8020<br>815  |
| MERCURY                                 | 0.03 U      | 0.035 U                               | 0.04 U       | 0.02 U                                | 0.02 U      | 0.02 U          | 0.02 U        | 0.02 U       |
| NICKEL                                  | 1.1 Ü       | 0.99 U                                | 0.88 U       | 0.78 J                                | 1           | 0.02 0          | 0.64          |              |
| POTASSIUM                               | 5090        | 5240                                  | 5390         | 5320                                  | 5360        | 5375            | 5390          | 0.66<br>5390 |
| SELENIUM                                | 1.5 U       | 1.225 J                               | 1.7 J        | 2.4 U                                 | 1.5 U       | 1.9 U           | 2.3 U         |              |
| SILVER                                  | 0.46 U      | 0.46 U                                | 0.46 U       | 0.46 U                                | 0.46 U      | 0.46 U          | 0.46 U        | 2.2 U        |
| SODIUM                                  | 46600       | 47500                                 | 48400        | 52600                                 | 50400       | 50900           |               | 0.54 U       |
| THALLIUM                                | 1.2 U       | 1.065 U                               | 0.93 U       | 1.7 U                                 | 0.71 U      | 0.71 U          | 51400         | 52100        |
| VANADIUM                                | 0.7 U       | 0.63 U                                | 0.56 U       | 0.29 U                                | 0.71 U      |                 | 0.71 U        | 2 U          |
| ZINC                                    | 21.4 J      | 20.45 J                               | 19.5 J       | 15                                    | 18.6        | 0.29 U          | 0.29 U        | 0.52 U       |
| Oil & Grease (ug/L)                     | 21.70       | 20.40 0                               | 19.0 J       | 15                                    | 18.0        | 19.7            | 20.8          | 26           |
| OIL & GREASE - HEM                      | 1200 U      | 1200 U                                | 1200 U       | 1200 U                                | 1000 III T  | 4000 111        |               | 72.2         |
| Petroleum Hydrocarbons (ug/L)           | 1200 0      | 1200 0                                | 1200 0       | 1200 U                                | 1200 UJ     | 1200 UJ         | 1200 U        | 1200 U       |
| TOTAL PETROLEUM HYDROCARBONS            | 55 J        | 55 J                                  | 79 U         | 140                                   | 100 11      |                 |               |              |
| Petroleum Hydrocarbons, Filtered (ug/L) | 1 30 1      | 55 J                                  | 18 O         | 140 J                                 | 160 U       | 840 J           | 1600 J        | 75 U         |
| TOTAL PETROLEUM HYDROCARBONS            | <del></del> | · · · · · · · · · · · · · · · · · · · |              | · · · · · · · · · · · · · · · · · · · |             |                 |               |              |
| TO TAL TETROLEOW HTD DOUGHDONS          | <del></del> |                                       |              |                                       |             |                 |               | 75 U         |

# **APPENDIX D**

**HUMAN HEALTH RISK ASSESSMENT MEMORANDUM** 

From: Bob Jupin, Tetra Tech Risk Assessment Specialist

To: Corey Rich, Tetra Tech Project Manager

Date: May 19, 2008

Regarding: Human Health Risks Associated with Site 23 Groundwater

Historical and current information pertaining to Site 23 groundwater were reviewed to determine if Site 23 groundwater poses a threat to human health and the environment. Historical information reviewed as part of this evaluation included the Basewide Groundwater Operable Unit Remedial Investigation Report (BGOURI) (Tetra Tech, 2002) and data collected as part of the storm sewer rehabilitation (FWEC, 2001). Current data reviewed as part of this evaluation included the first four quarters of the underdrain metering pit sampling collected through February, 2008.

There have been changes in United States Environmental Protection Agency (USEPA) and Connecticut Department of Environmental Protection (CTDEP) guidance since the BGOURI HHRA was prepared. The major changes in guidance include:

- USEPA Region 9 Preliminary Remedial Goals (2004)
- CTDEP Remediation Standard Regulations (RSRs) Volatilization Criteria (2003)
- Draft Guidance for Evaluating the Vapor Intrusion into Indoor Air (USEPA, 2002).
- Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final Guidance (USEPA, 2004).
- Guidelines for Carcinogen Risk Assessment (USEPA, 2005a).
- Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (USEPA, 2005b).

The revised guidance was used in this evaluation.

#### Site Description

Figure 1-1 shows the general location of the Naval Submarine Base and Figure 1-2 shows the location of Site 23. No. 2 and No. 6 fuel oil and waste oil were previously stored in underground storage tanks (USTs) at Site 23 and each tank had an underdrain system that collected groundwater to control water levels and associated hydraulic pressure. The USTs were properly closed in place and the underdrain systems were kept to reduce groundwater levels in the area. Evidence of releases of petroleum products from the tanks, their associated piping, and possibly from other nearby sources was detected during previous investigations. Remedial actions were taken to address petroleum products detected in the soil. No significant groundwater contamination was detected; however, low-levels of petroleum hydrocarbons were infrequently detected at the outfall of the storm sewer system near Goss Cove. Subsequently, the

storm sewer at Site 23 was rehabilitated in 2000 such that the original combined groundwater and stormwater system was separated into a deep groundwater and a new shallow stormwater system (FWEC, 2001). Over 2,000 feet of the existing underdrain piping was relined with cured-in-place plastic pipe and a manhole was converted into a metering pit to measure groundwater flow volume.

Current and expected future site usage is industrial/commercial. Groundwater at Site 23 is classified GB. Groundwater at Site 23 is not used as a potable water source. Currently there are no direct contact exposures to groundwater. Potential receptors evaluated in the human health risk assessments for Site 23 included construction workers and hypothetical future residents.

## **Basewide Groundwater Operable Unit Remedial Investigation Report**

Groundwater at Site 23 was evaluated in the BGOURI (Tetra Tech, 2002). As part of the evaluation concentrations of chemicals in groundwater were compare to USEPA and CTDEP screening criteria for direct contact (USEPA Region IX Preliminary Remedial Goals, USEPA Maximum Contaminant Levels, CTDEP Maximum Contaminant Levels, and CTDEP RSRs) and migration (CTDEP volatilization and surface water protection criteria). A copy of the comparisons is included in Attachment A.1. Maximum concentrations of tetrachloroethene, naphthalene, and lead exceeded the direct contact criteria (Table 13-4). Arsenic and lead were detected at concentrations exceeding the surface water protection criteria (Table 13-5). The human health risk assessment (HHRA) evaluated potential risks from exposures to groundwater by construction workers and hypothetical residents. The HHRA determined that risks for construction workers were less than USEPA and CTDEP acceptable levels (Table 13-6). Risk for future residents were within USEPA and CTDEP acceptable levels. However, the chemical specific cancer risk for tetrachloroethene exceeded the CTDEP target level of 1 x 10<sup>-6</sup> for individual chemicals, although the maximum detected concentration of tetrachloroethene was less than its CTDEP RSR. The HHRA guidance has been updated since the BGOURI was prepared, but the changes in the HHRA guidance would not change the conclusions of the HHRA.

### Storm Sewer Rehabilitation

The storm sewer system at Site 23 was rehabilitated in 2000 (FWEC, 2001). After completion of the storm sewer system, groundwater collected from the deep dewatering system around the closed underground storage tanks is conveyed to a metering pit within the Tank Farm. The metering pit is connected to the shallow stormwater system and the water is conveyed to the Thames River. Seven groundwater samples were collected from the metering pit between July 25, 2000 and May 23, 2001. A summary of the sample analytical results are included in Table 1 in Attachment A.2. it should be noted that this data was not validated. Table 1 includes a comparison of the data to CTDEP RSRs for surface

water protection and volatilization. Concentrations of all chemicals in all seven groundwater samples were less than the volatilization criteria. Concentrations of total zinc exceeded the surface water protection criteria in samples collected in August and October, 2000. Concentrations of total lead exceeded the surface water protection criteria in samples collected in August 2000, October 2000, January 2001, April 2001, and May 2001. Concentrations of total arsenic exceeded the surface water protection criteria in samples collected in August 2000, October 2000, March 2001, April 2001, and May 2001, although total arsenic was also detected in the blank samples collected in 2001, indicating a potential laboratory blank contamination issue. Concentrations of all inorganics in filtered samples were less than the surface water protection criteria in all samples, suggesting that the elevated total arsenic and lead results were related to suspended soils in the samples. In general, concentrations of inorganics were highest in samples collected in August and October of 2000 shortly after completion of construction of the new storm water system and decreased significantly in subsequent sampling rounds. Concentrations of phenanthrene exceeded the surface water protection criteria in the samples collected in January 2001 and May 2001. Concentrations of benzo(b)fluoranthene, and benzo(k)fluoranthene exceeded the surface water protection criteria in the sample collected in May 2001. Considering the new risk methodology risks for construction workers exposed to groundwater would be within USEPA and CTDEP acceptable levels using the last round of sampling results (May 2001) (Attachment A.3).

# **Quarterly Underdrain Metering Pit Sampling**

Four quarters of water samples were collected from the metering pit (Tetra Tech, 2008), which began in June 2007. The results of the sampling are presented in Table 3-1 in Attachment A.4. Included in Table 3-1 is a comparison to CTDEP RSRs for surface water protection and volatilization. None of the detected concentrations in the samples exceeded CTDEP volatilization criteria. In the sample collected in September 2007, the concentration of total arsenic exceeded the surface water protection criteria. However, the concentration of arsenic in the filtered sample was below the surface water protection criteria. In general concentrations of inorganics in the filtered samples were significantly less than the concentrations detected in the unfiltered samples. Also the sample log sheet indicates that orange precipitate was observed in the sample. Therefore, it is likely that the arsenic detected in the unfiltered sample was a result of suspended solid particles in the water and is not indicative of groundwater quality. Arsenic was not detected in the sample collected in December 2007 and was detected at a concentration below the surface water protection criteria in the sample collected in February 2008. In December 2007, concentrations of acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, hexachlorobenzene, and phenanthrene exceeded the surface water protection criteria. These chemicals were not detected in the duplicate sample collected in December 2007 and these chemicals were not detected in the sample collected in February 2008.

Table 2.1 in Attachment A.5 presents a comparison of the sampling results to human health screening criteria consisting of USEPA Region IX Preliminary Remediation Goals (PRGs) for tap water, USEPA Maximum Contaminant Levels (MCLs), CTDEP RSRs, and Connecticut MCLs. Several VOCs, SVOCs, and inorganics were detected at concentrations exceeding the human health screening criteria. Attachment A.5 also presents the results of a human health risk assessment (HHRA) for construction workers and hypothetical residents exposed to groundwater from the underdrain metering pit. Risks for construction workers exposed to groundwater are within USEPA and CTDEP acceptable levels. Cancer risks and hazard indices for hypothetical residents exceed USEPA and CTDEP acceptable levels, although Site 23 is not suitable for residential development. Hexachlorobenzene, carcinogenic PAHs, and arsenic were the major contributors to the cancer risks. Arsenic, iron, and manganese are the major contributors to the hazard indices. As discussed above hexachlorobenzene and carcinogenic PAHs were only detected in the sample collected in December 2007. Concentrations of arsenic and iron were only elevated in the sample collected in September 2007. In addition, concentrations of arsenic and iron in the filtered sample were significantly lower than those in the unfiltered sample. Concentrations of manganese were within site background levels.

## **Vapor Intrusion Evaluation for Groundwater**

Groundwater data from Site 23 were evaluated to determine if there were unacceptable risks associated with vapor intrusion into buildings (Tetra Tech, 2008). Concentrations of volatile organic compounds (VOCs) in groundwater were compared to screening criteria for vapor intrusion. The screening criteria were obtained from USEPA's OSWER Draft Guidance for Evaluating the Vapor Intrusion into Indoor Air from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), November 2002, CTDEP's Proposed Revisions - Connecticut's Remediation Standard Regulations Volatilization Criteria, March 2003, and USEPA Region I (April 24, 2008). Concentrations of chloroform and trichloroethene at Site 23 exceeded the USEPA screening criterion. These chemicals were further evaluated using USEPA's Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks and hazard indices for residential and industrial scenarios were within USEPA and CTDEP acceptable levels at Site 23. Further evaluation against PRGs and ARARs showed that vapor intrusion is not an issue at Site 23. It was concluded that no further action was required for vapor intrusion issues at Site 23.

#### **Conclusions**

Historical and current information pertaining to Site 23 groundwater were reviewed to determine if Site 23 groundwater poses a threat to human health and the environment. The conclusions of this evaluation are the following:

- The HHRA performed during the BGOURI evaluated potential risks from exposures to groundwater by construction workers and hypothetical residents, although it is unlikely that direct contact exposures to Site 23 groundwater would occur based on current and expected future site use. Cumulative risks were less than or within USEPA and CTDEP acceptable levels. However, chemical-specific risks for tetrachloroethene exceeded the CTDEP target level for individual chemicals, although the maximum detected concentration of tetrachloroethene was less than its CTDEP RSR (5 μg/L). Concentrations of tetrachloroethene in Site 23 groundwater have decreased from 3 μg/L in the BGOURI to 0.3 J μg/L during the forth quarter of the underdrain meter pit sampling. Chemical-specific risks associated with tetrachloroethene would now be less than the CTDEP target level for individual chemicals.
- The HHRA guidance has been revised since the BGOURI HHRA was prepared but the changes in the guidance would not change the conclusions of the HHRA.
- Concentrations of chemicals in groundwater samples collected after the storm sewer rehabilitation were highest in samples collected in August and October, 2000 right after completion of construction and decreased significantly in subsequent sampling rounds.
- Concentrations of all chemicals detected in groundwater collected during the four quarters of the underdrain metering pit sampling were less than that CTDEP surface water protection and volatilization criteria with the exception of arsenic and several SVOCs. The concentration of total arsenic in the sample collected in September 2007 exceeded the surface water protection criteria although the concentration of arsenic in the filtered sample was less than the surface water protection criteria. The arsenic detected in the unfiltered sample is believed to be a result of suspended solid particles in the water and the filtered sample is more indicative of groundwater quality. Concentrations of acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, hexachlorobenzene, and phenanthrene exceeded the surface water protection criteria. These chemicals were not detected in the duplicate sample collected in December 2007 and these chemicals were not detected in the sample collected in February 2008.
- In general, concentrations of chemicals in Site 23 groundwater have decreased over time except as noted above.
- Potential risks for construction workers exposed to Site 23 groundwater are still acceptable using
  the analytical results from the four rounds of groundwater sampling. Potential risks for
  hypothetical residents exposed to Site 23 groundwater exceed acceptable levels, although Site
  23 is not suitable for residential development.
- The vapor intrusion evaluation for groundwater determined that risks from vapor intrusion were with USEPA and CTDEP acceptable levels for residential and industrial scenarios. The evaluation concluded that no further action was required for vapor intrusion issues at Site 23.

# References

CTDEP (Connecticut Department of Environmental Protection), 2003. Proposed Revision, Connecticut's Remediation Standard Regulations, Volatilization Criteria. Bureau of Water Management, Permitting, Enforcement and Remediation Division, Hartford. Connecticut. March.

FWEC (Foster Wheeler Environmental Corporation), 2001. Final Closeout Report for Storm Sewer Rehabilitation, Naval Submarine Base New London, Groton, Connecticut, Langhorne, Pennsylvania. May.

Tetra Tech (Tetra Tech NUS, Inc.), 2002. Basewide Groundwater Operable Unit Remedial Investigation, Naval Submarine Base - New London, Groton, Connecticut. King of Prussia, Pennsylvania, January.

Tetra Tech, 2007. Letter Report for September 2007 Sampling Event, Site 23 Underdrain Metering, Naval Submarine Base – New London, Groton, Connecticut. Pittsburgh, Pennsylvania, October.

Tetra Tech, 2008. Vapor Intrusion Evaluation for Groundwater at Operable Unit (OU) 9, Naval Submarine Base – New London, Groton, Connecticut. Pittsburgh, Pennsylvania. May 14.

USEPA (United States Environmental Protection Agency), 2002. Draft Guidance for Evaluating the Vapor Intrusion into Indoor Air. Office of Solid Waste and Emergency Response. EPA 530-F-02-052. November.

USEPA, 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005, Office of Emergency and Remedial Response, Washington, D.C., July.

USEPA Region 9, 2004. Preliminary Remediation Goals, November.

USEPA, 2005a. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B. Risk Assessment Forum, Washington, DC. March.

USEPA, 2005b. Supplemental Guidance of Assessing Susceptibility from Early-Life Exposure to Carcinogens. EPA/630/R-03/003F. Risk Assessment Forum, Washington, DC. March.

USEPA Region I, 2008. EPA Comments on the Basewide Groundwater Vapor Intrusion Analyses. Email from Kymberlee Kecker of USEPA Region I to Corey Rich of Tetra Tech NUS, Inc. April 24.

**FIGURES** 





# ATTACHMENT A.1 TABLES FROM BASEWIDE GROUNDWATER OPERABLE UNIT REPORT

# OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN FOR GROUNDWATER AT SITE 23 DIRECT CONTACT EXPOSURE SCENARIOS BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONNECTIC

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater Exposure Point: Tank Farm (Site 23)

| CAS Number         | Chemical          | Minimum<br>Concentration<br>(1) | Minimum<br>Qualifier | Maximum<br>Concentration | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration    | Detection<br>Frequency | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | Risk-B<br>COPC Sc<br>Leve | reening           | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source    | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|--------------------|-------------------|---------------------------------|----------------------|--------------------------|----------------------|-------|-----------------------------------------|------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------|---------------------------|-------------------|--------------------------------|------------------------------------|--------------|-------------------------------------------------------------------------|
| Volatile Organics  | W                 |                                 |                      |                          | ,                    | - 0   | 0001/11/00004                           | 1.5                    |                                       |                                                       | T                                  | 1 24                      | N <sup>(7)</sup>  | 530                            | ICTDEP RSR                         | NO           | BSL                                                                     |
|                    | M+P-XYLENES       | 2                               |                      | 2                        |                      | ug/L  | S23MW02S01                              | 1/7                    | 2                                     | 2                                                     | N/A                                | 21                        | N                 | 10000                          | FED-MCL<br>CTDEP-MCL               |              | BSL                                                                     |
| 95-47-6            | O-XYLENE          | 3                               |                      | 3                        |                      | ug/L  | S23MW02S01                              | 1/7                    | 1                                     | 3                                                     | N/A                                | 21                        | N <sup>(7)</sup>  | 530<br>10000<br>10000          | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | BSL                                                                     |
| 127-18-4           | TETRACHLOROETHENE | 3                               |                      | 3                        |                      | ug/L  | S23MW03D01                              | 1/3                    | 1                                     | 3                                                     | N/A                                | 0.1                       | C                 | 5<br>5<br>5                    | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | ASL                                                                     |
| 1330-20-7          | XYLENES, TOTAL    | 5                               |                      | 5                        |                      | ug/L  | S23MW02S01                              | 1/7                    | 1                                     | 5 -                                                   | N/A                                | 21                        | N                 | 530<br>10000<br>10000          | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL                                                                     |
| Dissolved Gases    |                   |                                 |                      |                          |                      |       |                                         |                        | <u></u>                               |                                                       |                                    |                           |                   |                                | T                                  |              |                                                                         |
| 74-82-8            | METHANE           | 1                               |                      | 920                      |                      | ug/L  | S23MW02S01                              | 7/10                   | 1                                     | 920                                                   | N/A                                | N/A                       |                   | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | NTX                                                                     |
| Semivolatile Organ |                   |                                 |                      |                          | ,                    |       | *************************************** |                        |                                       |                                                       | 1 101                              |                           |                   |                                | LOTDEO DOD                         | W.           | ASL                                                                     |
| 91-20-3            | NAPHTHALENE       | 1.4                             | ļ                    | 1.4                      |                      | ug/L  | \$23MW02S01                             | 1/7                    | 0.5 - 5                               | 1.4                                                   | N/A                                | 0.62                      | N                 | 280<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | 130          | ASL                                                                     |
| Total Metals       |                   |                                 |                      |                          |                      |       |                                         | ····                   |                                       |                                                       |                                    |                           |                   |                                |                                    |              |                                                                         |
| 7429-90-5          | ALUMINUM          | 890                             |                      | 2030                     |                      | ug/L  | \$23MW02S01                             | 1/7                    | 50.5 - 591                            | 2030                                                  | 3560                               | 3600                      | N                 | N/A<br>50 to 200<br>N/A        | FED-SMCL<br>CTDEP-MCL              | NO           | EPAI, BKG                                                               |
| 7440-38-2          | ARSENIC           | 4.7                             |                      | 4.7                      |                      | ug/L  | S23HNUS1101                             | 1/7                    | 2.3                                   | 4.7                                                   | 1.92                               | N/A                       |                   | 50<br>10<br>50                 | FED-MCL<br>CTDEP-MCL               | NO           | BSL                                                                     |
| 7440-39-3          | BARIUM            | 27.2                            |                      | 176                      |                      | ug/L  | S23MW02S01                              | 1/7                    | 18 - 37                               | 176                                                   | 227                                | 730                       | . N               | 1000<br>2000<br>2000           | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL, BKG                                                                |
| 7440-43-9          | CADMIUM           | 0.63                            |                      | 0.63                     |                      | ug/L  | \$23HNUS2001                            | 4/7                    | 0.25                                  | 0.63                                                  | ND                                 | 1.8                       | N                 | 5<br>5<br>5                    | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL                                                                     |
| 7440-70-2          | CALCIUM           | 6270                            |                      | 94100                    |                      | ug/L  | \$23MW03D01                             | 10/10                  | N/A                                   | 94100                                                 | 188000                             | , N/A                     |                   | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | NUT, BKG                                                                |
| 7440-47-3          | CHROMIUM          | 10.2                            | J                    | 43.2                     |                      | ug/L  | \$23MW02S01                             | 4/10                   | 6.2                                   | 43.2                                                  | 49.9                               | 11                        | N <sup>(8)</sup>  | 50<br>100<br>N/A               | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL, BKG                                                                |
| 7440-48-4          | COBALT            | 4.5                             | J                    | 6.4                      | J                    | ug/L  | \$23MW02S01,                            | 4/10                   | 4.2 - 5.2                             | 6.4                                                   | 48.6                               | 73                        | Ņ                 | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL, BKG                                                                |
| 7440-50-8          | COPPER            | 6.8                             | J                    | 10.7                     | J                    | ug/L  | S23MW02S01                              | 2/10                   | 6.8                                   | 10.7                                                  | 107                                | 150                       | N                 | 1300<br>1300<br>N/A            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | BSL, BKG                                                                |
| 7439-89-6          | IRON              | 202                             |                      | 24800                    |                      | ug/L  | S23MW02S01                              | 9/10                   | 175                                   | 24800                                                 | 28200                              | 2600                      | N <sup>(10)</sup> | N/A<br>300<br>N/A              | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL | NO           | EPAI, BKG                                                               |

# OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN FOR GROUNDWATER AT SITE 23 DIRECT CONTACT EXPOSURE SCENARIOS BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTTON, CONNECTICUT PAGE 2 OF 3

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater Exposure Point: Tank Farm (Site 23)

| CAS Number       | Chemical            | Minimum<br>Concentration | Minimum<br>Qualifier | Maximum<br>Concentration | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency<br>(1) | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | Risk-Based<br>COPC Screening<br>Level <sup>(5)</sup> | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source    | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|------------------|---------------------|--------------------------|----------------------|--------------------------|----------------------|-------|--------------------------------------|-------------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------|------------------------------------|--------------|-------------------------------------------------------------------------|
| 7439-92-1        | LEAD                | 1.9                      | J                    | 31.2                     |                      | ug/L  | S23MW02S01                           | 5/10                          | 1.8                                   | 31.2                                                  | 6.63                               | N/A                                                  | 15<br>15<br>N/A                | CTDEP RSR<br>FED-AL<br>CTDEP-MCL   | YES          | ASL                                                                     |
| 7439-95-4        | MAGNESIUM           | 1610                     |                      | 7840                     |                      | ug/L  | S23MW02S01                           | 9/10                          | 544                                   | 7840                                                  | 191000                             | N/A                                                  | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | NUT, BKG                                                                |
| 7439-96-5        | MANGANESE           | 41.4                     | J                    | 3380                     |                      | ug/L  | \$23MW02S01                          | 8/10                          | 8.8 - 12.1                            | 3380                                                  | 11700                              | 88 N                                                 | N/A<br>50<br>N/A               | FED-SMCL<br>CTDEP-MCL              | NO           | BKG                                                                     |
| 7440-02-0        | NICKEL              | 10                       | J                    | 33.5                     |                      | ug/L  | S23MW02S01                           | 2/10                          | 9.2 - 9.9                             | 33.5                                                  | 32.2                               | 73 N                                                 | 100<br>100<br>100              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL                                                                     |
| 7440-09-7        | POTASSIUM           | 1170                     |                      | 7790                     |                      | ug/L  | S23MW02S01                           | 10/10                         | N/A                                   | 7790                                                  | 70800                              | N/A                                                  | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | NUT, BKG                                                                |
| 7440-23-5        | SODIUM              | 7790                     | J                    | 99200                    | J                    | ug/L  | S23HNUS201                           | 10/10                         | N/A                                   | 99200                                                 | 1900000                            | N/A                                                  | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | NUT, BKG                                                                |
| 7440-62-2        | VANADIÚM            | 6.4                      |                      | 6.4                      | J                    | ug/L  | \$23MW03D01                          | 1/10                          | 6.3 - 8.2                             | 6.4                                                   | 10.2                               | 3.6 N                                                | 50<br>N/A<br>N/A               | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL, BKG                                                                |
| 7440-66-6        | ZINC                | 68.4                     |                      | 68.4                     |                      | ug/L  | S23MW02S01                           | 1/10                          | 10.9 - 43.1                           | 68.4                                                  | 131                                | 1100 N                                               | 5000<br>5000<br>N/A            | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL | NO           | BSL, BKG                                                                |
| Dissolved Metals | 1.2                 |                          |                      |                          |                      |       |                                      |                               |                                       |                                                       |                                    |                                                      |                                |                                    |              |                                                                         |
| 7440-38-2        | ARSENIC, FILTERED   | 3.1                      | J                    | 3.1                      | J                    | ug/L  | S23MW02S01-F                         | 1/2                           | 2.3                                   | 3.1                                                   | 2,55                               | . N/A                                                | 50<br>10<br>50                 | FED-MCL<br>CTDEP-MCL               | NO           | BSL                                                                     |
| 7440-39-3        | BARIUM, FILTERED    | 33.8                     |                      | 150                      |                      | ug/L  | S23MW02S01-F                         | 2/2                           | N/A                                   | 150                                                   | 124                                | 260 N                                                | 1000<br>2000<br>2000           | FED-MCL<br>CTDEP-MCL               | NO           | BSL                                                                     |
| 7440-70-2        | CALCIUM, FILTERED   | 33000                    |                      | 45100                    |                      | ug/L  | \$23MW02S01-F                        | 2/2                           | N/A                                   | 45100                                                 | 152000                             | N/A                                                  | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL, BKG                                                                |
| 7439-89-6        | IRON, FILTERED      | 4410                     |                      | 15400                    | ·                    | ug/L  | S23MW02S01-F                         | 2/2                           | N/A                                   | 15400                                                 | 25300                              | 2600 N <sup>(10)</sup>                               | N/A<br>590<br>N/A              | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL | NO           | EPAI, BKG                                                               |
| 7439-92-1        | LEAD, FILTERED      | 10                       |                      | 10                       |                      | ug/L  | S23MW02S01-F                         | 1/2                           | 1.8                                   | 10                                                    | 2.52                               | N/A                                                  | 15<br>15<br>N/A                | CTDEP RSR<br>FED-AL<br>CTDEP-MCL   | NO.          | BSL                                                                     |
| 7439-95-4        | MAGNESIUM, FILTERED | 3770                     |                      | 5830                     |                      | ug/L  | S23MW02S01-F                         | 2/2                           | N/A                                   | 5830                                                  | 150000                             | N/A                                                  | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | BSL, BKG                                                                |
| 7439-96-5        | MANGANESE, FILTERED | 977                      |                      | 2650                     |                      | ug/L  | S23MW02S01-F                         | 2/2                           | N/A                                   | 2650                                                  | 9400                               | 88 N                                                 | N/A .<br>50<br>N/A             | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL | NO           | BKG                                                                     |
| 7440-09-7        | POTASSIUM, FILTERED | 5500                     |                      | 7340                     |                      | ug/L  | S23MW02S01-F                         | 2/2                           | N/A                                   | 7340                                                  | 60000                              | N/A                                                  | N/A<br>N/A<br>N/A              | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | NUT, BKG                                                                |
| 7440-23-5        | SODIUM, FILTERED    | 49300                    |                      | 82600                    | J                    | ug/L  | S23HNUS201-F                         | 2/2                           | N/A                                   | 82600                                                 | 1580000                            | N/A                                                  | N/A<br>N/A                     | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | NO           | NUT, BKG                                                                |

#### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN FOR GROUNDWATER AT SITE 23 DIRECT CONTACT EXPOSURE SCENARIOS BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONNECTICUT PAGE 3 OF 3

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater Exposure Point: Tank Farm (Site 23)

| CAS Number         | Chemical               | Minimum<br>Concentration | Minimum<br>Qualifler | Maximum<br>Concentration | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | Risk-Based<br>COPC Screening<br>Level <sup>(5)</sup> | Potential<br>ARAR/TBC<br>Value | Potential<br>ARAR/TBC<br>Source    | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|--------------------|------------------------|--------------------------|----------------------|--------------------------|----------------------|-------|--------------------------------------|------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------|------------------------------------|--------------|-------------------------------------------------------------------------|
| Miscellaneous Para |                        |                          |                      |                          |                      |       |                                      |                        |                                       |                                                       |                                    |                                                      |                                |                                    | <u>,</u>     |                                                                         |
| E-14506            | ALKALINITY             | 18                       |                      | 348                      |                      | mg/L  | S23MW03D01                           | 10/10                  | N/A                                   | 348                                                   | 1950                               | N/A                                                  | N/A                            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | BKG                                                                     |
| 7664-41-7          | AMMONIA                | 0.16                     | J                    | 0.54                     | J                    | mg/L  | S23HNUS201                           | 3/3                    | N/A                                   | 0.54                                                  | ND                                 | N/A                                                  | N/A                            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | NTX                                                                     |
| 7664-41-7          | AMMONIA, AS NITROGEN   | 0.13                     | J                    | 6.9                      | J                    | mg/L  | S23MW02S01                           | 6/7                    | 100                                   | 6.9                                                   | ND                                 | N/A                                                  | N/A                            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  | 1            | NTX                                                                     |
| 000-02-0           | CHLORIDE               | 6.55                     |                      | 124                      |                      | mg/L  | \$23MW02\$01                         | 10/10                  | N/A                                   | 124                                                   | 4540                               | N/A                                                  | 250                            | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL |              | BSL                                                                     |
| E-11778            | HARDNESS as CaÇO3      | 22.3                     |                      | 257                      |                      | mg/L  | S23MW03D01                           | 10/10                  | N/A                                   | 257                                                   | ND                                 | N/A                                                  | N/A                            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | NTX                                                                     |
| 14808-79-8         | SULFATE                | 7.6                      |                      | 47.2                     |                      | mg/L  | S23HNUS2001                          | 10/10                  | N/A                                   | 47.2                                                  | 45.2                               | N/A                                                  | 250                            | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL |              | BSL                                                                     |
| 000-09-0           | TOTAL DISSOLVED SOLIDS | 66.2                     |                      | 519                      | J                    | mg/L  | S23MW02S01                           | 10/10                  | N/A                                   | 519                                                   | 6260                               | N/A                                                  | 500                            | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL | ' '          | BKG                                                                     |
| 7440-44-0          | TOTAL ORGANIC CARBON   | 1                        | J                    | 9                        |                      | mg/L  | S23MW04S01                           | 10/10                  | N/A                                   | 9                                                     | 37.7                               | N/A                                                  | N/A                            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | BKG                                                                     |
| 000-08-9           | TOTAL SUSPENDED SOLIDS | 6                        | j                    | 169                      | J                    | mg/L  | S23MW02S01                           | 6/10                   | 5000                                  | 169                                                   | 236                                | N/A                                                  | N/A                            | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL  |              | 8KG                                                                     |

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC.

- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 95% Upper Tolerance Limit (UTL) of site background data .
- 5 The risk-based COPC screening level for tap water use is presented. The value is based on a target Hazard Quotient of 0.1 for noncarcinogens (denoted with a "N" flag) or an incremental cancer risk of 1E-6 for carcinogens (denoted with a "C" flag) (USEPA, Region IX, October 2004, Update December 28, 2004).

S23MW04S01

- 6 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).
- Value is for total xylenes.
- 8 Value is for hexavalent chromium.

| Associated | Sam | ole |
|------------|-----|-----|
|            |     |     |

S23HNUS1101 S23MW02D01 S23HNUS1301

S23MW02D01-D

S23HNUS2001 S23MW02S01 S23MW02S01-F S23HNUS201

S23HNUS201-F S23HNUS501

S23MW03D01 S23MW04D01

<u>Definitions:</u>

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.

COC = Chemical of Concern

J = Estimated Value

N ≈ Noncarcinogen. N/A = Not Applicable.

FED-MCL = Federal Maximum Contaminant Level (USEPA, August 2000).

FED-SMCL = Federal Secondary Maximum Contaminant Level (USEPA, August 2000).

FED-AL = Federal Action Level (USEPA, August 2000)

CTDEP-RSR = Connecticut DEP Remediation Standard Regulations, 1996.

CTDEP-MCL = Connecticut Maximum Contaminant Level.

#### Rationale Codes:

For Selection as a COC:

ASL = Above COC Screening Level/ARAR/TBC.

#### For Elimination as a COC:

8KG = Within Background Levels.

BSL = Below COC Screening Level/ARAR/TBC

NUT = Essential Nutrient.

NTX = No Toxicity Information.

EPAI = USEPA Region 1 does not advocate evaluation of this chemical.

NV = Miscellaneous parameters are not evaluated in human health risk assessments.

# OCCURRENCE, DISTRIBUITON, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN FOR GROUNDWATER AT SITE 23 MIGRATION PATHWAYS BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONECTICUT PAGE 1 OF 2

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater
Exposure Point: Tank Farm (Site 23)

| CAS Number                 | Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minimum<br>Concentration<br>(1)       | Minimum<br>Qualifier | Maximum<br>Concentration<br>(1) | Maximum<br>Qualifier | Units       | Location of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | CTDEP<br>Surface Water<br>Criteria <sup>(5)</sup> | CTDEP Vol.<br>Criteria <sup>(6)</sup> | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|---------------------------------|----------------------|-------------|--------------------------------------|------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------|---------------------------------------------------|---------------------------------------|--------------|---------------------------------------------|
| Volatile Organics          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                 |                      | <del></del> |                                      | ·                      | <del></del>                           | L                                                     | L                                  | <del></del>                                       | 1                                     | Li           | Selection <sup>(6)</sup>                    |
| 95-47-6                    | M+P-XYLENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                     |                      | 2                               |                      | ug/L        | S23MW02S01                           | 1/10                   | 2                                     | 2                                                     | NA.                                | I NA                                              | 21300                                 | NO           |                                             |
| 127-18-4                   | O-XYLENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                     |                      | 3                               |                      | ug/L        | S23MW02S01                           | 1/10                   | 1 1                                   | 3                                                     | NA NA                              | NA NA                                             | 21300                                 |              | BSL                                         |
| 1330-20-7                  | TETRACHLOROETHENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                     |                      | 3                               |                      | ug/L        | S23MW03D01                           | 1/10                   | 1 1                                   | 3                                                     | NA NA                              | 88                                                | 1500                                  | NO           | BSL                                         |
|                            | XYLENES, TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                     |                      | 5                               |                      | ug/L        | S23MW02S01                           | 1/10                   | 1                                     | 5                                                     | NA NA                              | NA NA                                             | 21300                                 | NO           | BSL                                         |
| Dissolved Gases<br>74-82-8 | In the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                       |                      |                                 |                      |             |                                      | 1                      | · · · · · · · · · · · · · · · · · · · | <u> </u>                                              | INA                                | I NA                                              | 21300                                 | NO           | BSL                                         |
|                            | METHANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                     |                      | 920                             |                      | ug/L        | S23MW02S01                           | 7/10                   | 1                                     | 920                                                   | NA NA                              | N/A                                               | N/A                                   | NO           | NEW                                         |
| Semivolatile Organ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                 |                      |             |                                      | 1                      | <u> </u>                              | 320                                                   | I INA                              | IN/A                                              | N/A                                   | NO           | NTX                                         |
| 91-20-3                    | NAPHTHALENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4                                   |                      | 1.4                             |                      | ug/L        | S23MW02S01                           | 1/10                   | 0.5 - 5                               | 1.4                                                   | NA                                 | N/A                                               | N/A                                   | NO           | 11971                                       |
| Total Metals<br>7429-90-5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                 |                      |             |                                      | 17.15                  |                                       | 1.7                                                   | 1474                               | IN/A                                              | IN/A                                  | NO           | NTX                                         |
| 7449-90-5<br>7440-38-2     | ALUMINUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 890                                   |                      | 2030                            |                      | ug/L        | S23MW02S01                           | 2/10                   | 50.5 - 591                            | 2030                                                  | 3560                               | N/A                                               | N/A                                   | NO           | BKG                                         |
| 7440-38-2<br>7440-39-3     | ARSENIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.7                                   |                      | 4.7                             |                      | ug/L        | S23HNUS1101                          | 1/10                   | 2.3                                   | 4.7                                                   | 1.92                               | A A                                               | N/A                                   |              |                                             |
| 7440-39-3<br>7440-43-9     | BARIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.2                                  |                      | 176                             |                      | ug/L        | S23MW02S01                           | 4/10                   | 18 - 37                               | 176                                                   | 227                                | N/A                                               | N/A<br>N/A                            | YES          | ASL                                         |
| 7440-43-9                  | CADMIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.63                                  |                      | 0.63                            |                      | ug/L        | S23HNUS2001                          | 1/10                   | 0.25                                  | 0.63                                                  | ND                                 | 6                                                 | N/A<br>N/A                            | NO           | BKG<br>BSL                                  |
|                            | CALCIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6270                                  |                      | 94100                           |                      | ug/L        | \$23MW03D01                          | 10/10                  | N/A                                   | 94100                                                 | 188000                             | N/A                                               |                                       | NO           |                                             |
| 7440-47-3                  | CHROMIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.2                                  | J                    | 43.2                            |                      | ug/L        | S23MW02S01                           | 4/10                   | 6.2                                   | 43.2                                                  | 49.9                               | N/A                                               | N/A<br>N/A                            | NO           | BKG                                         |
| 7440-48-4                  | COBALT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5                                   | J                    | 6.4                             | J                    | ug/L        | S23MW02S01.                          | 4/10                   | 4.2 - 5.2                             | 6.4                                                   | 48.6                               | N/A                                               |                                       | NO           | BKG                                         |
| 7440-50-8                  | COPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.8                                   | J                    | 10.7                            | J                    | ug/L        | S23MW02S01                           | 2/10                   | 6.8                                   | 10.7                                                  | 107                                | 48                                                | N/A                                   | NO           | BKG                                         |
| 7439-89-6                  | IRON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202                                   |                      | 24800                           |                      | ug/L        | S23MW02S01                           | 9/10                   | 175                                   | 24800                                                 | 28200                              | N/A                                               | N/A                                   | NO           | BSL, BKG                                    |
| 7439-92-1                  | LEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9                                   | J                    | 31.2                            |                      | ug/L        | S23MW02S01                           | 5/10                   | 1.8                                   | 31.2                                                  | 6.63                               | 13                                                | N/A                                   | NO           | BKG                                         |
| 7439-95-4                  | MAGNESIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1610                                  |                      | 7840                            |                      | ug/L        | S23MW02S01                           | 9/10                   | 544                                   | 7840                                                  | 191000                             |                                                   | N/A                                   | YES          | ASL                                         |
| 7439-96-5                  | MANGANESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.4                                  | J                    | 3380                            |                      | ug/L        | S23MW02S01                           | 8/10                   | 8.8 - 12.1                            | 3380                                                  | 11700                              | N/A<br>N/A                                        | N/A                                   | NO           | BKG                                         |
| 7440-02-0                  | NICKEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                    | J                    | 33.5                            |                      | ua/L        | S23MW02S01                           | 2/10                   | 9.2 - 9.9                             | 33.5                                                  | 32.2                               | 880                                               | N/A                                   | NO           | BKG                                         |
| 440-09-7                   | POTASSIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1170                                  |                      | 7790                            |                      | uo/L        | S23MW02S01                           | 10/10                  | N/A                                   | 7790                                                  | 70800                              | N/A                                               | N/A                                   | NO           | BSL                                         |
| 440-23-5                   | SODIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7790                                  | J                    | 99200                           | J                    | ug/L        | S23HNUS201                           | 10/10                  | N/A                                   | 99200                                                 | 1900000                            |                                                   | N/A                                   | NO           | BKG                                         |
| 440-62-2                   | VANADIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.4                                   | J                    | 6.4                             | J                    | ug/L        | S23MW03D01                           | 1/10                   | 6.3 - 8.2                             | 6,4                                                   |                                    | N/A<br>N/A                                        | N/A                                   | NO           | BKG                                         |
| 440-66-6                   | ZINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.4                                  |                      | 68.4                            |                      | ua/L        | \$23MW02S01                          | 1/10                   | 10.9 - 43.1                           | 68.4                                                  | 10.2                               |                                                   | N/A                                   | NO           | BKG                                         |
| Dissolved Metals           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                 |                      |             |                                      | 1110                   | 10.5 - 45.1                           | 00.4                                                  | 131                                | 123                                               | N/A                                   | NO           | BSL, BKG                                    |
| 440-38-2                   | ARSENIC, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                                   | J                    | 3.1                             | J                    | ug/L        | S23MW02S01-F                         | 1/2                    | 2.3                                   | 3.1                                                   | 2.55                               | 4                                                 |                                       |              |                                             |
| 440-39-3                   | BARIUM, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.8                                  |                      | 150                             |                      | ug/L        | S23MW02S01-F                         | 2/2                    | N/A                                   | 150                                                   | 124                                | N/A                                               | N/A                                   | NO           | BSL                                         |
| 440-70-2                   | CALCIUM, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33000                                 |                      | 45100                           |                      | ua/L        | S23MW02S01-F                         | 2/2                    | N/A                                   | 45100                                                 | 152000                             |                                                   | N/A                                   | NO           | NTX                                         |
| 439-89-6                   | IRON, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4410                                  |                      | 15400                           |                      | ug/L        | S23MW02S01-F                         | 2/2                    | N/A                                   | 15400                                                 | 25300                              | N/A                                               | N/A                                   | NO           | BKG                                         |
| 439-92-1                   | LEAD, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                    |                      | 10                              |                      | ua/L        | S23MW02S01-F                         | 1/2                    | 1.8                                   | 10                                                    | 2.52                               | N/A                                               | N/A                                   | NO           | BKG                                         |
| 439-95-4                   | MAGNESIUM, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3770                                  |                      | 5830                            |                      | ug/L        | S23MW02S01-F                         | 2/2                    | N/A                                   | 5830                                                  |                                    | 13                                                | N/A                                   | NO           | BSL                                         |
| 439-96-5                   | MANGANESE, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 977                                   |                      | 2650                            |                      | ug/L        | S23MW02S01-F                         | 2/2                    | N/A                                   | 2650                                                  | 150000                             | N/A                                               | N/A                                   | NO           | BKG                                         |
| 440-09-7                   | POTASSIUM, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5500                                  |                      | 7340                            |                      | ug/L        | \$23MW02S01-F                        | 2/2                    | N/A                                   | 7340                                                  | 9400                               | N/A                                               | N/A                                   | NO           | BKG                                         |
| 440-23-5                   | SODIUM, FILTERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49300                                 |                      | 82600                           | J.                   | ug/L        | S23HNUS201-F                         | 2/2                    | N/A                                   |                                                       | 60000                              | N/A                                               | N/A                                   | NO           | BKG                                         |
| liscellaneous Para         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                 |                      | -gre        | OZOI INOOZO I-P                      | 2/2                    | N/A                                   | 82600                                                 | 1580000                            | N/A                                               | N/A                                   | NO           | BKG                                         |
| -14506                     | ALKALINITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                    | Т                    | 348                             |                      | mg/L        | S23MW03D01                           | 10/10                  | N/A                                   | 240                                                   | 1050                               |                                                   |                                       |              |                                             |
| 664-41-7                   | AMMONIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.16                                  | J                    | 0.54                            |                      | ma/L        | S23HNUS201                           | 3/3                    | N/A<br>N/A                            | 348                                                   | 1950                               | N/A                                               | N/A                                   | NO           | BKG                                         |
| 664-41-7                   | AMMONIA, AS NITROGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.13                                  | j                    | 6.9                             |                      | mg/L        | S23MW02S01                           | 6/7                    | 100                                   | 0.54                                                  | ND                                 | N/A                                               | N/A                                   | NO           | NTX                                         |
| 00-02-0                    | CHLORIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.55                                  |                      | 124                             |                      | ma/L        | S23MW02S01                           | 10/10                  |                                       | 6.9                                                   | ND                                 | N/A                                               | N/A                                   | NO           | NTX                                         |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                      | 127                             |                      | mg/L        | JZJIVIVVUZJU I                       | 10/10                  | N/A                                   | 124                                                   | 4540                               | N/A                                               | N/A                                   | NO           | BKG                                         |

## OCCURRENCE, DISTRIBUITON, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN FOR GROUNDWATER AT SITE 23 MIGRATION PATHWAYS

## BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONECTICUT PAGE 2 OF 2

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater Exposure Point: Tank Farm (Site 23)

| CAS Number | Chemical               | Minimum<br>Concentration<br>(1) | Minimum<br>Qualifier | Maximum<br>Concentration<br>(1) | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency |      | Concentration<br>Used for<br>Screening <sup>(3)</sup> |      | CTDEP<br>Surface Water<br>Criteria <sup>(5)</sup> | CTDEP Vol.<br>Criteria <sup>(6)</sup> | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|------------|------------------------|---------------------------------|----------------------|---------------------------------|----------------------|-------|--------------------------------------|------------------------|------|-------------------------------------------------------|------|---------------------------------------------------|---------------------------------------|--------------|-------------------------------------------------------------------------|
| E-11778    | HARDNESS as CaCO3      | 22.3                            |                      | 257                             |                      | mg/L  | S23MW03D01                           | 10/10                  | N/A  | 257                                                   | ND   | N/A                                               | N/A                                   | NO           | NTX                                                                     |
| 14808-79-8 | SULFATE                | 7.6                             |                      | 47.2                            |                      | mg/L  | S23HNUS2001                          | 10/10                  | N/A  | 47.2                                                  | 45.2 | N/A                                               | N/A                                   | NO           | NTX                                                                     |
| 000-09-0   | TOTAL DISSOLVED SOLIDS | 66.2                            |                      | 519                             | J                    | mg/L  | S23MW02S01                           | 10/10                  | N/A  | 519                                                   | 6260 | N/A                                               | N/A                                   | NO           | BKG                                                                     |
| 7440-44-0  | TOTAL ORGANIC CARBON   | 1                               | J                    | 9                               |                      | mg/L  | S23MW04S01                           | 10/10                  | N/A  | 9                                                     | 37.7 | N/A                                               | N/A                                   | NO           | BKG                                                                     |
| 000-08-9   | TOTAL SUSPENDED SOLIDS | 6                               | J                    | 169                             | J ·                  | mg/L  | S23MW02S01                           | 6/10                   | 5000 | 169                                                   | 236  | N/A                                               | N/A                                   | NO           | BKG                                                                     |

A shaded value indicates that the concentration used for screening exceeds the criterion or background value. A shaded chemical name indicates that the chemical has been selected as a COPC.

#### Footnotes

1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.

S23MW04S01

- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 95% Upper Tolerance Limit (UTL) of site background data.
- 5 Connecticut DEP Surface Water Protection criteria.
- 6 Connecticut DEP Volatilization criteria for residential exposures.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the CTDEP surface water protection or volatilization criteria.

#### Associated Samples:

\$23HNUS1101 \$23HW02D01 \$23HNUS1301 \$23HW02D01-D \$23HNUS2001 \$23HW02S01 \$23HNUS201 \$23HNUS201-F \$23HNUS201-F \$23HNUS501 \$23HW04D01

#### Definitions:

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered. C = Carcinogen.

COC = Chemical of Concern.

J = Estimated Value.

N ≈ Noncarcinogen.

NA = Not Applicable.

#### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

For Elimination as a COPC:

BKG = Within Background Levels.

BSL = Below COPC Screening Level/ARAR/TBC.

NTX = No Toxicity Information.

## SUMMARY OF CANCER RISKS AND HAZARD INDICES FOR SITE 23 REASONABLE MAXIMUM EXPOSURES

## BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONNECTICUT

| Receptor            | Media       | Exposure<br>Route | Cancer<br>Risk | Chemicals with<br>Cancer Risks<br>> 10 <sup>-4</sup> | Chemicals with<br>Cancer Risks<br>> 10 <sup>-5</sup> and ≤ 10 <sup>-4</sup> | Chemicals with<br>Cancer Risks<br>> 10 <sup>-6</sup> and ≤ 10 <sup>-5</sup> | Hazard<br>Index | Chemicals with<br>HI > 1 |
|---------------------|-------------|-------------------|----------------|------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|--------------------------|
| Construction Worker | Groundwater | Dermal Contact    | 1.3E-09        |                                                      | ••                                                                          |                                                                             | 0.0002          |                          |
|                     |             | -                 |                |                                                      |                                                                             |                                                                             |                 |                          |
| Adult Resident      | Groundwater | Ingestion         | 1.8E-06        | ••                                                   | ••                                                                          | Tetrachloroethene                                                           | 0.01            |                          |
|                     | 1           | Dermal Contact    | 8.5E-07        | • •                                                  |                                                                             | • •                                                                         | 0.005           |                          |
|                     |             | Inhalation (1)    | 1.8E-06        | ••                                                   | • •                                                                         | Tetrachloroethene                                                           | 0.008           |                          |
|                     |             | Total             | 4.5E-06        |                                                      |                                                                             | Tetrachloroethene                                                           | 0.02            |                          |

#### Notes:

<sup>1 -</sup> Inhalation risk is assumed to be equal to risk from ingestion for volatiles.

ATTACHMENT A.2
TABLES FROM STORM SEWER REHABILITATION

TABLE 1

GROTON STORM SEWER REHABILITATION PROJECT

UNDERDRAIN WATER SAMPLING FOR OIL/WATER SEPARATOR (OWS) DETERMINATION

MONTHLY SAMPLING RESULTS

|                                       | Sample #     | OWS-072500     | OWS-082300     | OW\$-100400    | ows    | -011701   | OWS                                    | -031501   | OWE      | -041901   | 0.446               | 050004            | 0.5000                                   |                                           |
|---------------------------------------|--------------|----------------|----------------|----------------|--------|-----------|----------------------------------------|-----------|----------|-----------|---------------------|-------------------|------------------------------------------|-------------------------------------------|
|                                       | Date sampled | 7/25/2000      | 8/23/2000      | 10/4/2000      | 1/1    | 7/2001    | 3/1                                    | 5/2001    | 4/1      | 9/2001    | 5/2                 | -052301<br>3/2001 | CTDEP RSR<br>Surface Water<br>Protection | Groundwater                               |
| A PANALYSIS (20-2)                    | MENHOD I     | RESULTS        | RESULTS        | RESULTS        | RES    | ULTS      | RE                                     | SUETS     | DE .     | July 18   | DE C                | SULTS             | Criteria(1)                              | Volatilization<br>Criteria <sup>(2)</sup> |
| Fuel Type Fingerprint                 | 8015         | ND             | ND             | ND             |        | NA ·      |                                        | NA        |          | E         | A CONTRACTOR OF THE |                   |                                          |                                           |
| PH                                    | EPA 150.1    | 6.2 std. Units | 6.3 std. Units | 6.3 std. Units |        | NA        |                                        | NA        |          | 23        | ·                   | E                 | NA NA                                    | NA                                        |
| Total petroleum                       | 4. *         |                |                |                |        |           | <u> </u>                               |           |          |           | <del> </del>        | 5.64              | NA NA                                    | NA                                        |
| hydrocarbons                          | 418.1        | 1.1 mg/l       | <1.0 mg/l      | 1.0 mg/l       |        | NA.       | i                                      | NA        |          |           | [                   |                   |                                          |                                           |
| Oil and grease                        | EPA 413.1    | <5.0 mg/l      | <5.0 mg/l      | <5.0 mg/l      |        | NA        |                                        | NA<br>NA  | 5.2      | mg/l      |                     | 8 mg/l            | NA NA                                    | NA NA                                     |
| Total suspended solids                | EPA 160.2    | 62 mg/l        | 700 4          |                |        |           |                                        |           | 9.2      | mg/i      | 16                  | mg/l              | NA NA                                    | NA                                        |
| Metals:                               | 6010B        |                | 720 mg/l       | 1400 mg/l      | <5.0   | ) mg/l    | 23                                     | mg/l      | 160      | mg/i      | 27                  | 3 mg/l            | NA                                       | NA                                        |
|                                       | 00108        | NA .           | ug/I           | ug/l           |        | ıg/l      |                                        | ıg/l      |          | ıg/l      |                     | Jq/l              |                                          | 9/1                                       |
| Aluminum                              |              | NA NA          |                |                | Total  | Dissolved | Total                                  | Dissolved | Total    | Dissolved | Total               | Dissolved         | u                                        | 9"                                        |
| Antimony                              |              | NA NA          | 11300          | 15500          | 1360   | 492       | 1670                                   | ND        | 2150     | 16.5 B    | 2540                | ND ND             |                                          |                                           |
| Arsenic                               |              | NA NA          | 6.4<br>13.4    | 4.1            | ND     | . ND      | ND                                     | ND        | ND       | ND        | 3.28                | ND .              | 86000                                    | NA NA                                     |
| Barium                                |              | NA<br>NA       | 169            | 22.2           | ND     | ND        | 5.6 B                                  | ND        | 8.1 B    | 2.8 B     | 9.1B                | ND                | 4                                        | NA NA                                     |
| Beryllium                             |              | NA<br>NA       |                | 223            | 64.5 B | 56.3 B    | 61.6 B                                 | 33.4 B    | 82.7 B   | 45.3 B    | 96,7B               | 38.38             | NA NA                                    | NA NA                                     |
| Cadmium                               |              | NA<br>NA       | 2.6            | 0.3            | ND     | 1.7 B     | ND                                     | ND        | 0.15 B   | ND        | 0.988               | 0.80B             | 4                                        | NA<br>NA                                  |
| Calcium                               |              | NA<br>NA       | 0.8            | 0.8            | ND     | ND        | ND                                     | ND        | ND       | ND        | ND                  | ND ND             | 6                                        | NA<br>NA                                  |
| Chromium                              |              | NA<br>NA       | 32500          | 35800          | 31100  | 29700     | 35400                                  | 31300     | 36600    | 33200     | 28200               | 28600             | NA NA                                    | NA<br>NA                                  |
| Cobalt                                |              |                | 19.6           | 28.4           | 2.2 B  | ND        | 2.4 B                                  | ND        | 4.0 B    | ND        | 6.5B                | ND ND             | 110                                      | NA<br>NA                                  |
| Copper                                |              | NA NA          | 9.9            | 17             | 2.4 B  | ND        | 1.6 B                                  | ND        | 3.2 B    | ND        | 4.48                | ND ND             | NA NA                                    | NA NA                                     |
| Iron                                  |              | NA NA          | 36             | 39.5           | ND     | ND        | 6.1 B                                  | ND        | 4.1 B    | ND        | 10.6B               | 3.3B              | 48                                       |                                           |
| Lead                                  |              | NA NA          | 62100          | 116000         | 15100  | 11100     | 24100                                  | 76.6 B    | 32600    | 258       | 62500               | 125               | NA NA                                    | NA<br>NA                                  |
| Magnesium                             |              | NA             | 79.7           | 93.7           | 13.2   | 7.9       | 11.1                                   | ND        | 16.7     | ND        | 28.5                | ND ND             | 13                                       | NA<br>NA                                  |
| Manganese                             |              | NA .           | 9950           | 12000          | 7350   | 6560      | 8350                                   | 6850      | 8950     | 7560      | 6620                | 6400              | NA NA                                    | NA<br>NA                                  |
| Mercury                               |              | NA NA          | 1540           | 2220           | 884    | 801       | 896                                    | 582       | 1150     | 515       | 1630                | 476               | NA NA                                    |                                           |
| Nickel                                |              | NA NA          | 0.1            | 0.2            | ND     | ND        | ND                                     | ND        | ND       | ND        | ND                  | 0.25              | 0.4                                      | NA NA                                     |
| Potassium                             |              | NA NA          | 13.2           | 18.3           | ND     | ND        | ND                                     | 3.3 B     | ND       | ND        | ND                  | ND ND             | 880                                      | NA NA                                     |
| Selenium                              |              | NA             | 8600           | 9060           | 5430   | 5100      | 7100                                   | 4770 B    | 6400     | 5090      | 42708               | 4330B             |                                          | NA NA                                     |
| Silver                                |              | NA NA          | 2.2            | 12.5           | ND     | ND        | ND                                     | ND        | ND       | ND        | 5.4                 | ND ND             | NA 50                                    | NA                                        |
| Sodium                                |              | NA NA          | 2.8            | 4              | ND     | ND        | ND                                     | ND        | ND       | ND        | 1.9B                | ND ND             |                                          | NA                                        |
| Thailium                              |              | NA NA          | 39500          | 51800          | 41800  | 37500     | 46100                                  | 39700     | 48400    | 44700     | 40400               | 45400             | 12<br>NA                                 | NA                                        |
| Vanadium                              |              | NA             | 3.2            | 3.2            | ND     | ND .      | ND                                     | ND        | ND       | ND ND     | ND ND               | 3.9B              | 63                                       | NA NA                                     |
| Zinc                                  |              | NA NA          | 40.5           | 52.7           | 4.0 B  | ND        | 8.7 B                                  | ND        | ND       | ND        | ND ND               | ND ND             | NA NA                                    | NA                                        |
|                                       |              | NA NA          | 228            | 231            | 53.5   | 43.5      | 48.5                                   | 7.0 B     | 58.1     | 23.1      | 87.9                | 44.0              |                                          | NA                                        |
| Cyanide<br>VOA                        |              | NA NA          | NR             | NR             | NA     | NA ·      | NA                                     | NA NA     | NA NA    | NA NA     | NA NA               | NA NA             | 123                                      | NA                                        |
| Tetrachioroethene                     | OLM2.1       |                |                |                |        |           |                                        |           |          |           | NA .                | L NA              | NA                                       | NA NA                                     |
| VOA (TIC)                             |              |                |                |                | . N    | D         | N                                      | D         | . N      | n         |                     | 5J                |                                          |                                           |
|                                       | OLM2.1       |                |                |                |        |           |                                        |           |          |           | <u> </u>            | 55                | 88                                       | 340                                       |
| Methane, chlorodifluoro-              |              |                |                |                | 4,0    | J         | N                                      | D         | N        | 0         |                     | 0                 | N/A                                      |                                           |
| Ethane, 1,1,2-trichloro-1,2,          | 20700        |                |                |                | 2.9    | J         | N                                      |           | 8.5      |           | 1.                  |                   | NA<br>NA                                 | NA NA                                     |
|                                       | 8270C        |                |                |                |        |           | ······································ |           |          |           | <u></u> !:          | 1.3               | NA NA                                    | NA                                        |
| Dimethylphthalate<br>Diethylphthalate |              |                |                |                | N      |           | N                                      | D .       | N        | <u> </u>  |                     | <del></del>       | NA                                       |                                           |
|                                       |              |                |                |                | N      |           | N                                      |           | N N      |           | 1                   |                   | NA<br>NA                                 | NA                                        |
| Di-n-butylphthalate                   |              |                |                |                | N      |           | N                                      |           | n N      |           |                     |                   |                                          | NA NA                                     |
| Bis(2-Ethylhexyl)phthalate            |              |                |                |                | N      | 0         | N                                      |           | N N      |           | 2                   |                   | NA SO                                    | NA                                        |
|                                       | 8310         |                |                |                |        |           |                                        |           | 14       |           |                     | ·                 | 59                                       | NA NA                                     |
| Naphthalene                           |              |                |                |                | N      | D         | N                                      | D         | N        | n —       | 0.3                 | 171               | - NA                                     |                                           |
| henanthrene                           |              |                |                |                | 8.0    | 00        | N                                      |           | N        |           | 0.3                 |                   | NA NA                                    | NA NA                                     |
| luoranthene                           |              |                |                |                | 3.0    | 00        | N                                      |           | N        |           | 0.:                 |                   | 0.3                                      | NA NA                                     |
| yrene                                 |              |                |                |                | N      | D 1       | N                                      |           | N        |           | 0.                  |                   | 3700                                     | NA                                        |
| enzo(a)anthracene                     |              |                |                |                | N      |           | N                                      |           | N N      |           | 0.2                 |                   | 110000                                   | NA                                        |
| hrysene                               |              |                |                |                | N      |           | N                                      |           | N        |           |                     |                   | 0.3                                      | NA                                        |
| enzo(b)fluoranthene                   |              |                |                |                | NI     |           | N                                      |           | N        |           | 0.2<br>0.4          |                   | NA NA                                    | NA                                        |
| enzo(k)fluoranthene                   |              |                |                |                | N      | 5         | N                                      |           | N        |           |                     |                   | 0.3                                      | NA                                        |
| enzo(a)pyrene                         |              | ·              |                |                | N      | 5         | Ni Ni                                  |           | NI NI    |           | 2.0                 |                   | 0.3                                      | NA                                        |
| Dibenzo(a,h)anthracene                |              |                |                |                | N      |           | N                                      |           | NI<br>NI |           | 0.0                 |                   | NA NA                                    | NA                                        |
| lenzo(ghi)perylene                    |              |                |                |                | N      |           | NI NI                                  |           | NI NI    |           | 0.6                 |                   | NA<br>NA                                 | NA<br>NA                                  |

Notes: ND = Not Detected NA = Not Analyzed

NR = Not reported

NR = Not reported

J = Indicates an estimated value

B = Indicates the analyte was found in the blank as well as the sample

E = No Calibrated Fuel Type Detected

Pesticide/PCB compounds were not detected (Method OLM2.1)

1 - CTDEP Remediation Standard Regulations, Residential, 1996.

2 - Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, March 2003. Shading indicates that concentration exceeds the screening criteria.

# ATTACHMENT A.3 RISKS BASED ON STORM SEWER REHABILIATION GROUNDWATER ANALYTICAL SAMPLING RESULTS

#### TABLE 4.1.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS

NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

| Exposure Route | Receptor Population  | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition               | Value      | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name       |
|----------------|----------------------|--------------|----------------|-------------------|------------------------------------|------------|--------------|-------------------------|--------------------------------------|
| Dermal         | Construction Workers | Adult        | Site 23        | i                 | Dermally Absorbed Dose per Event   | Calculated | mg/cm2-event | U.S. EPA, 2004          | Dermally Absorbed Dose (mg/kg/day) = |
|                |                      |              |                | SA                | Skin Surface Available for Contact | 3300       | cm2          | U.S. EPA, 2004          | (g,g,.cay)                           |
|                |                      |              |                | EV                | Event Frequency                    | 1          | events/day   | (1)                     | DAevent x EV x EF x ED x SA          |
| ·              |                      | İ            |                | ET                | Exposure Time                      | 4          | hours/day    | (1)                     | BW x AT                              |
|                |                      |              |                | EF .              | Exposure Frequency                 | 30         | days/year    | (1)                     | 200.200                              |
|                |                      |              |                | ED                | Exposure Duration                  | 1          | years        |                         | See text for calculation of DAevent. |
|                |                      |              |                | BW                | Body Weight                        | 70         | kg           | U.S. EPA, 1989          | To tok for dalidation of BASVETIL    |
| . [            |                      |              |                | AT-C              | Averaging Time (Cancer)            | 25550      | days         | U.S. EPA, 1989          |                                      |
| ces:           |                      |              |                | AT-N              | Averaging Time (Non-Cancer)        | 365        | days         | U.S. EPA, 1989          |                                      |

U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1; Human Health Evaluation Manual, Part A. EPA/540/1-86/060.

U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

#### **Unit Intake Calculations**

Ingestion Intake = (IR-GW x EF x ED)/(BW x AT) Dermal Intake = (SA x EV x EF x ED)/(BW x AT)

Cancer Ingestion Intake = NA

Cancer Dermal Intake = 5.54E-02

Noncancer Ingestion Intake = NA

Noncancer Dermal Intake = 3.87E+00

<sup>1 -</sup> Professional judgment.

#### TABLE 4.2.RME

#### VALUES USED FOR DAILY INTAKE CALCULATIONS

## REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Air

| Exposure Route | Receptor Population  | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition             | Value      | Units          | Rationale/<br>Reference | Intake Equation/<br>Model Name |
|----------------|----------------------|--------------|----------------|-------------------|----------------------------------|------------|----------------|-------------------------|--------------------------------|
| Inhalation     | Construction Workers | Adult        | Site 23        | CA                | Chemical concentration in air    | Calculated | mg/m3          | VDEQ, 2004              | intake (mg/kg/day) =           |
|                |                      |              |                | cw                | Chemical concentration in water. | Average    | ug/L           |                         |                                |
|                |                      |              |                | CF                | Conversion Factor                | 0.001      | mg/ug          | <b>-</b>                | CA x IR x ET x EF x ED         |
|                |                      |              |                | · IR              | Inhalation Rate                  | 2.5        | m3/hour        | U.S. EPA, 1993          | BW x AT                        |
|                |                      |              |                | ET                | Exposure Time                    | 4          | hours/day      | (1)                     |                                |
|                |                      |              |                | EF                | Exposure Frequency               | 30         | days/year      | (1)                     | CA = CW x CF x VF              |
|                |                      |              |                | ED                | Exposure Duration                | 1          | years          | (1)                     |                                |
|                |                      |              |                | BW                | Body Weight                      | 70         | kg             | U.S. EPA, 1989          |                                |
|                |                      |              |                | AT-C              | Averaging Time (Cancer)          | 25550      | days           | U.S. EPA, 1989          |                                |
|                |                      |              |                | AT-N              | Averaging Time (Non-Cancer)      | 365        | days           | U.S. EPA, 1989          |                                |
|                |                      |              |                | VF                | Volatilization Factor            | Calculated | (mg/m3)/(mg/L) | VDEQ, 2004              |                                |

#### Notes:

U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. EPA/540/1-86/060.

U.S. EPA, 1993: Superfund's Standard Default Exposure Factors for the Central Tendency and Reasonable Maximum Exposure.

VDEQ, 2004; Virginia Department of Environmental Quality (VDEQ, online- http://www.deq.state.va.us/vrprisk/homepage.html).

#### Unit Intake Calculations

Inhalation intake = (IR x ET x EF x ED)/(BW x AT)

Cancer Inhalation Intake = 1.68E-04

Noncancer Inhalation Intake = 1.17E-02

<sup>1 -</sup> Professional judgment.

#### TABLE 4.3.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS

NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

| Exposure Route                         | Receptor Population | Receptor Age                          | Exposure Point | Parameter<br>Code | Parameter Definition                  | Value          | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name           |
|----------------------------------------|---------------------|---------------------------------------|----------------|-------------------|---------------------------------------|----------------|--------------|-------------------------|------------------------------------------|
| Ingestion                              | Residents           | Child                                 | Site 23        | cgw               | Chemical Concentration in Groundwater | Max or 95% UCL | mg/kg        | U.S. EPA, 2002a         | Chronic Daily Intake (CDI) (mg/kg/day) = |
|                                        |                     |                                       |                | CF                | Conversion Factor                     | 0.001          | mg/ug        |                         | - mana bany mana (bany mg/ady) -         |
|                                        |                     |                                       |                | IR-GW             | Ingestion Rate of Groundwater         | 1.5            | L/day        | U.S. EPA, 1994          | CW x CF x IR-GW x EF x ED                |
|                                        |                     |                                       |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          | BW x AT                                  |
|                                        |                     |                                       | . *            | ED1               | Exposure Duration (Age 0 - 2)         | 2              | years        | U.S. EPA, 1989          |                                          |
|                                        | •                   | 7.                                    |                | ED2               | Exposure Duration (Age 2 - 6)         | 4              | years        | U.S. EPA, 1989          |                                          |
|                                        |                     |                                       |                | 8W                | Body Weight                           | 15             | kg           | U.S. EPA, 1991          |                                          |
|                                        |                     |                                       |                | AT-C              | Averaging Time (Cancer)               | 25550          | days         | U.S. EPA, 1989          |                                          |
| ······································ |                     | · · · · · · · · · · · · · · · · · · · |                | AT-N              | Averaging Time (Non-Cancer)           | 2190           | days         | U.S. EPA, 1989          |                                          |
| Dermal                                 | Residents           | Child                                 | Site 23        | Daevent           | Dermally Absorbed Dose per Event      | Calculated     | mg/cm2-event | U.S. EPA, 2004          | Dermaily Absorbed Dose (mg/kg/day) =     |
|                                        |                     | * -                                   |                | SA                | Skin Surface Available for Contact    | 6,600          | cm2          | U.S. EPA, 2004          | , , , ,                                  |
|                                        |                     |                                       |                | EV                | Event Frequency                       | 1              | events/day   | U.S. EPA, 2004          | DAevent x EV x EF x ED x SA              |
|                                        | ·                   |                                       |                | ET                | Exposure Time                         | 0.25           | hours/day    | U.S. EPA, 1997          | BW x AT                                  |
|                                        |                     |                                       |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          |                                          |
|                                        |                     |                                       |                | ED1               | Exposure Duration (Age 0 - 2)         | 2              | years        | U.S. EPA, 1989          | See text for calculation of DAevent.     |
|                                        |                     |                                       |                | ED2               | Exposure Duration (Age 2 - 6)         | 4              | years        | U.S. EPA, 1989          |                                          |
|                                        |                     |                                       |                | 8W                | Body Weight                           | 15             | kg           | U.S. EPA, 1991          |                                          |
|                                        |                     |                                       | '              | AT-C              | Averaging Time (Cancer)               | 25550          | days         | U.S. EPA, 1989          |                                          |
|                                        |                     |                                       |                | AT-N              | Averaging Time (Non-Cancer)           | 2190           | days         | U.S. EPA, 1989          |                                          |

- U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. EPA/540/1-86/060.
- U.S. EPA, 1991: Risk Assessment Guidance for Superfund Supplemental Guidance- Standard Default Exposure Factors Interim Final.
- U.S. EPA, 1994; U.S. EPA Region I Risk Updates, August 1994.
- U.S. EPA, 1997: Exposure Factors Handbook. EPA/600/P-95/002Fa
- U.S. EPA, 2002:Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10, December.
- U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

#### Unit Intake Calculations

Ingestion Intake = (IR-GW x EF x ED)/(BW x AT) Dermal Intake = (SA x EV x EF x ED)/(BW x AT)

Cancer Ingestion Intake (Age 0 - 2) ≈ 2.74E-06 Cancer Ingestion Intake (Age 2 - 6) = 5.48E-06

Cancer Dermal Intake (Age 0 - 2) = 1.21E+01 Cancer Dermai Intake (Age 2 - 6) = 2.41E+01

Noncancer Ingestion Intake = 9.59E-05

Noncancer Dermal Intake.≈ 4.22E+02

#### TABLE 4.4.RME

## VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS

#### NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

| Exposure Route                          | Receptor Population | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition                  | Value          | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name           |
|-----------------------------------------|---------------------|--------------|----------------|-------------------|---------------------------------------|----------------|--------------|-------------------------|------------------------------------------|
| Ingestion                               | Residents           | Adult        | Site 23        | cgw               | Chemical Concentration in Groundwater | 95% UCL or Max | ug/L         | U.S. EPA, 2002          | Chronic Daily Intake (CDI) (mg/kg/day) = |
| * - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                     |              |                | CF                | Conversion Factor                     | 0.001          | mg/ug        | <u>-</u>                |                                          |
|                                         |                     |              |                | IR-GW             | Ingestion Rate of Groundwater         | 2              | L/day        | U.S. EPA, 1994          | CW x CF x IR-GW x EF x ED                |
|                                         |                     |              |                | EF.               | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          | . BW x AT                                |
|                                         |                     |              |                | ED1               | Exposure Duration (Age 10 - 16)       | 10             | years        | U.S. EPA, 1989          |                                          |
|                                         |                     |              |                | ED2               | Exposure Duration (Age 16 - 30)       | -14            | years        | U.S. EPA, 1989          |                                          |
|                                         | ,                   |              |                | вw                | Body Weight                           | 70             | kg           | U.S. EPA, 1989          | · .                                      |
|                                         |                     |              |                | AT-C              | Averaging Time (Cancer)               | 25,550         | days         | U.S. EPA, 1989          |                                          |
|                                         |                     |              |                | AT-N              | Averaging Time (Non-Cancer)           | 3,650          | days         | U.S. EPA, 1989          |                                          |
| Dermal                                  | Residents           | Adult        | Site 23        | Daevent           | Dermally Absorbed Dose per Event      | Calculated     | mg/cm2-event | U.S. EPA, 2004          | Dermally Absorbed Dose (mg/kg/day) =     |
|                                         |                     |              |                | SA .              | Skin Surface Available for Contact    | 18,000         | cm2          | U.S. EPA, 2004          |                                          |
|                                         |                     |              |                | ĒV                | Event Frequency                       | 1              | events/day   | U.S. EPA, 2004          | DAevent x EV x EF x ED x SA              |
|                                         |                     |              |                | ET                | Exposure Time                         | 0.25           | hours/day    | U.S. EPA, 2004          | BW x AT                                  |
|                                         |                     |              |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          |                                          |
|                                         |                     |              |                | ED1               | Exposure Duration (Age 10 - 16)       | 10             | years        | U.S. EPA, 1989          | See text for calculation of DAevent.     |
|                                         |                     |              | ,              | ED2               | Exposure Duration (Age 16 - 30)       | 14             | years        | U.S. EPA, 1989          |                                          |
|                                         |                     |              |                | BW                | Body Weight                           | 70             | kg           | U.S. EPA, 1989          |                                          |
|                                         |                     |              |                | AT-C              | Averaging Time (Cancer)               | 25,550         | days         | U.S. EPA, 1989          |                                          |
|                                         |                     |              |                | AT-N              | Averaging Time (Non-Cancer)           | 3,650          | days         | U.S. EPA, 1989          |                                          |

#### Sources:

- U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. EPA/540/1-86/060.
- U.S. EPA, 1991: Risk Assessment Guidance for Superfund Supplemental Guidance- Standard Default Exposure Factors Interim Final.
- U.S. EPA, 1994: U.S. EPA Region I Risk Updates, August 1994.
- U.S. EPA, 1997: Exposure Factors Handbook, U.S. EPA/600/8-95/002FA.
- U.S. EPA, 2002; Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10.
- U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

#### Unit Intake Calculations

Ingestion Intake = (IR-GW x EF x ED)/(BW x AT)

Dermal Intake = (SA x EV x EF x ED)/(BW x AT)

Cancer Ingestion Intake Age 10 - 16) = 3.91E-06

Cancer Dermal Intake Age 10 - 16) = 3.52E+01

Cancer Ingestion Intake Age 16 - 30) = 5,48E-06

Cancer Dermal Intake (Age 16 - 30) = 4.93E+01

Noncancer Ingestion Intake = 6.58E-05

Noncancer Dermal Intake = 5.92E+02

#### TABLE 4.5 INTERMEDIATE VARIABLES FOR CALCULATING DA(EVENT) SITE 23 - STORM SEWER NSB-NLON, GROTON, CONNECTICUT

| Chemical of                         | Media       | Dermal Absorption | FA          | I       | Кр       | T/e         | vent)    | T 7           | au       | T            | T*       | <del></del> |
|-------------------------------------|-------------|-------------------|-------------|---------|----------|-------------|----------|---------------|----------|--------------|----------|-------------|
| Potential Concern                   |             | Fraction (soil)   | Value       | Value   | Units    | Value       | Units    | Value         | Units    | Value        | Units    | B           |
| Volatile Organic Compounds          | 3           |                   |             |         |          |             | 1 0      | Value         | Olits    | value        | Units    | Value       |
| Tetrachloroethene                   | Groundwater | NA                | 1           | 3.3E-02 | cm/hr    | 4           | hr       | 9.1E-01       | hr       | 2.2E+00      | hr       | 1.7E-01     |
| Semivolatile Organic Compo          |             |                   |             |         |          |             | <u> </u> | 1 0.12 01     | 1        | 2.22+00      | 1        | 1.7E-01     |
| Benzo(a)anthracene(1)               | Groundwater | NA                | NA          | NA      | NA       | NA.         | I NA     | NA.           | l NA     | NA NA        | T NA     | NA NA       |
| Benzo(a)pyrene <sup>(1)</sup>       | Groundwater | NA                | NA          | NA.     | NA       | NA          | NA       | NA NA         | NA.      | NA NA        | NA NA    | ·           |
| Benzo(b)fluoranthene <sup>(1)</sup> | Groundwater | NA                | NA          | NA      | NA       | NA          | NA.      | NA NA         | NA NA    | NA NA        |          | NA NA       |
| Benzo(g,h,i)perylene <sup>(1)</sup> | Groundwater | NA                | NA          | NA      | NA       | NA.         | NA NA    | NA NA         | NA NA    |              | NA<br>NA | NA NA       |
| Benzo(k)fluoranthene(1)             | Groundwater | NA NA             | NA          | NA      | NA       | NA.         | NA NA    | NA NA         | NA NA    | NA NA        | NA NA    | NA NA       |
| Bis(2-Ethylhexyl)phthalate          | Groundwater | NA                | 0.8         | 2.5E-02 | cm/hr    | 4           | hr       | 1.7E+01       |          | NA<br>4.0504 | NA .     | NA NA       |
| Chrysene <sup>(1)</sup>             | Groundwater | NA NA             | NA          | NA NA   | NA NA    | NA NA       | NA NA    |               | hr<br>NA | 4.0E+01      | hr       | 1.9E-01     |
| Dibenzo(a,h)anthracene(1)           | Groundwater | NA I              | NA          | NA NA   | NA NA    | NA NA       | NA NA    | NA NA         |          | NA NA        | NA       | NA.         |
| Diethylphthalate                    | Groundwater | NA NA             | 1           | 3.9E-03 | cm/hr    | 4           |          | NA 105 00     | NA       | NA .         | NA:      | NA          |
| Dimethylphthalate                   | Groundwater | NA NA             | 1           | 1.4E-03 | cm/hr    | 4           | hr<br>h- | 1.9E+00       | hr       | 4.5E+00      | hr       | 2.2E-02     |
| Di-n-butylphthalate                 | Groundwater | NA NA             | 0.9         | 2.4E-02 | cm/hr    | 4           | hr<br>hr | 1.3E+00       | hr       | 3.1E+00      | hr       | 7.4E-03     |
| Fluoranthene <sup>(1)</sup>         | Groundwater | NA NA             | NA          | NA      | NA       | NA NA       |          | 3.9E+00       | hr       | 9.3E+00      | hr       | 1.5E-01     |
| Naphthalene                         | Groundwater | NA NA             | 1           | 4.7E-02 | cm/hr    | 4           | NA<br>i  | NA .          | NA       | NA           | NA       | NA          |
| Phenanthrene <sup>(1)</sup>         | Groundwater | NA                | NA          | NA NA   | NA NA    | NA          | hr       | 5.6E-01       | hr       | 1.3E+00      | hr       | 2.0E-01     |
| Pyrene                              | Groundwater | NA NA             | 1           | 1.9E-01 | cm/hr    | 1NA<br>4    | NA NA    | NA<br>1.15-00 | NA NA    | NA           | NA NA    | NA          |
| Inorganics                          |             | 1,77              | <del></del> | 1.02-01 | CITI/III | 4           | hr       | 1.4E+00       | hr       | 5.5E+00      | hr       | 1.1E+00     |
| Aluminum                            | Groundwater | l NA I            | 1           | 1.0E-03 | cm/hr    | 4           | b.       |               |          |              |          |             |
| Antimony                            | Groundwater | NA NA             | <del></del> | 1.0E-03 | cm/hr    | 4           | hr<br>hr | NA<br>NA      | NA NA    | NA           | NA       | NA          |
| Arsenic                             | Groundwater | NA NA             | 1           | 1.0E-03 | cm/hr    | 4           | hr       | NA<br>NA      | NA<br>NA | NA NA        | NA       | NA          |
| Barium                              | Groundwater | NA NA             | 1           | 1.0E-03 | cm/hr    | 4           | hr       | NA<br>NA      | NA<br>NA | NA           | NA       | NA NA       |
| Beryllium                           | Groundwater | NA                | 1           | 1.0E-03 | cm/hr    |             | hr       | NA<br>NA      | NA<br>NA | NA NA        | NA       | NA          |
| Chromium                            | Groundwater | NA .              | 1           | 2.0E-03 | cm/hr    |             | hr       | NA NA         | NA<br>NA | NA<br>NA     | NA NA    | NA          |
| Cobalt                              | Groundwater | NA NA             | 1           | 1.0E-03 | cm/hr    | <del></del> | hr       | NA NA         | NA<br>NA |              | NA       | NA          |
| Copper                              | Groundwater | NA                | 1           | 1.0E-03 | cm/hr    | 4           | hr       | NA NA         | NA.      | NA<br>NA     | NA       | NA          |
| ron                                 | Groundwater | NA NA             | 1           | 1.0E-03 | cm/hr    | 4           | hr       | NA NA         | NA.      | NA<br>NA     | NA<br>NA | NA          |
| Manganese                           | Groundwater | NA                | 1           | 1.0E-03 | cm/hr    | 4           | hr       | NA NA         | NA<br>NA | NA<br>NA     | NA.      | NA<br>NA    |
| Selenium                            | Groundwater | NA                | 1           | 1.0E-03 | cm/hr    | 4           | hr       | NA NA         | NA<br>NA | NA<br>NA     | NA NA    | NA          |
| Silver                              | Groundwater | NA                | 1           | 6.0E-04 | cm/hr    | 4           | hr       | NA NA         | NA<br>NA | NA NA        | NA<br>NA | NA<br>NA    |
| Zinc                                | Groundwater | NA NA             | 1           | 6.0E-04 | cm/hr    | 4           | br       | NA I          | NA<br>NA | NA<br>NA     | NA<br>NA | NA          |
| Notes:                              |             |                   |             |         |          |             | 141      | 17/7          | INA      | INA          | IVA .    | NA          |

All values from EPA's Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final, July 2004. 1 - RAGS Part E recommends that dermal exposures to PAHs in water should not be quantitatively evaluated in the risk assessment.

FA = Fraction Absorbed Water

Kp = Dermal Permeability Coefficient of Compound in Water

T(event) = Event Duration

Tau = Lag Time

T\* = Time to Reach Steady-State

B = Dimensionless Ratio of the Permeability Coefficient of a Compound Through the Stratum Corneum Relative to its Permeability Coefficient Across the Viable Epidermis NA = Not applicable.

# TABLE 5.1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL SITE 23 - STORM SEWER NSB-NLON, GROTON, CONNECTICUT

| Chemical of Potential               | Chronic/<br>Subchronic |         | al RfD    | Oral Absorption<br>Efficiency | Absorbed Rf                           | D for Dermal <sup>(2)</sup> | Primary<br>Target      | Combined Uncertainty/Modifying |           | et Organ(s)             |
|-------------------------------------|------------------------|---------|-----------|-------------------------------|---------------------------------------|-----------------------------|------------------------|--------------------------------|-----------|-------------------------|
| Concern                             |                        | Value   | Units     | for Dermal <sup>(1)</sup>     | Value                                 | Units                       | Organ(s)               | Factors                        | Source(s) | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compounds          |                        |         |           |                               |                                       |                             |                        |                                |           |                         |
| Tetrachloroethene                   | Chronic                | 1.0E-02 | mg/kg/day | 1                             | 1.0E-02                               | mg/kg/day                   | Liver                  | 1000/1                         | IRS       | 4/23/2008               |
| Semivolatile Organic Compo          | unds                   |         |           |                               |                                       |                             |                        |                                |           |                         |
| Benzo(a)anthracene                  | NA                     | NA      | NA        | NA .                          | NA                                    | NA                          | NA NA                  | NA NA                          | NA        | NA                      |
| Benzo(a)pyrene                      | NA                     | NA      | NA        | NA                            | NA                                    | NA                          | NA NA                  | NA NA                          | NA NA     | NA NA                   |
| Benzo(b)fluoranthene                | NA                     | NA      | NA NA     | NA NA                         | NA                                    | NA NA                       | NA NA                  | NA NA                          | NA        | NA                      |
| Benzo(g,h,i)perylene <sup>(3)</sup> | Chronic                | 3.0E-02 | mg/kg/day | 1                             | 3.0E-02                               | mg/kg/day                   | Kidney                 | 3000/1                         | IRIS      | 4/23/2008               |
| Benzo(k)fluoranthene                | NA NA                  | NA      | NA NA     | NA NA                         | NA                                    | NA                          | NA .                   | NA                             | NA        | NA                      |
| Bis(2-ethylhexyl)phthalate          | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02                               | mg/kg/day                   | Liver                  | 1000/1                         | IRIS      | 4/23/2008               |
| Chrysene                            | NA NA                  | NA      | NA        | NA NA                         | NA                                    | NA                          | NA                     | NA NA                          | NA        | NA                      |
| Dibenzo(a,h)anthracene              | NA NA                  | NA      | NA        | NA NA                         | NA                                    | NA                          | NA                     | NA NA                          | NA        | NA                      |
| Diethylphthalate                    | Chronic                | 8.0E-01 | mg/kg/day | 1                             | 8.0E-01                               | mg/kg/day                   | Body Weight            | 1000/1                         | IRIS      | 4/23/2008               |
| Dimethylphthalate                   | NA                     | NA.     | NA        | NA NA                         | NA                                    | NA                          | NA NA                  | NA NA                          | NA        | NA                      |
| Di-n-butylphthalate                 | Chronic                | 1.0E-01 | mg/kg/day | 1                             | 1.0E-01                               | mg/kg/day                   | Mortality              | 1000/1                         | IRIS      | 4/23/2008               |
| Fluoranthene                        | Chronic                | 4.0E-02 | mg/kg/day | 1                             | 4.0E-02                               | mg/kg/day                   | Liver                  | 3000/1                         | IRIS      | 4/23/2008               |
| Naphthalene                         | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02                               | mg/kg/day                   | Body Weight            | 3000/1                         | IRIS      | 4/23/2008               |
| Phenanthrene <sup>(3)</sup>         | Chronic                | 3.0E-02 | mg/kg/day | 1                             | 3.0E-02                               | mg/kg/day                   | Kidney                 | 3000/1                         | IRIS      | 4/23/2008               |
| Pyrene                              | Chronic                | 3.0E-02 | mg/kg/day | 1                             | 3.0E-02                               | mg/kg/day                   | Kidney                 | 3000/1                         | IRIS      | 4/23/2008               |
| Inorganics                          |                        |         |           |                               | · · · · · · · · · · · · · · · · · · · |                             |                        |                                |           |                         |
| Aluminum                            | Chronic                | 1.0E+00 | mg/kg/day | 1                             | 1.0E+00                               | mg/kg/day                   | CNS                    | 100                            | PPRTV     | 10/23/2006              |
| Antimony                            | Chronic                | 4.0E-04 | mg/kg/day | 0.15                          | 6.0E-05                               | mg/kg/day                   | Blood                  | 1000/1                         | IRIS      | 4/23/2008               |
| Arsenic                             | Chronic                | 3.0E-04 | mg/kg/day | 1                             | 3.0E-04                               | mg/kg/day                   | Skin, CVS              | 3/1                            | IRIS      | 4/23/2008               |
| Barium                              | Chronic                | 2.0E-01 | mg/kg/day | 0.07                          | 1.4E-02                               | mg/kg/day                   | Kidney                 | 300/1                          | IRIS      | 4/23/2008               |
| Beryllium                           | Chronic                | 2.0E-03 | mg/kg/day | 0.007                         | 1.4E-05                               | mg/kg/day                   | GS                     | 300/1                          | IRIS      | 4/23/2008               |
| Chromium                            | Chronic                | 3.0E-03 | mg/kg/day | 0.025                         | 7.5E-05                               | mg/kg/day                   | Fetotoxicity, GS, Bone | 300/3                          | IRIS      | 4/23/2008               |
| Cobalt                              | NA NA                  | NA      | NA NA     | NA                            | NA:                                   | NA NA                       | NA NA                  | NA NA                          | NA        | NA                      |
| Copper                              | Chronic                | 4.0E-02 | mg/kg/day | 1 1                           | 4.0E-02                               | mg/kg/day                   | GS                     | NA .                           | HEAST     | 7/1997                  |
| iron                                | Chronic                | 7.0E-01 | mg/kg/day | 1                             | 7.0E-01                               | mg/kg/day                   | GS                     | 1.5                            | PPRTV     | 9/11/2006               |
| Manganese                           | Chronic                | 2.4E-02 | mg/kg/day | 0.04                          | 9.6E-04                               | mg/kg/day                   | CNS                    | 1/3                            | IRIS      | 4/23/2008               |
| Selenium                            | Chronic                | 5.0E-03 | mg/kg/day | 1                             | 5.0E-03                               | mg/kg/day                   | Skin                   | 3/1                            | IRIS      | 4/23/2008               |
| Silver                              | Chronic                | 5.0E-03 | mg/kg/day | 0.04                          | 2.0E-04                               | mg/kg/day                   | Skin                   | 3/1                            | IRIS      | 4/23/2008               |
| Zinc                                | Chronic                | 3.0E-01 | mg/kg/day | 1                             | 3.0E-01                               | mg/kg/day                   | Blood                  | 3/1                            | IRIS      | 4/23/2008               |

#### Notes:

- 1 U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.
- 2 Adjusted dermal RfD = Oral RfD x Oral Absorption Efficiency for Dermal.
- 3 Values are for pyrene.

#### Definitions:

CNS = Central Nervous System

CVS = Cardiovascular system

USEPA(1) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

GS = Gastrointestinal system

IRIS = Integrated Risk Information System

NA = Not Applicable

# TABLE 5.2 NON-CANCER TOXICITY DATA -- INHALATION SITE 23 - STORM SEWER NSB-NLON, GROTON, CONNECTICUT

| Chemical of Potential          | Chronic/<br>Subchronic                |               | ition RfC         | Extrapo       | lated RfD <sup>(1)</sup>                         | Primary<br>Target                     | Combined Uncertainty/Modifying | RfC : Tar | get Organ(s)   |
|--------------------------------|---------------------------------------|---------------|-------------------|---------------|--------------------------------------------------|---------------------------------------|--------------------------------|-----------|----------------|
| Concern                        |                                       | Value         | Units             | Value         | Units                                            | Organ(s)                              | Factors                        | Source(s) | Date(s)        |
| Volatile Organic Compounds     |                                       |               |                   |               |                                                  |                                       |                                |           | T (MANUSSITITE |
| Tetrachloroethene              | Chronic                               | 2.8E-01       | mg/m <sup>3</sup> | 8.0E-02       | (mg/kg/day)                                      | Liver                                 | NA I                           | USEPA III | 10/11/2007     |
| Semivolatile Organic Compounds |                                       |               |                   |               | <u> </u>                                         | · · · · · · · · · · · · · · · · · · · | -1                             | OSEFAIII  | 10/11/2007     |
| Benzo(a)anthracene             | NA NA                                 | NA            | NA                | NA            | NA                                               | NA                                    | NA I                           | NA        | 1 514          |
| Benzo(a)pyrene                 | NA NA                                 | NA            | NA                | NA            | NA NA                                            | NA                                    | NA NA                          | NA<br>NA  | NA NA          |
| Benzo(b)fluoranthene           | NA NA                                 | NA            | NA                | NA NA         | NA I                                             | NA NA                                 | NA NA                          | NA NA     | NA NA          |
| Benzo(g,h,i)perylene           | NA .                                  | NA            | NA                | NA            | NA NA                                            | NA NA                                 | NA NA                          |           | NA NA          |
| Benzo(k)fluoranthene           | NA                                    | NA            | NA                | NA            | NA NA                                            | NA NA                                 | NA NA                          | NA NA     | NA NA          |
| Bis(2-Ethylhexyl)phthalate     | NA                                    | NA            | NA                | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA NA     | NA             |
| Chrysene                       | NA                                    | NA            | NA NA             | NA            | NA NA                                            | NA NA                                 |                                | NA NA     | NA             |
| Dibenzo(a,h)anthracene         | NA                                    | NA            | NA                | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA NA     | NA NA          |
| Diethylphthalate               | NA .                                  | NA            | NA                | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA        | NA             |
| Dimethylphthalate              | NA                                    | NA            | NA                | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA.       | NA NA          |
| Di-n-butylphthalate            | NA NA                                 | NA .          | NA                | NA NA         | NA I                                             | NA<br>NA                              | NA NA                          | NA NA     | NA NA          |
| Fluoranthene                   | NA NA                                 | NA            | NA NA             | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA        | NA NA          |
| Naphthalene                    | Chronic                               | 3.0E-03       | mg/m <sup>3</sup> | 8.6E-04       | <del>                                     </del> |                                       | NA NA                          | NA        | NA NA          |
| Phenanthrene                   | NA                                    | NA NA         | NA NA             | NA            | (mg/kg/day)<br>NA                                | Nasal                                 | 3000/1                         | IRIS      | 4/23/2008      |
| Pyrene                         | NA NA                                 | NA            | NA NA             | NA<br>NA      | NA<br>NA                                         | NA .                                  | NA NA                          | NA NA     | NA             |
| norganics                      | · · · · · · · · · · · · · · · · · · · |               |                   | I NA          | NA                                               | NA NA                                 | NA NA                          | NA NA     | NA             |
| Aluminum                       | Chronic                               | 0.005         | mg/m3             | 1.4E-03       | (m = 0 = (d = )                                  | 0110                                  | <del></del>                    |           |                |
| Antimony                       | NA NA                                 | NA.           | NA NA             | 1.4E-03<br>NA | (mg/kg/day)                                      | CNS                                   | 300                            | PPRTV     | 10/23/2006     |
| Arsenic                        | NA NA                                 | NA NA         | NA NA             |               | NA NA                                            | NA NA                                 | NA NA                          | NA NA     | NA             |
| Barium                         | Chronic                               | 5.0E-04       | mg/m3             | NA 1.45.04    | NA I                                             | NA NA                                 | NA NA                          | NA NA     | NA NA          |
| Beryllium                      | Chronic                               | 2.0E-05       |                   | 1.4E-04       | (mg/kg/day)                                      | Fetotoxicity                          | 1000                           | HEAST     | 7/97           |
| Chromium                       | Chronic                               | 1.0E-04       | mg/m3<br>mg/m³    | 5.7E-06       | (mg/kg/day)                                      | GS                                    | 10/1                           | IRIS      | 4/23/2008      |
| Cobalt                         | NA NA                                 | NA            |                   | 2.9E-05       | (mg/kg/day)                                      | Lungs                                 | 300/1                          | IRIS      | 4/23/2008      |
| Copper                         | NA NA                                 | NA<br>NA      | NA<br>NA          | NA NA         | NA NA                                            | NA                                    | NA                             | NA        | NA.            |
| ron                            | NA I                                  | NA<br>NA      | NA NA             | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA        | NA             |
| /anganese                      | Chronic                               |               | NA3               | NA            | NA NA                                            | . NA                                  | NA                             | NA        | NA NA          |
| Selenium                       | NA NA                                 | 5.0E-05<br>NA | mg/m³             | 1.4E-05       | (mg/kg/day)                                      | CNS                                   | 1000/1                         | IRIS      | 4/23/2008      |
| Silver                         | NA NA                                 |               | NA ·              | NA NA         | NA NA                                            | NA NA                                 | NA NA                          | NA        | NA             |
| line                           |                                       | NA NA         | NA                | NA .          | NA                                               | NA                                    | NA                             | NA        | NA             |
|                                | NA                                    | NA NA         | NA                | NA            | NA ·                                             | NA                                    | NA NA                          | NA        | NA             |

Notes

1 - Extrapolated RfD = RfC \*20m3/day / 70 kg

Definitions:

CNS = Central Nervous System

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

GS = Gastrointestinal

HEAST= Health Effects Assessment Summary Tables

IRIS = Integrated Risk Information System

NA = Not Applicable

### TABLE 6.1 **CANCER TOXICITY DATA -- ORAL/DERMAL** SITE 23 - STORM SEWER NSB-NLON, GROTON, CONNECTICUT

| Chemical of Potential      | Oral Cancer | Slope Factor              | Oral Absorption<br>Efficiency |         | cer Slope Factor<br>ermal <sup>(2)</sup> | Weight of Evidence/<br>Cancer Guideline | Ora       | I CSF                   |
|----------------------------|-------------|---------------------------|-------------------------------|---------|------------------------------------------|-----------------------------------------|-----------|-------------------------|
| Concern                    | Value       | Units                     | for Dermai <sup>(1)</sup>     | Value   | Units                                    | Description                             | Source(s) | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compounds |             |                           |                               |         |                                          |                                         |           |                         |
| Tetrachloroethene          | 5.4E-01     | (mg/kg/day)-1             | 1                             | 5.4E-01 | (mg/kg/day)-1                            | NA L                                    | IRIS      | 4/23/2008               |
| Semivolatile Organic Compo | unds        |                           |                               |         |                                          |                                         |           |                         |
| Benzo(a)anthracene         | 7.3E-01     | (mg/kg/day) '             | 1                             | 7.3E-01 | (mg/kg/day) <sup>-1</sup>                | B2                                      | USEPA(1)  | 7/1993                  |
| Benzo(a)pyrene             | 7.3E+00     | (mg/kg/day) <sup>-1</sup> | 1                             | 7.3E+00 | (mg/kg/day) <sup>-1</sup>                | B2                                      | IRIS      | 7/20/2007               |
| Benzo(b)fluoranthene       | 7.3E-01     | (mg/kg/day)               | 1                             | 7.3E-01 | (mg/kg/day) <sup>-1</sup>                | B2                                      | USEPA(1)  | 7/1993                  |
| Benzo(g,h,i)perylene       | NA          | NA                        | NA NA                         | NA      | NA NA                                    | D                                       | IRIS      |                         |
| Benzo(k)fluoranthene       | 7.3E-02     | (mg/kg/day) <sup>-1</sup> | 1                             | 7,3E-02 | (mg/kg/day)                              | B2                                      | USEPA(1)  | 7/1993                  |
| Bis(2-ethylhexyl)phthalate | 1.4E-02     | (mg/kg/day) <sup>-1</sup> | . 1                           | 1.4E-02 | (mg/kg/day) <sup>-1</sup>                | B2                                      | IRIS      | 4/23/2008               |
| Chrysene                   | 7.3E-03     | (mg/kg/day)               | 1                             | 7.3E-03 | (mg/kg/day) <sup>-1</sup>                | B2                                      | USEPA(1)  | 7/1993                  |
| Dibenzo(a,h)anthracene     | 7.3E+00     | (mg/kg/day)               | 1                             | 7.3E+00 | (mg/kg/day) <sup>-1</sup>                | B2                                      | USEPA(1)  | 7/1993                  |
| Diethylphthalate           | NA .        | NA NA                     | NA                            | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Dimethylphthalate          | NA NA       | NA                        | NA                            | NA NA   | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Di-n-butylphthalate        | NA          | NA                        | NA                            | . NA    | NA NA                                    | D                                       | IRIS      | 4/23/2008               |
| Fluoranthene               | NA NA       | NA                        | NA                            | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Naphthalene                | NA          | NA NA                     | NA                            | NA      | NA NA                                    | С                                       | IRIS      | 4/23/2008               |
| Phenanthrene               | NA NA       | NA                        | NA NA                         | NA      | NA NA                                    | D                                       | IRIS      | 4/23/2008               |
| Pyrene                     | NA          | NA                        | NA                            | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Inorganics                 |             | <u> </u>                  |                               |         |                                          |                                         |           |                         |
| Aluminum                   | NA NA       | . NA                      | NA NA                         | NA      | NA NA                                    | NA                                      | NA        | NA.                     |
| Antimony                   | NA NA       | NA                        | NA NA                         | NA      | NA NA                                    | NA NA                                   | NA        | NA                      |
| Arsenic                    | 1.5E+00     | (mg/kg/day)               | 1.                            | 1.5E+00 | (mg/kg/day)                              | Α                                       | IRIS      | 4/23/2008               |
| Barium                     | NA          | NA.                       | NA                            | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Beryllium                  | NA NA       | NA NA                     | NA NA                         | NA      | NA                                       | B1                                      | IRIS      | 4/23/2008               |
| Chromium                   | NA          | NA                        | NA NA                         | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Cobalt                     | NA NA       | NA NA                     | NA                            | NA      | NA                                       | NA                                      | NA        | NA                      |
| Copper                     | NA NA       | NA NA                     | NA                            | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Iron                       | NA.         | NA .                      | NA                            | NA      | NA                                       | NA .                                    | NA        | NA                      |
| Manganese                  | NA NA       | NA                        | NA                            | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Selenium                   | NA NA       | NA                        | . NA                          | NA      | NA                                       | D                                       | IRIS      | 4/23/2008               |
| Silver                     | NA.         | NA                        | NA                            | NA      | NA NA                                    | D                                       | IRIS      | 4/23/2008               |
| Zinc                       | NA          | NA NA                     | NA NA                         | NA .    | NA                                       | NA NA                                   | NA        | NA.                     |

- 1 U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.
- 2 Adjusted cancer slope factor for dermal = Oral cancer slope factor / Oral Absorption Efficiency for Dermal.

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007. IRIS = Integrated Risk Information System.

NA = Not Available.

#### EPA Group:

- A Human carcinogen.
- B1 Probable human carcinogen indicates that limited human data are available.
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans .
- C Possible human carcinogen.
- D Not classifiable as a human carcinogen.
- E Evidence of noncarcinogenicity.

USEPA(1) = U.S. EPA, Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons, July 1993, EPA/600/R-93/089.

# TABLE 6.2 CANCER TOXICITY DATA -- INHALATION SITE 23 - STORM SEWER NSB-NLON, GROTON, CONNECTICUT

| Chemical<br>of Potential    |         | t Risk                             | 1 .     | on Cancer<br>Factor <sup>(1)</sup> | Weight of Evidence/<br>Cancer Guideline | Unit Risk : | Inhalation CSF          |
|-----------------------------|---------|------------------------------------|---------|------------------------------------|-----------------------------------------|-------------|-------------------------|
| Concern                     | Value   | Units                              | Value   | Units                              | Description                             | Source(s)   | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compounds  |         |                                    |         |                                    |                                         |             |                         |
| Tetrachloroethene           | 5.7E-06 | (ug/m³) <sup>-1</sup>              | 2.0E-02 | (mg/kg/day) <sup>-1</sup>          | NA                                      | USEPA III   | 10/11/2007              |
| Semivolatile Organic Compou | ınds    |                                    |         |                                    |                                         |             |                         |
| Benzo(a)anthracene          | NA      | NA                                 | NA .    | NA                                 | NA NA                                   | NA          | l NA                    |
| Benzo(a)pyrene              | 8.9E-04 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 3.1E+00 | (mg/kg/day) <sup>-1</sup>          | NA NA                                   | USEPA III   | 10/11/2007              |
| Benzo(b)fluoranthene        | NA NA   | NA                                 | NA      | NA                                 | NA NA                                   | NA          | NA NA                   |
| Benzo(g,h,i)perylene        | NA      | NA                                 | NA      | NA                                 | D                                       | IRIS        | 4/23/2008               |
| Benzo(k)fluoranthene        | NA      | NA .                               | NA      | NA                                 | NA NA                                   | NA          | NA NA                   |
| Bis(2-Ethylhexyl)phthalate  | NA      | NA                                 | NA      | NA                                 | B2                                      | IRIS        | 4/23/2008               |
| Chrysene                    | NA      | . NA                               | NA      | NA                                 | NA NA                                   | NA NA       | NA                      |
| Dibenzo(a,h)anthracene      | NA      | NA                                 | NA      | NA                                 | NA NA                                   | NA NA       | NA NA                   |
| Diethylphthalate            | NA      | NA                                 | NA ·    | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| Dimethylphthalate           | NA      | . NA                               | NA .    | NA.                                | D D                                     | IRIS        | 4/23/2008               |
| Di-n-butylphthalate         | NA      | NA                                 | NA      | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| Fluoranthene                | NA NA   | NA NA                              | NA      | NA NA                              | <u> </u>                                | IRIS        | 4/23/2008               |
| Naphthalene                 | NA      | NA                                 | NA      | NA NA                              | c                                       | IRIS        | 4/23/2008               |
| Phenanthrene                | NA      | NA                                 | NA      | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| Pyrene                      | NA      | NA                                 | NA      | NA                                 | ` D                                     | IRIS        | 4/23/2008               |
| norganics                   |         |                                    |         | <del></del>                        |                                         |             | 1 4/25/2000             |
| Aluminum                    | NA NA   | NA                                 | NA NA   | NA I                               | NA                                      | NA          | NA.                     |
| Antimony                    | NA NA   | NA                                 | NA      | NA                                 | NA.                                     | NA.         | NA NA                   |
| Arsenic                     | 4.3E-03 | (ug/m³)-1                          | 1.5E+01 | (mg/kg/day) <sup>-1</sup>          | A                                       | IRIS        | 4/23/2008               |
| Barium                      | NA      | NA                                 | NA      | NA                                 | В                                       | IRIS        | 4/23/2008               |
| Beryllium                   | 2.4E-03 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 8.4E+00 | (mg/kg/day) <sup>-1</sup>          | B1                                      | IRIS        | 4/23/2008               |
| Chromium                    | 1.2E-02 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 4.2E+01 | (mg/kg/day) <sup>-1</sup>          | A                                       | IRIS        | 4/23/2008               |
| Cobalt                      | . NA    | NA                                 | NA      | NA NA                              | NA NA                                   | . NA        | NA                      |
| Copper                      | NA      | NA                                 | NA      | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| ron                         | NA      | NA                                 | NA NA   | NA NA                              | NA NA                                   | NA NA       | NA                      |
| Manganese                   | NA NA   | NA                                 | NA      | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| Selenium                    | NA      | NA                                 | NA.     | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| Silver                      | NA      | NA                                 | NA.     | NA NA                              | D                                       | IRIS        | 4/23/2008               |
| Zinc                        | NA NA   | NA                                 | NA.     | NA NA                              | D                                       | IRIS        | 4/23/2008               |

#### Notes

1 - Inhalation CSF = Unit Risk \* 70 kg / 20m3/day.

Definitions:

IRIS = Integrated Risk Information System.

NA = Not Available.

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

#### EPA Group:

- A Human carcinogen.
- B1 Probable human carcinogen indicates that limited human data are available.
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans .
- C Possible human carcinogen.
- D Not classifiable as a human carcinogen.
- E Evidence of noncarcinogenicity.

#### TABLE 7.1.RME

#### CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS

#### REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS

NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 2

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

| Medium     | Exposure Medium       | Exposure Point                         | Exposure Route   | Chemical of                | Ε             | PC    | 1             | Car              | ncer Risk Calcula | ntions                    |             | L             | Non-Ca           | ncer Hazard C | alculations |                |
|------------|-----------------------|----------------------------------------|------------------|----------------------------|---------------|-------|---------------|------------------|-------------------|---------------------------|-------------|---------------|------------------|---------------|-------------|----------------|
|            |                       | **                                     | 1.               | Potential Concern          | Value         | Units | Intake/Exposu | re Concentration | CSF/              | Jnit Risk                 | Cancer Risk | Intake/Exposu | re Concentration | Rf            | D/RIC       | Hazard Quotier |
|            |                       |                                        |                  |                            | 1             | L     | Value         | Units            | Value             | Units                     |             | Value         | Units            | Value         | Units       |                |
| roundwater | Groundwater           | Site 23                                | Dermal           | Aluminum                   | 2540          | ug/L  | 5.6E-07       | (mg/kg/day)      | NA                | (mg/kg/day) <sup>-1</sup> |             | 3.9E-05       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.00004        |
|            | *                     |                                        |                  | Antimony                   | 3.20          | ug/L  | 7.1E-10       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> | '           | 5.0€-08       | (mg/kg/day)      | 6.0E-05       | (mg/kg/day) | 0.0008         |
|            |                       | 1                                      |                  | Arsenic                    | 9.10          | ug/L  | 2.0E-09       | (mg/kg/day)      | 1.5E+00           | (mg/kg/day) <sup>-1</sup> | 3.0E-09     | 1.4E-07       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.0005         |
|            |                       | 1                                      |                  | Barium                     | 96.7          | ug/L  | 2.1E-08       | (mg/kg/day)      | NA.               | (mg/kg/day)"              |             | 1.5E-06       | (mg/kg/day)      | 1.4E-02       | (mg/kg/day) | 0.0001         |
|            | 1                     |                                        | 1                | Beryllium                  | 0.980         | ug/L  | 2.2E-10       | (mg/kg/day)      | NA .              | (mg/kg/day) 1             | ••          | 1.5E-08       | (mg/kg/day)      | 1.4E-05       | (mg/kg/day) | 0.001          |
|            |                       |                                        | ]                | Chromium                   | 6.50          | ug/L  | 2.9E-09       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> | ••          | 2.0E-07       | (mg/kg/day)      | 7.5E-05       | (mg/kg/day) | 0.003          |
|            |                       | 1                                      |                  | Cobalt                     | 4.40          | ug/L  | 9.7E-10       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 6.8E-08       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
|            |                       |                                        |                  | Copper                     | . 10.6        | ug/L  | 2.3E-09       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.6E-07       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | 0.000004       |
|            |                       |                                        |                  | Iron                       | 62500         | ug/L  | 1.4E-05       | (mg/kg/day)      | NA                | (mg/kg/day) <sup>1</sup>  | ••          | 9.7E-04       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 0.001          |
|            |                       |                                        |                  | Manganese                  | 1630          | ug/L  | 3.6E-07       | (mg/kg/day)      | NA.               | (mg/kg/day)               |             | 2.5E-05       | (mg/kg/day)      | 9.6E-04       | (mg/kg/day) | 0.03           |
|            |                       |                                        |                  | Selenium                   | 5.40          | ug/L  | 1.2E-09       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 8.4E-08       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.00002        |
|            |                       |                                        |                  | Silver                     | 1.90          | ug/L  | 2.5E-10       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> | '           | 1.8E-08       | (mg/kg/day)      | 2.0E-04       | (mg/kg/day) | 0.00009        |
|            |                       |                                        |                  | Zinc                       | 87.9          | ug/L  | 1.2E-08       | (mg/kg/day)      | NA NA             | (mg/kg/day)               | ••          | 8.2E-07       | (mg/kg/day)      | 3.0E-01       | (mg/kg/day) | 0.000003       |
|            |                       |                                        |                  | Tetrachloroethene          | 0.500         | ug/L  | 5.1E-09       | (mg/kg/day)      | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 2.8E-09     | 3.6E-07       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.00004        |
|            |                       |                                        | ]                | Dimethylphthalate          | 1.10          | ug/L  | 5.6E-10       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 3.9E-08       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
|            | ŀ                     |                                        |                  | Diethylphthalate           | 20.0          | ug/L  | 3.3E-08       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> | ••          | 2.3E-06       | (mg/kg/day)      | 8.0E-01       | (mg/kg/day) | 0.000003       |
|            |                       |                                        | ]                | Di-n-butylphthalate        | 10.0          | ug/L  | 1.3E-07       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>1</sup>  | •• .        | 9.1E-06       | (mg/kg/day)      | 1.0E-01       | (mg/kg/day) | 0.00009        |
|            |                       |                                        |                  | Bis(2-Ethylhexyl)phthalate | 20.0          | ug/L  | 5.0E-07       | (mg/kg/day)      | 1.4E-02           | (mg/kg/day) 1             | 7.0E-09     | 3.5E-05       | (mg/kg/day)      | 2.0E+02       | (mg/kg/day) | 0.002          |
|            |                       |                                        | 1                | Naphthalene                | 0.370         | ug/L  | 4.5E-09       | (mg/kg/day)      | NA NA             | (mg/kg/day)"              |             | 3.1E-07       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.00002        |
|            |                       |                                        | İ                | Phenanthrene               | 0.580         | ug/L  | 0.0E+00       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        | 1                | Fluoranthene               | 0.580         | ug/L  | 0.0E+00       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> | ••          | 0.0E+00       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) |                |
|            |                       |                                        |                  | Pyrene                     | 0.520         | ug/L  | 3.7E-08       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 2.6E-06       | (mg/kg/day)      | 3.0E-02       | (mg/kg/day) | 0.00009        |
|            | Î                     |                                        |                  | Benzo(a)anthracene         | 0.250         | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        |                  | Chrysene                   | 0.210         | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-03           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        |                  | Benzo(b)fluoranthene       | 0.450         | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>1</sup>  |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        |                  | Benzo(k)fluoranthene       | 2.00          | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-02           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        | ]                | Benzo(a)pyrene             | 0.620         | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day) <sup>-1</sup> | ••          | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        |                  | Dibenzo(a,h)anthracene     | 0.500         | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        |                  | Benzo(g.h.i)perylene       | 0.620         | ug/L  | 0.0E+00       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|            |                       |                                        | Exp. Route Total |                            |               |       | l             | <u></u>          |                   |                           | 1.3E-08     |               |                  |               |             | 0.04           |
|            |                       | Exposure Point Total                   |                  | <u> </u>                   |               |       |               |                  |                   |                           | 1.3E-08     |               |                  |               |             | 0.04           |
|            | Exposure Medium Total | ************************************** |                  |                            | ************* |       |               |                  |                   |                           | 1.3E-08     |               |                  |               |             | 0.04           |

#### TABLE 7.1.RME

### CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS

REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT

PAGE 2 OF 2

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

|              | Exposure Medium       | Exposure Point       | Exposure Route   |                            | L      | PC    |               | Ca               | ncer Risk Calcu | lations                   |             |              |                             |               |                        |            |
|--------------|-----------------------|----------------------|------------------|----------------------------|--------|-------|---------------|------------------|-----------------|---------------------------|-------------|--------------|-----------------------------|---------------|------------------------|------------|
|              |                       |                      | . 1              | Potential Concern          | Value  | Units | Intake/Expost | re Concentration |                 | /Unit Risk                | Cancer Risk | intake/Evnos | Non-Ca<br>are Concentration | ncer Hazard ( | Calculations<br>fD/RfC |            |
| Groundwater  | Air                   |                      | <del></del>      |                            |        |       | Value         | Units            | Value           | Units .                   | Ourice, Mak | Value        | Units                       | Value         | Units                  | Hazard Quo |
| Groundwater  | l'ar                  | Site 23              | Inhalation       | Aluminum                   | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day)-1             |             | 0.0E+00      | (mg/kg/day)                 | 1.4E-03       |                        |            |
|              | 1                     |                      |                  | Antimony                   | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day)               | l           | 0.0E+00      | (mg/kg/day)                 | NA NA         | (mg/kg/day)            | -          |
|              | 1                     |                      |                  | Arsenic                    | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | 1.5E+01         | (mg/kg/day) 1             |             | 0.0E+00      | (mg/kg/day)                 | NA<br>NA      | (mg/kg/day)            | -          |
|              |                       |                      | 1                | Barium                     | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day)*              |             | 0.0E+00      | (mg/kg/day)                 | 1.4E-04       | (mg/kg/day)            | -          |
|              |                       | }                    |                  | Beryllium                  | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | 8.4E+00         | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)                 | 5.7E-06       | (mg/kg/day)            | "          |
|              | 1                     |                      | İ                | Chromium                   | 0.0E+0 | mg/m3 | 0.0É+00       | (mg/kg/day)      | 4.2E+01         | (mg/kg/day)*              |             | 0.0E+00      | (mg/kg/day)                 | 2.9E-05       | (mg/kg/day)            | -          |
|              |                       |                      |                  | Cobalt                     | 0.0E+0 | mg/m3 | ·0.0E+00      | (mg/kg/day)      | NA.             | (mg/kg/day)*1             |             | 0.0E+00      | (mg/kg/day)                 | 2.9E-03       | (mg/kg/day)            |            |
|              |                       |                      |                  | Copper                     | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA:             | (mg/kg/day)*1             |             | 0.0E+00      | (mg/kg/day)                 | NA<br>NA      | (mg/kg/day)            | -          |
|              | ļ                     |                      |                  | Iron                       | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day)*1             |             | 0.0E+00      | 1                           | NA<br>NA      | (mg/kg/day)            | -          |
|              |                       | 1                    |                  | Manganese                  | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)                 |               | (mg/kg/day)            | -          |
|              |                       |                      |                  | Selenium                   | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)                 | 1.4E-05       | (mg/kg/day)            |            |
|              |                       |                      | 1                | Silver                     | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | . NA            | (mg/kg/day)*              |             | 0.0E+00      | (mg/kg/day)                 | NA<br>NA      | (mg/kg/day)            | -          |
|              | İ                     |                      |                  | Zinc                       | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            | "          |
|              | 1                     |                      | 1                | Tetrachloroethene          | 1.4E-5 | mg/m3 | 2.4E-09       | (mg/kg/day)      | 2.0E-02         | (mg/kg/day) <sup>-1</sup> | 4.8E-11     | 1.7E-07      | (mg/kg/day)                 | NA -          | (mg/kg/day)            | -          |
|              | :                     |                      | 1                | Dimethylphthalate          | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day)               | 4.02-11     | 0.0E+00      | (mg/kg/day)                 | 8.0E-02       | (mg/kg/day)            | 0.0000     |
|              |                       |                      |                  | Diethylphthalate           | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day) <sup>-1</sup> | -           | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            | -          |
|              |                       |                      |                  | Di-n-butylphthalate        | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA              | (mg/kg/day) <sup>-1</sup> |             |              | (mg/kg/day)                 | NA            | (mg/kg/day)            | -          |
|              | , i                   |                      |                  | Bis(2-Ethylhexyl)phthalate | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day) <sup>-1</sup> | 1           | 0.0E+00      | (mg/kg/day)                 | ŅA            | (mg/kg/day)            | -          |
|              |                       |                      |                  | Naphthalene                | 1.1E-5 | mg/m3 | 1.8E-09       | (mg/kg/day)      | NA.             | (mg/kg/day) 1             | - :         | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            | -          |
|              |                       |                      |                  | Phenanthrene               | 1.5E-5 | mg/m3 | 2.6E-09       | (mg/kg/day)      | NA.             | (mg/kg/day) <sup>-1</sup> |             | 1.3E-07      | (mg/kg/day)                 | 8.6E-04       | (mg/kg/day)            | 0.0001     |
|              |                       |                      |                  | Fluoranthene               | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day) <sup>-1</sup> | ı           | 1.8E-07      | (mg/kg/day)                 | NA            | (mg/kg/day)            | -          |
|              |                       |                      |                  | Pyrene                     | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA NA           | 1                         |             | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            |            |
|              |                       |                      | 1                | Benzo(a)anthracene         | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day)"              |             | 0.0E+00      | (mg/kg/day)                 | . NA          | (mg/kg/day)            |            |
|              |                       |                      |                  | Chrysene                   | 0.0E+0 | ma/m3 | 0.0E+00       | (mg/kg/day)      | NA .            | (mg/kg/day)"              |             | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            |            |
|              | 1                     |                      | 1                | Benzo(b)fluoranthene       | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day)"              | • ••        | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            |            |
|              |                       |                      | 1                | Benzo(k)fluoranthene       | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA NA           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            |            |
|              |                       |                      |                  | Benzo(a)pyrene             | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | 3.1E+00         | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)                 | NA (          | (mg/kg/day)            |            |
|              |                       |                      |                  | Dibenzo(a,h)anthracene     | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA.             | (mg/kg/day)               |             | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            |            |
|              | 1                     |                      |                  | Benzo(g.h.i)perylene       | 0.0E+0 | mg/m3 | 0.0E+00       | (mg/kg/day)      | NA NA           | (mg/kg/day)"              | ••          | 0.0E+00      | (mg/kg/day)                 | NA            | (mg/kg/day)            |            |
|              |                       |                      | Exp. Route Total |                            |        |       | 0.02.00       | (mg/kg/day)      | NA              | (mg/kg/day) '             |             | 0.0E+00      | (mg/kg/day)                 | NA .          | (mg/kg/day)            |            |
|              | Γ                     | Exposure Point Total |                  | V                          |        |       |               |                  |                 |                           | 4.8E-11     |              |                             |               |                        | 0.0002     |
|              | Exposure Medium Total |                      |                  |                            |        |       |               |                  |                 |                           | 4.8E-11     |              |                             |               |                        | 0.0002     |
| Medium Total |                       |                      |                  |                            |        |       |               |                  |                 |                           | 4.8E-11     |              |                             |               |                        | 0.0002     |
|              |                       |                      |                  | <u> </u>                   |        |       |               |                  |                 | cross All Media           | 1.3E-08     |              |                             |               |                        | 0.04       |

#### TABLE 7.2.RME

#### CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 2

Receptor Age: Child

| Medium    | Exposure Medium | Exposure Point | Exposure Route   | Chemical of                | LE           | PC           | L                  | Car             | ncer Risk Calcula | tions                     |             | L             | Non-Ca           | ncer Hazard C | alculations |                 |
|-----------|-----------------|----------------|------------------|----------------------------|--------------|--------------|--------------------|-----------------|-------------------|---------------------------|-------------|---------------|------------------|---------------|-------------|-----------------|
|           | 1               | 1              | 1                | Potential Concern          | Value        | Units        | Intake/Exposure    | e Concentration | CSF/L             | Init Risk                 | Cancer Risk | Intake/Exposu | re Concentration | Ří            | D/RfC       | . Hazard Quotie |
|           |                 |                | 1                | 1                          |              |              | Value              | Units           | Value             | Units                     |             | Value         | Units            | Value         | Units       | 1               |
| oundwater | Groundwater     | Site 23        | Ingestion        | Aluminum                   | 2540         | ug/L         | 2.1E-02            | (mg/kg/day)     | NA                | (mg/kg/day) <sup>-1</sup> |             | 2.4E-01       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.2             |
|           | - Cracinamata   | 0.10.20        | gooo             | Antimony                   | 3.20         | ug/L         | 2.6E-05            | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>1</sup>  |             | 3.1E-04       | (mg/kg/day)      | 4.0E-04       | (mg/kg/day) | 0.8             |
|           | 1               |                |                  | Arsenic                    | 9.10         | ug/L         | 7.5E-05            | (mg/kg/day)     | 1.5E+00           |                           | 1.1E-04     | 8.7E-04       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 2.9             |
|           |                 | 1 .            |                  |                            | 1            | 1 -          | A 1                |                 |                   | (mg/kg/day)               | E           | 8             |                  |               |             | 0.05            |
|           |                 |                |                  | Barium                     | 96.7         | ug/L         | 7.9E-04            | (mg/kg/day)     | NA .              | (mg/kg/day) <sup>-1</sup> |             | 9.3E-03       | (mg/kg/day)      | 2.0E-01       | (mg/kg/day) |                 |
|           |                 | 1              | I                | Beryllium                  | 0.980        | ug/L         | 8.1E-06            | (mg/kg/day)     | NA                | (mg/kg/day) <sup>-1</sup> |             | 9.4E-05       | (mg/kg/day)      | 2.0E-03       | (mg/kg/day) | 0.05            |
|           |                 | 1              |                  | Chromium                   | 6.50         | ug/L         | 5.3E-05            | (mg/kg/day)     | . NA              | (mg/kg/day) <sup>-1</sup> |             | 6,2E,-04      | (mg/kg/day)      | 3.0E-03       | (mg/kg/day) | 0.2             |
|           |                 |                | ł                | Cobalt                     | 4.40         | ug/L         | 3.68-05            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 4.2E-04       | (mg/kg/day)      | NA            | (mg/kg/day) | -               |
|           |                 | ĺ              |                  | Copper                     | 10.6         | ug/L         | 8.7E-05            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.0E-03       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | 0.03            |
|           |                 | İ .            |                  | tron ·                     | 62500        | ug/L         | 5.1 <b>£-</b> 01   | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 6.0E+00       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 8.6             |
|           |                 |                |                  | Manganese                  | 1630         | ug/L         | 1.3E-02            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.6E-01       | (mg/kg/day)      | 2.4E-02       | (mg/kg/day) | 6.5             |
|           |                 |                |                  | Selenium                   | 5.40         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA                | (mg/kg/day)*1             |             | 5.2E-04       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.1             |
|           |                 |                |                  | Silver                     | 1.90         | ug/L         | 1.6E-05            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.8E-04       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.04            |
|           | 1               |                |                  | Zinc                       | 87.9         | ug/L         | 7.2E-04            | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 8.4E-03       | (mg/kg/day)      | 3.0E-01       | (mg/kg/day) | 0.03            |
|           |                 |                |                  | Tetrachloroethene          | 0.500        | ug/L         | 4.1E-06            | (mg/kg/day)     | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 2.2E-06     | 4.8E-05       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.005           |
|           |                 |                |                  | Dimethylphthalate          | 1,10         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA NA             | (mg/kg/day)"              |             | 1.1E-04       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|           |                 |                |                  |                            |              | -            | 11 1               |                 | 1                 |                           | į.          | 5             | 1                |               | 1           | 0.002           |
|           |                 | Ì              |                  | Diethylphthalate           | 20.0         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA                | (mg/kg/day)               |             | 1.9E-03       | (mg/kg/day)      | 8.0E-01       | (mg/kg/day) | 1               |
|           |                 |                |                  | Di-n-butyiphthalate        | 10.0         | ug/L         | 0.0E+00            | (mg/kg/day)     | . NA              | (mg/kg/day) '             | ••          | 9.6E-04       | (mg/kg/day)      | 1.0E-01       | (mg/kg/day) | 0.010           |
|           |                 |                |                  | Bis(2-Ethylhexyl)phthalate | 20.0         | ·ug/L        | 1.6E-04            | (mg/kg/day)     | 1.4E-02           | (mg/kg/day) <sup>-1</sup> | 2.3E-06     | 1.9E-03       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.10            |
|           |                 | 1              |                  | Naphthalene                | 0.370        | ug/L         | 3.0€-06            | (mg/kg/day)     | NA NA             | (mg/kg/day) 1             |             | 3.5E-06       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.002           |
| •         |                 | <b>.</b>       |                  | Phenanthrene               | 0.580        | ug/L         | 4.8E-06            | (mg/kg/day)     | NA:               | (mg/kg/day) <sup>-1</sup> |             | 5.6E-05       | (mg/kg/day)      | NA NA         | (mg/kg/day) | -               |
|           |                 |                |                  | Fluoranthene               | 0.580        | ug/L         | 4.8E-06            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 5.6E-05       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | 0.001           |
|           |                 |                |                  | Pyrene                     | 0.520        | ug/L         | 4.3E-06            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 5.0E-05       | (mg/kg/day)      | 3.0E-02       | (mg/kg/day) | 0.002           |
|           |                 |                |                  | Benzo(a)anthracene         | 0.250        | ug/L         | 1.1E-05            | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) <sup>-1</sup> | 8.0E-06     | 2.4E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) | -               |
|           |                 |                | 1                | Chrysene                   | 0.210        | ug/L         | 1.7E-06            | (mg/kg/day)     | 7.3E-03           | (mg/kg/day) 1             | 1.3E-08     | 2.0E-05       | (mg/kg/day)      | NA            | (mg/kg/day) | -               |
|           |                 |                | 1.               | Benzo(b)fluoranthene       | 0.450        | ug/L         | 2.0E-05            | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) <sup>-1</sup> | 1.4E-05     | 4.3E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|           |                 | * *            |                  | Benzo(k)fluoranthene       | 2.00         | ug/L         | 8.8E-05            | (mg/kg/day)     | 7.3E-02           | (mg/kg/day) <sup>-1</sup> | 6.4E-06     | 1.9E-04       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|           |                 |                | 1                | Benzo(a)pyrene             | 0.620        | ug/L         | 2.7E-05            | (mg/kg/day)     | 7.3E+00           |                           | 2.0E-64     | 5.9E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) | l               |
|           |                 |                |                  |                            | 1            | 1 -          | 2.7E-05<br>2.2E-05 |                 | 7.3E+00           | (mg/kg/day)               | 1.6E-04     | 4.8E-05       |                  | NA.           | (mg/kg/day) |                 |
|           | 1               |                | 1 -              | Dibenzo(a,h)anthracene     | 0.500        | ug/L         | 7                  | (mg/kg/day)     |                   | (mg/kg/day) <sup>-1</sup> |             | 1             | (mg/kg/day)      | NA<br>NA      | 1           | "               |
|           | -               |                |                  | Benzo(g,h,i)perylene       | 0.620        | ug/L         | 5.1E-06            | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 5.9E-05       | (mg/kg/day)      | NA NA         | (mg/kg/day) |                 |
|           | 1               |                | Exp. Route Total |                            | <del>,</del> | <del>,</del> | <b></b> ,          |                 |                   |                           | 5.0E-04     | <b></b>       | <del>,</del>     |               |             | 20              |
|           |                 | Ī              | Dermal           | Aluminum .                 | 2540         | ug/L         | 7.7E-06            | (mg/kg/day)     | NA NA             | (mg/kg/day)               | •••         | 2.7E-04       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.000           |
|           | 1               |                |                  | Antimony                   | 3.20         | ug/L         | 9.6E-09            | (mg/kg/day)     | . NA              | (mg/kg/day) <sup>-1</sup> | 1           | 3.4E-07       | (mg/kg/day)      | 6.0E-05       | (mg/kg/day) | 0.006           |
|           | 1               |                | 1                | Arsenic                    | 9.10         | ug/L         | 2.7E-08            | (mg/kg/day)     | 1.5E+00           | (mg/kg/day) <sup>-1</sup> | 4.1E-08     | 9.6E-07       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.003           |
|           | 1               |                | 1                | Barium                     | 96.7         | ug/L         | 2.9E-07            | (mg/kg/day)     | NA NA             | (mg/kg/day) 1             | ••          | 1.0E-05       | (mg/kg/day)      | 1.4E-02       | (mg/kg/day) | 0.000           |
|           |                 |                | 1                | Beryllium                  | 0.980        | ug/L         | 3.0E-09            | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 1.0E-07       | (mg/kg/day)      | 1.4E-05       | (mg/kg/day) | 0.007           |
|           |                 |                | 1                | Chromium                   | 6.50         | ug/L         | 3.9E-08            | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 1.4E-06       | (mg/kg/day)      | 7.5E-05       | (mg/kg/day) | 0.02            |
|           | 1               |                |                  | Cobalt                     | 4.40         | ug/L         | 1,3E-08            | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 4.6E-07       | (mg/kg/day)      | NA            | (mg/kg/day) | -               |
|           |                 |                | 1                | Copper                     | 10.6         | ug/L         | 3.2E-08            | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 1.1E-06       | (mg/kg/day)      | 4:0E-02       | (mg/kg/day) | 0.0000          |
|           |                 |                | i                | Iron                       | 62500        | ug/L         | 195-04             | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 6.6E-03       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 0.009           |
|           |                 |                | 1                | Manganese                  | 1630         | ug/L         | 4.9E-06            | (mg/kg/day)     | NA.               | (mg/kg/day):1             |             | 1.7E-04       | (mg/kg/day)      | 9.6E-04       | (mg/kg/day) | 0.2             |
|           |                 |                |                  | Selenium                   | 5.40         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA.               |                           |             | 5.7E-07       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.000           |
|           |                 |                |                  |                            | 1            | 1 -          |                    |                 | NA<br>NA          | (mg/kg/day) 1             |             | 1.2E-07       |                  | 2.0E-04       |             | 0.000           |
|           | 1 1             |                |                  | Silver                     | 1.90         | ug/L         | 3.4E-09            | (mg/kg/day)     |                   | (mg/kg/day) 1             | 1           | 1             | (mg/kg/day)      |               | (mg/kg/day) |                 |
|           | 1               | 1.             | 1                | Zinc                       | 87.9         | ug/L         | 1.6E-07            | (mg/kg/day)     | · NA              | (mg/kg/day) <sup>1</sup>  | ••          | 5.6E-06       | (mg/kg/day)      | 3.0E-01       | (mg/kg/day) | 0.0000          |
|           |                 |                |                  | Tetrachioroethene          | 0.500        | ug/L         | 2.7E-07            | (mg/kg/day)     | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 1.4E-07     | 9.3E-06       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.000           |
|           | 1.              |                | 1                | Dimethylphthalate          | 1.10         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA                | (mg/kg/day) <sup>*1</sup> | ••          | 1.0E-06       | (mg/kg/day)      | NA            | (mg/kg/day) | -               |
|           | 1               |                | 1                | Diethylphthalate           | 20.0         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA                | (mg/kg/day) <sup>-1</sup> |             | 6.2E-05       | (mg/kg/day)      | 8.0E-01       | (mg/kg/day) | 0.0000          |
|           | 1               |                | 1                | Di-n-butylphthalate        | 10.0         | ug/L         | 0.0E+00            | (mg/kg/day)     | NA                | (mg/kg/day) <sup>-1</sup> |             | 2.5E-04       | (mg/kg/day)      | 1.0E-01       | (mg/kg/day) | 0.002           |
|           | 1               |                | 1                | Bis(2-Ethylhexyl)phthalate | 20.0         | ug/L         | 2.7E-05            | (mg/kg/day)     | 1.4E-02           | (mg/kg/day)"              | 3.8E-07     | 9.5E-04       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.05            |
|           | 1               |                |                  | Naphthalene                | 0.370        | ug/L         | 2.1E-07            | (mg/kg/day)     | NA                | (mg/kg/day) <sup>-1</sup> |             | 7.5E-06       | (mg/kg/day)      | 2.0€-02       | (mg/kg/day) | 0.000           |
|           | 1               |                | .]               | Phenanthrene               | 0.580        | ug/L         | 0.0E+00            | (mg/kg/day)     | NA                | (mg/kg/day)               | ٠           | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|           | 1               |                |                  | Fluoranthene               | 0.580        | ug/L         | 0.0E+00            | (mg/kg/day)     | NA.               | (mg/kg/day)               |             | 0.0E+00       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | _               |
|           | 1               |                | -                |                            | 1            |              | 11 1               |                 | NA NA             |                           |             | 7.0E-05       |                  | 3.0E-02       | ľ           | 0.002           |
|           | 1               |                | 1                | Pyrene                     | 0.520        | ug/L         | 2.0E-06            | (mg/kg/day)     |                   | (mg/kg/day)               | l           | 0             | (mg/kg/day)      |               | (mg/kg/day) | 0.002           |
|           |                 |                | 1                | Benzo(a)anthracene         | 0.250        | ug/L         | 0.0E+00            | (mg/kg/day)     | 7.3E-01           | (mg/kg/day)               |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) | ,               |
|           |                 | 1              | 1 '              | Chrysene                   | 0.210        | ug/L         | 0.0E+00            | (mg/kg/day)     | 7.3E-03           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) | -               |
|           | 1               | 1              | 1                | Benzo(b)fluoranthene       | 0.450        | ug/L         | 0.0E+00            | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) <sup>1</sup>  |             | 0.0E+00       | (mg/kg/day)      | NA NA         | (mg/kg/day) | -               |

#### TABLE 7.2.RME

## CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS

NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium       | Exposure Medium       | Exposure Point       | Exposure Route       | Chemical of                            |               | EPC    |              | C-               | ncer Risk Calcul | ellene                    |             |           |                                         |                |             |            |
|--------------|-----------------------|----------------------|----------------------|----------------------------------------|---------------|--------|--------------|------------------|------------------|---------------------------|-------------|-----------|-----------------------------------------|----------------|-------------|------------|
|              |                       | l                    | 1                    | Potential Concern                      | Value         | Units  | Intake/Evans | re Concentration |                  |                           |             | <b></b>   |                                         | ancer Hazard ( |             |            |
|              |                       |                      |                      |                                        | 1             |        | Value        | Units            | Value CSF/       | Unit Risk<br>Units        | Cancer Risk |           | re Concentration                        |                | ID/RIC      | Hazard Quo |
| Groundwater  | Groundwater           | Site 23              | Dermal               | Benzo(k)fluoranthene                   | 2.00          | ug/L   | 0.0E+00      |                  |                  |                           |             | Value     | Units                                   | Value          | Units       |            |
|              |                       |                      | 1                    | Benzo(a)pyrene                         | 0.620         |        | #            | (mg/kg/day)      | 7.3E-02          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) | -          |
|              |                       |                      | ļ                    | Dibenzo(a,h)anthracene                 | 0.500         | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) 1             | ••          | 0.0E+00   | (mg/kg/day)                             | NA.            | (mg/kg/day) | -          |
|              |                       |                      |                      | Benzo(g,h,i)perylene                   | 0.620         | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) <sup>-1</sup> | ••          | 0.0E+00   | (mg/kg/day)                             | . NA           | (mg/kg/day) |            |
|              |                       |                      | Exp. Route Total     |                                        | 0.620         | ug/L   | 0.0E+00      | (mg/kg/day)      | NA NA            | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | NA .           | (mg/kg/day) | -          |
|              |                       | Exposure Point Total | A supp. recola rotal |                                        |               |        | ļ            |                  |                  |                           | 5.6E-07     |           |                                         |                |             | 0.3        |
|              | Exposure Medium Total |                      |                      | <del></del>                            |               |        |              |                  |                  |                           | 5.0E-04     |           |                                         |                |             | 20         |
| undwater     | Air                   | Site 23              | Inhalation           | Aluminum                               | _             |        | <u> </u>     |                  |                  |                           | 5.0E-04     |           |                                         |                |             | 20         |
|              |                       | GIIO ZD              | Milialation          |                                        | 2540          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 1.0E+00        | (mg/kg/day) | -          |
|              | 1                     |                      | 1                    | Antimony                               | 3.20          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA NA            | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 4.0E-04        | (mg/kg/day) |            |
|              | 1                     |                      |                      | Arsenic                                | 9.10          | ug/L   | 0.0E+00      | (mg/kg/day)      | 1.5E+00          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 3.0E-04        | (mg/kg/day) |            |
|              | 1                     |                      | 1                    | Barium                                 | 96.7          | ug/L   | 0.0E+00      | (mg/kg/day)      | . NA             | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00 ; | (mg/kg/day)                             | 2.0E-01        | (mg/kg/day) |            |
|              | 1                     |                      | 1                    | Beryllium                              | 0.980         | ug/L   | 0.0E+00      | (mg/kg/day)      | NA.              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 2.0E-03        | (mg/kg/day) |            |
|              |                       |                      |                      | Chromium                               | 6.50          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA .             | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 3.0E-03        | (mg/kg/day) |            |
|              | i                     |                      | į.                   | Cobalt                                 | 4.40          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | NA.            | (mg/kg/day) |            |
|              |                       |                      |                      | Copper                                 | 10.6          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day)**             |             | 0.0€+00   | (mg/kg/day)                             | 4.0E-02        | (mg/kg/day) |            |
|              | 1                     |                      | ł                    | Iron                                   | 62500         | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day)               |             | 0.0E+00   | (mg/kg/day)                             | 7.0E-01        | (mg/kg/day) |            |
|              |                       |                      |                      | Manganese                              | 1630          | ug/L   | - 0.0E+00    | (mg/kg/day)      | NA               | (mg/kg/day)               | 1           | 0.0E+00   | (mg/kg/day)                             | 2.4E-02        | (mg/kg/day) | -          |
|              | 1:                    |                      |                      | Selenium                               | 5.40          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA NA            | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 5.0E-03        |             | "          |
|              | ĺ                     |                      | i                    | Silver                                 | 1.90          | . ug/L | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | 5.0E-03        | (mg/kg/day) |            |
|              | 1 1                   |                      | 1                    | Zinc                                   | 87.9          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA .             | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | 1                                       |                | (mg/kg/day) | -          |
|              |                       |                      |                      | Tetrachloroethene                      | 0.500         | ug/L   | 4.1E-06      | (mg/kg/day)      | 5.4E-01          | (mg/kg/day) <sup>-1</sup> | 2 2E-06     | 4.8E-05   | (mg/kg/day)                             | 3.0E-01        | (mg/kg/day) | i -        |
|              | i                     |                      |                      | Dimethylphthalate                      | 1.10          | υg/L   | 0.0E+00      | (mg/kg/day)      | NA.              | (mg/kg/day)               |             | 0.0E+00   | (mg/kg/day)                             | 1.0E-02        | (mg/kg/day) | 0.005      |
|              |                       |                      |                      | Diethylphthelate                       | 20.0          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA.              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) | -          |
|              | }                     |                      |                      | Di-n-butylphthalate                    | 10.0          | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | 1                         | 1           |           | (mg/kg/day)                             | 8.0E-01        | (mg/kg/day) | -          |
|              | i                     |                      | 1                    | Bis(2-Ethylhexyl)phthatate             | 20.0          | ug/L   | 0.0€+00      | (mg/kg/day)      | 1.4E-02          | (mg/kg/day) 1             |             | 0.0E+00   | (mg/kg/day)                             | 1.0E-01        | (mg/kg/day) | -          |
|              |                       |                      |                      | Naphthalene                            | 0.370         | ug/L   | 3.0E-06      | (mg/kg/day)      | NA NA            | (mg/kg/day)               | [           | 0.0E+00   | (mg/kg/day)                             | 2.0E-02        | (mg/kg/day) | -          |
|              | ļ                     |                      | İ                    | Phenanthrene                           | 0.580         | ug/L   | 0.0E+00      | (mg/kg/day)      |                  | (mg/kg/day) '             |             | 3.5E-05   | (mg/kg/day)                             | 2.0E-02        | (mg/kg/day) | 0.002      |
|              | Í                     |                      | 1 .                  | Fluoranthene                           | 0.580         | ug/L   | 0.0E+00      |                  | , NA             | (mg/kg/day)               |             | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) | -          |
|              |                       |                      | l                    | Pyrene                                 | 0.520         | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day)               | [           | 0.0E+00   | (mg/kg/day)                             | 4.0E-02        | (mg/kg/day) | -          |
|              | i i                   |                      |                      | Benzo(a)anthracene                     | 0.250         | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day)               |             | 0.0E+00   | (mg/kg/day)                             | 3.0€-02        | (mg/kg/day) |            |
|              |                       |                      | 1 1                  | Chrysene                               | 0.210         |        |              | (mg/kg/day)      | 7.3E-01          | (mg/kg/day) <sup>-1</sup> |             | 0.0€+00   | (mg/kg/day)                             | - NA           | (mg/kg/day) | • .        |
|              | 1                     |                      | , ,                  | Benzo(b)fluoranthene                   | 0.450         | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E-03          | (mg/kg/day) <sup>-1</sup> | [           | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) |            |
|              |                       |                      | 1 .                  |                                        |               | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E-01          | (mg/kg/day) <sup>1</sup>  | [           | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) |            |
|              |                       |                      | 1 (                  | Benzo(k)fluoranthene<br>Benzo(a)pyrene | 2.00          | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E-02          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | NA .           | (mg/kg/day) |            |
|              | 1.                    |                      |                      |                                        | 0.620         | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E+00          | (mg/kg/day)"              | [           | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) | _          |
|              |                       |                      | 1 1                  | Dibenzo(a,h)anthracene                 | 0.500         | ug/L   | 0.0E+00      | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) 1             |             | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) |            |
|              | l . I                 |                      |                      | Benzo(g,h,i)perylene                   | 0.620         | ug/L   | 0.0E+00      | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00   | (mg/kg/day)                             | NA             | (mg/kg/day) |            |
|              | <u> </u>              | Evoneure Daini Tarri | Exp. Route Total     |                                        |               |        |              |                  |                  |                           | 2.2E-06     |           |                                         |                |             | 0.007      |
|              | Exposure Medium Total | Exposure Point Total |                      |                                        | يرون المستحدث |        |              |                  |                  |                           | 2.2E-06     |           | *************************************** |                |             | 0.007      |
| Medium Total | Exposure medium 10(8) |                      |                      |                                        |               |        |              |                  |                  |                           | 2.2E-06     |           |                                         |                |             | 0.007      |
| ANGUIN TURE  |                       |                      |                      |                                        |               |        |              |                  |                  |                           | 5.1E-04     |           |                                         |                |             | 20         |
|              |                       |                      |                      |                                        |               |        |              |                  | Receptor Risks A | -                         | 5.1E-04     |           |                                         |                |             | 20         |

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwate

#### TABLE 7.3.RME

## CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZAROS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 2

Scensrio Timeframe: Future Receptor Population: Residents Receptor Age: Adult

| Medium      | Exposure Medium | Exposure Point  | Exposure Route   | Chemical of                | F     | PC    | 1              | Ca              | ncer Risk Calcula | tions                     |             |               | Non-Ca           | ncer Hazard C | alculations |                |
|-------------|-----------------|-----------------|------------------|----------------------------|-------|-------|----------------|-----------------|-------------------|---------------------------|-------------|---------------|------------------|---------------|-------------|----------------|
| Mediam      |                 | Exposure / will |                  | Potential Concern          | Value | Units | Intake/Exposur | e Concentration |                   | Jnil Risk                 | Cancer Risk | Intake/Exposu | re Concentration |               | DIRIC       | Hazard Quotier |
|             | 1.              |                 |                  |                            | ,     | 1     | Value          | Linits          | Value             | Units                     | Cancerna    | Value         | Units            | Value         | Units       | 1              |
| iroundwater | Groundwater     | Site 23         | Ingestion        | Aluminum                   | 2540  | ug/L  | 2.0E-02        | (mg/kg/day)     | NA .              | (mg/kg/day) 1             |             | 1.7E-01       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.2            |
| CONGWARE    | Grounowater     | Site 23         | 1                |                            | I     | 1     | 2.5E-05        |                 | NA NA             |                           |             | 2.1E-04       |                  | 4.0E-04       | (mg/kg/day) | 0.5            |
|             |                 |                 | 1                | Antimony                   | 3.20  | ug/L  | 8              | (mg/kg/day)     | 1                 | (mg/kg/day)               |             |               | (mg/kg/day)      | 3.0E-04       |             | 2.0            |
|             | 1               |                 | 1                | Arsenic                    | 9.10  | ug/L  | 7.1E-05        | (mg/kg/day)     | 1.5E+00           | (mg/kg/day)               | 1,1E-04     | 6.0E-04       | (mg/kg/day)      |               | (mg/kg/day) | i              |
|             |                 |                 | 1                | Banum                      | 96.7  | ug/L  | 7.6E-04        | (mg/kg/day)     | · NA              | (mg/kg/day) <sup>-1</sup> |             | 6.4E-03       | (mg/kg/day)      | 2.0E-01       | (mg/kg/day) | 0.03           |
|             |                 |                 | 1                | Beryllium                  | 0.980 | ug/L  | 7.7E-06        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> | ••          | 6.4E-05       | (mg/kg/day)      | 2.0E-03       | (mg/kg/day) | 0.03           |
|             |                 |                 | 1                | Chromium                   | 6.50  | ug/L  | 5.1E-05        | (mg/kg/day)     | NA.               | (mg/kg/day)*              |             | 4.3E-04       | (mg/kg/day)      | 3.0E-03       | (mg/kg/day) | 0.1            |
|             | İ               | i               |                  | Cobalt                     | 4.40  | ug/L  | 3.4E-05        | (mg/kg/day)     | NA NA             | (mg/kg/day)"              |             | 2.9E-04       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
| •           |                 |                 | 1                | Copper                     | 10.6  | ug/L  | 8.3E-05        | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> | •• .        | 7.0E-04       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | 0.02           |
|             |                 | 1               | 1                | iron .                     | 62500 | ug/L  | 4.9E-01        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 4.1E+00       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 5.9            |
|             | ł               |                 | 1                | Manganese                  | 1630  | ug/L  | 1.3E-02        | (mg/kg/day)     | NA '              | (mg/kg/day) <sup>-1</sup> |             | 1.1E-01       | (mg/kg/day)      | 2.4E-02       | (mg/kg/day) | 4.5            |
|             | ŀ               |                 | 1                | Setenium                   | 5.40  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> | ••          | 3.6E-04       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.07           |
|             | 4               |                 | 1                | Silver                     | 1.90  | ug/L  | 1.5E-05        | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.2E-04       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.02           |
|             | l               | }               | 1                | Zinc                       | 87.9  | ug/L  | 6.9E-04        | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 5.8E-03       | (mg/kg/day)      | 3.0E-01       | (mg/kg/day) | 0.02           |
|             |                 |                 | j                | Tetrachloroethene          | 0.500 | ug/L  | 3.9E-06        | (mg/kg/day)     | 5.4E-01           | (mg/kg/day) <sup>1</sup>  | 2.1E-06     | 3.3E-05       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.003          |
|             | Į               | 1               |                  | Dimethylphthalate          | 1.10  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 7.2E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) |                |
|             |                 | 1               | 1                | Diethylphthalate           | 20.0  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA .              | (mg/kg/day) <sup>-1</sup> |             | 1.3E-03       | (mg/kg/day)      | 8:0E-01       | (mg/kg/day) | 0.002          |
|             |                 | 1 .             |                  | Di-n-butylphthalate        | 10.0  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA .              | (mg/kg/day)*              |             | 6.6E-04       | (mg/kg/day)      | 1.0E-01       | (mg/kg/day) | 0.007          |
|             |                 | 1               | 1                | 1                          | 20.0  | 1 .   | 1.6E-04        |                 | 1.4E-02           | 1                         | 2.2E-06     | 1.3E-03       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.07           |
|             |                 | 1               | 1.1              | Bis(2-Ethýlhexyl)phthalate | 1     | ug/L  | 1              | (mg/kg/day)     | 1                 | (mg/kg/day)               | 5           |               |                  | 2.0E-02       | 1           | 0.001          |
|             |                 | 1               |                  | Naphthalene                | 0.370 | ug/L  | 2.9E-06        | (mg/kg/day)     | NA                | (mg/kg/day)               |             | 2.4E-05       | (mg/kg/day)      |               | (mg/kg/day) | 0.001          |
|             |                 | ł               | }                | Phenanthrene               | 0.580 | ug/L  | 4.5E-06        | (mg/kg/day)     | NA.               | (mg/kg/day)               | ••          | 3.8E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|             |                 |                 |                  | Fluoranthene               | 0.580 | ug/L  | 4.5E-06        | (mg/kg/day)     | NA .              | (mg/kg/day) <sup>-1</sup> |             | 3.8E-05       | (mg/kg/day)      | 4.0E+02       | (mg/kg/day) | 0.0010         |
|             |                 | i               |                  | Pyrene                     | 0.520 | ug/L  | 4.1E-06        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 3.4E-05       | (mg/kg/day)      | 3.0E-02       | (mg/kg/day) | 0.001          |
|             | 1               | 1               | · ·              | Benzo(a)anthracene         | 0.250 | ug/L  | 3.9E-06        | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) '             | 2.9E-06     | 1.6E-05       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
|             |                 |                 |                  | Chrysene                   | 0.210 | ug/L  | 1.6E+06        | (mg/kg/day)     | 7.3E-03           | (mg/kg/day) <sup>-1</sup> | 1.2E-08     | 1.4E-05       | (mg/kg/day)      | NA .          | (mg/kg/day) | -              |
|             | l               |                 |                  | Benzo(b)fluoranthene       | 0.450 | ug/L  | 7.0E-06        | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) <sup>-1</sup> | 5.1E-06     | 3.0E-05       | (mg/kg/day)      | . NA          | (mg/kg/day) |                |
|             |                 | ł               |                  | Benzo(k)fluoranthene       | 2.00  | ug/L  | 3.1E-05        | (mg/kg/day)     | 7.3E-02           | (mg/kg/day) <sup>-1</sup> | 2.3E-06     | 1.3E-04       | (mg/kg/day)      | NA.           | (mg/kg/day) | -              |
|             | l               | 1               |                  | Benzo(a)pyrene             | 0.620 | ug/L  | 9.7E-06        | (mg/kg/day)     | - 7.3E+00         | (mg/kg/day) <sup>-1</sup> | 7.1E-05     | 4.1E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|             | i               |                 |                  | Dibenzo(a,h)anthracene     | 0.500 | ug/L  | 7.8E-06        | (mg/kg/day)     | 7.3E+00           | (mg/kg/day)"              | 5.7E-05     | 3.3E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                |
|             | l               |                 | ł                | Benzo(g,h,i)perylene       | 0.620 | ug/L  | 4.9E-06        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 4.1E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) |                |
|             |                 |                 | Exp. Route Total |                            | 1     | 1     | 1              |                 | ·                 | 1 (                       | 2.5E-04     | <b>-</b>      |                  |               | 1           | 13             |
|             |                 | 1               | Dermal           | Aluminum                   | 2540  | ug/L  | 5.4E-05        | (mg/kg/day)     | NA .              | (mg/kg/day) <sup>-1</sup> |             | 3.8E-04       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.0004         |
|             | 1               |                 |                  | Antimony                   | 3.20  | ug/L  | 6.8F-08        | (mg/kg/day)     | NA.               | (mg/kg/day)"              | l           | 4.7E-07       | (mg/kg/day)      | 6.0E-05       | (mg/kg/day) | 0.008          |
|             |                 | ļ               | ı                | Arsenic                    | 9.10  | ug/L  | 1.9E-07        | (mg/kg/day)     | 1.5E+00           | (mg/kg/day) <sup>1</sup>  | 2.9E-07     | 1.3E-06       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.004          |
|             | '               | 1               | i                | Barium                     | 96.7  |       | 2.0E-06        | (mg/kg/day)     | NA NA             |                           | 2.52-07     | 1.4E-05       | (mg/kg/day)      | 1.4E-02       | (mg/kg/day) | 0.001          |
|             |                 |                 | 1                |                            | 1     | ug/L  | 1              |                 | ı                 | (mg/kg/day) 1             | ľ           | 1.4E-07       | 1                | 1.4E-02       | 1           | 0.001          |
|             |                 |                 | l                | Beryllium                  | 0.980 | ug/L  | 2.1E-08        | (mg/kg/day)     | NA                | (mg/kg/day)               |             |               | (mg/kg/day)      | 7.5E-05       | (mg/kg/day) |                |
|             |                 | l               |                  | Chromium                   | 6.50  | ug/L  | 2.7E-07        | (mg/kg/day)     | NA NA             | (mg/kg/day)"              |             | 1.9E-06       | (mg/kg/day)      |               | (mg/kg/day) | 0.03           |
|             | į.              |                 | 1                | Cobalt                     | 4.40  | ug/L  | 9.3E-08        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 6.5E-07       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
|             |                 | 1               | 1                | Copper                     | 10.6  | ug/L  | 2.2E-07        | (mg/kg/day)     | NA.               | (mg/kg/day)               |             | 1.6E-06       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | 0.00004        |
|             |                 | 1               | 1                | iron                       | 62500 | ug/L  | 1.3E-03        | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 9.2E-Q3       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 0,01           |
|             | ŀ               |                 | į                | Manganese                  | 1630  | ug/L  | 3.4E-05        | (mg/kg/day)     | , NA              | (mg/kg/day) <sup>-1</sup> | ••          | 2.4E-04       | (mg/kg/day)      | 9.6E-04       | (mg/kg/day) | 0.3            |
|             |                 |                 |                  | Selenium                   | 5.40  | ug/L  | 0.0€+00        | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 8.0€-07       | (mg/kg/day)      | 5.0E-03       | (mg/kg/day) | 0.0002         |
|             |                 |                 | ĺ                | Silver                     | 1.90  | ug/L  | 2.4E-08        | (mg/kg/day).    | NA.               | (mg/kg/day)*1             |             | 1.7E-07       | (mg/kg/day)      | 2.0E-04       | (mg/kg/day) | 0.0008         |
|             |                 |                 |                  | Zinc                       | 87.9  | ug/L  | 1.1E-06        | (mg/kg/day)     | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 7.8E-06       | (mg/kg/day)      | 3.0E-01       | (mg/kg/day) | 0.00003        |
|             | *               | 1               | ļ                | Tetrachloroethene          | 0.500 | ug/L  | 1.9E-06        | (mg/kg/day)     | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 1.0€-06     | 1.3E-05       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.001          |
|             |                 |                 |                  | Dimethylphthalate          | 1.10  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 1.4E-06       | (mg/kg/day)      | NA.           | (mg/kg/day) | -              |
| 1           | <u> </u>        | 1               |                  | Diethylphthalate           | 20.0  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 8.7E-05       | (mg/kg/day)      | 8.0E-01       | (mg/kg/day) | 0.0001         |
|             |                 |                 |                  | Di-n-butylphthalate        | 10.0  | ug/L  | 0.0E+00        | (mg/kg/day)     | NA.               | (mg/kg/day) <sup>-1</sup> |             | 3.5E-04       | (mg/kg/day)      | 1.0E-01       | (mg/kg/day) | 0.003          |
|             | 1               | Į.              | ı                | Bis(2-Ethylhexyl)phthalate | 20.0  | ug/L  | 1.9E-04        | (mg/kg/day)     | 1.4E-02           | (mg/kg/day) 1             | 2.7E-06     | 1.3E-03       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.07           |
|             |                 |                 |                  | 1                          | 9.370 |       | 1.5E-06        |                 | NA                |                           | 2.72.00     | 1.1E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.0005         |
|             |                 |                 |                  | Naphthalene                | 1     | ug/L  | 1              | (mg/kg/day)     | £                 | (mg/kg/day)               |             |               |                  | 2.0E-02       | 1           | 0.000          |
|             | 1 .             |                 |                  | Phenanthrene               | 0.580 | n8/r  | 0.0E+00        | (mg/kg/day)     | NA .              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      |               | (mg/kg/day) |                |
|             | 1               |                 | l                | Fluoranthene               | 0.580 | nô/£  | 0.0E+00        | (mg/kg/day)     | . NA              | (mg/kg/day)"              | ••          | 0.0E+00       | (mg/kg/day)      | 4.0E-02       | (mg/kg/day) | -              |
|             |                 | 1               | 1                | Pyrene                     | 0.520 | ug/L  | 1.4E-05        | (mg/kg/day)     | · NA              | (mg/kg/day) <sup>1</sup>  | • • •       | 9.9E-05       | (mg/kg/day)      | 3.0E-02       | (mg/kg/day) | 0.003          |
|             |                 | 1               |                  | Benzo(a)enthracene         | 0.250 | ug/L  | 0.0E+00        | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
|             | Į.              | [               |                  | Chrysene                   | 0.210 | ug/L  | 0.0E+00        | (mg/kg/day)     | 7.3E-03           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) | -              |
|             | i .             |                 | 1                | Benzo(b)fluoranthene       | 0.450 | ug/L  | 0.0E+00        | (mg/kg/day)     | 7.3E-01           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA .          | (mg/kg/day) | -              |

#### TABLE 7.3.RME

## CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS INSB-NLON, GROTON, CONNECTICUT

PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents

| Medium       | Exposure Medium       | Exposure Point       | Exposure Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chemical of                  |       | PC    |               | Ca               | ncer Risk Calcul | ations                    |             |              | Non-C            | ancer Hazard ( | Calculations |              |
|--------------|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|-------|---------------|------------------|------------------|---------------------------|-------------|--------------|------------------|----------------|--------------|--------------|
|              | 1                     | · ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potential Concern            | Value | Units | Intake/Exposu | re Concentration |                  | Unit Risk                 | Cancer Risk | lotake/Evane | re Concentration |                | ID/RIC       | T            |
|              | <u> </u>              | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                           |       |       | Value         | Units            | Value            | Units                     | Cancer Nisk | Value        | Units            | Value          | Units        | Hazard Quoti |
| undwater     | Groundwater           | Site 23              | Dermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo(k)fluoranthene         | 2.00  | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-02          |                           |             |              |                  | -              |              |              |
|              |                       | İ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(a)pyrene               | 0.620 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) <sup>-1</sup> | l:          | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              | 1                     | · ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dibenzo(a,h)anthracene       | 0.500 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) '             | ···         | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  |              |
|              | ł                     | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(g.h,i)perylene         | 0.620 | ug/L  | 0.0E+00       | 1                |                  | (mg/kg/day)"              |             | 0,0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              |                       |                      | Exp. Route Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Donatoly, in, in party liane | 0.020 | ugit  | 0.02+00       | (mg/kg/day)      | NA NA            | (mg/kg/day)               |             | 0.0E+00      | (mg/kg/day)      | NA NA          | (mg/kg/day)  | -            |
|              |                       | Exposure Point Total | LAP. HOUSE TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |       | -             |                  |                  |                           | 4.0E-06     |              |                  |                |              | 0.4          |
|              | Exposure Medium Total |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |       |       | <b></b>       |                  |                  |                           | 2.5E-04     |              |                  | ·····          |              | 14           |
| undwater     | Air                   | Site 23              | Inhalation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aluminum                     | 25.42 |       | <b></b>       |                  |                  |                           | 2.5E-04     |              |                  |                |              | 14           |
|              | 1                     |                      | WITH BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                            | 2540  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA NA            | (mg/kg/day)"              |             | 0.0E+00      | (mg/kg/day)      | 1.0E+00        | (mg/kg/day)  | -            |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antimony                     | 3.20  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA ·             | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 4.0E-04        | (mg/kg/day)  | -            |
|              | 1                     | ļ:                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic                      | 9.10  | ug/L  | 0.0€+00       | (mg/kg/day)      | 1.5E+00          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 3.0E+04        | (mg/kg/day)  | -            |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Barium                       | 96.7  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA NA            | (mg/kg/day)               | •           | 0.0E+00      | (mg/kg/day)      | 2.0E-01        | (mg/kg/day)  | -            |
|              | Ì                     |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Beryllium                    | 0.980 | ug/L  | 0.0E+00       | (mg/kg/day)      | NA NA            | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 2.0E-03        | (mg/kg/day)  |              |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chromium                     | 6.50  | ug/L  | 0.0E+00       | (mg/kg/day)      | - NA             | (mg/kg/day) 1             |             | 0.0E+00      | (mg/kg/day)      | 3.0E-03        | (mg/kg/day)  | -            |
|              |                       | į                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobalt                       | 4.40  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA .             | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | NA.            | (mg/kg/day)  |              |
|              | Į.                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper                       | 10.6  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA NA            | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 4.0E-02        | (mg/kg/day)  | _            |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iron                         | 62500 | ug/L  | 0.0E+00       | (mg/kg/day)      | NA.              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 7.0E-01        | (mg/kg/day)  |              |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganese                    | 1630  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA.              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 2.48-02        | (mg/kg/day)  |              |
|              | 1                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selenium                     | 5.40  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA.              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 5.0E-03        | (mg/kg/day)  |              |
|              | ì                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver                       | 1.90  | ug/L  | 0.0€+00       | (mg/kg/day)      | NA               | (mg/kg/day)*              |             | 0.0E+00      | (mg/kg/day)      | 5.0E-03        | (mg/kg/day)  |              |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zinc                         | 87.9  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA               | (mg/kg/day)               |             | 0.0E+00      | (mg/kg/day)      | 3.0E-01        | (mg/kg/day)  | "            |
|              |                       |                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tetrachioroethene            | 0.500 | ug/L  | 3.9E+06       | (mg/kg/day)      | 5.4E-01          | (mg/kg/day) <sup>-1</sup> | 2.1E-06     | 3.3E-05      | (mg/kg/day)      | 1.0E-02        | (mg/kg/day)  | 0.003        |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dimethylphthalate            | 1.10  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA               | (mg/kg/day)               |             | 0.0E+00      | (mg/kg/day)      | NA NA          | (mg/kg/day)  | 0.003        |
|              |                       | •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diethylphthalate             | 20.0  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | 8.0E-01        | (mg/kg/day)  |              |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Di-n-butylohthalate          | 10.0  | ug/L  | 0.0E+00       | (mg/kg/day)      | NA.              | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | 1                | 1.0E-01        |              | 1            |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bis(2-Ethylhexyl)phthalate   | 20.0  | ug/L  | 0.0E+00       | (mg/kg/day)      | 1.4E-02          | 1                         |             | 0.0E+00      | (mg/kg/day)      |                | (mg/kg/day)  | , "          |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nachthalene                  | 0.370 | ug/L  | 2.9E-06       | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             |              | (mg/kg/day)      | 2.0E-02        | (mg/kg/day)  |              |
|              | 1                     |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phenanthrene                 | 0.580 | ug/L  | 0.0E+00       | 1                |                  | (mg/kg/day) <sup>-1</sup> |             | 2.4E-05      | (mg/kg/day)      | 2.0E-02        | (mg/kg/day)  | 0.001        |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fluoranthene                 | 0.580 | ug/L  | 0.0E+00       | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | NA ·           | (mg/kg/day)  | -            |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrene                       | 0.520 | -     |               | (mg/kg/day)      | NA               | (mg/kg/day)"              |             | 0.0E+00      | (mg/kg/day)      | 4.0E-02        | (mg/kg/day)  | -            |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(a)anthracene           | 1     | ug/L  | 0.0€+00       | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |             | 0.05+00      | (mg/kg/day)      | 3.0E-02        | (mg/kg/day)  | -            |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 0.250 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01          | (mg/kg/day) <sup>-1</sup> | 1           | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chrysene                     | 0.210 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-03          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(b)fluoranthene         | 0 450 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01          | (mg/kg/day) <sup>-1</sup> | [           | 0.0E+00      | (mg/kg/day)      | NA .           | (mg/kg/day)  |              |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(k)fluoranthene         | 2.00  | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-02          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Benzo(a)pyrene               | 0.620 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) <sup>1</sup>  |             | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              |                       |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dibenzo(a,h)anthracene       | 0.500 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
|              |                       |                      | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | Benzo(g,h,i)perylene         | 0.620 | ∪g/L  | 0.0E+00       | (mg/kg/day)      | NA.              | (mg/kg/day)               |             | 0.0E+00      | (mg/kg/day)      | NA             | (mg/kg/day)  | -            |
| •            |                       |                      | Exp. Route Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       |       |               |                  |                  |                           | 2.1E-06     |              |                  |                |              | 0.005        |
|              |                       | Exposure Point Total |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |       |       |               |                  |                  |                           | 2.1E-06     |              |                  | -              |              | 0.005        |
|              | Exposure Medium Total |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |       |       |               |                  |                  |                           | 2.1E-06     |              | ···              |                |              | 0.005        |
| Medium Total |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |       |       |               |                  |                  |                           | 2.6E-04     | <del></del>  |                  |                |              | 14           |
|              |                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |       |       |               |                  | Receptor Risks A |                           | 2.6E-04     |              | Total of Rece    |                |              | 14           |

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

#### TABLE 9.1.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

#### REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS

NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

| Medium    | Exposure<br>Medium | Exposure<br>Point    | Chemical of Potential      |           |            | Carcinogenio | Risk                    |                          |                            | Non-Carcino | genic Hazard Q | uotient  |                          |
|-----------|--------------------|----------------------|----------------------------|-----------|------------|--------------|-------------------------|--------------------------|----------------------------|-------------|----------------|----------|--------------------------|
|           |                    |                      | Concern                    | Ingestion | Inhalation | Dermai       | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion   | Inhalation     | Dermal   | Exposure<br>Routes Total |
| oundwater | Groundwater        | Site 23              | Aluminum                   |           |            |              |                         |                          | CNS                        | -           |                | 0.00004  | 0.00004                  |
|           | 1                  |                      | Antimony                   |           |            |              | -                       |                          | Blood                      |             |                | 0.0008   | 0.0008                   |
|           |                    |                      | Arsenic                    |           |            | 3E-09        |                         | 3E-09                    | Skin, CVS                  | -           |                | 0.0005   | 0.0005                   |
|           |                    |                      | Barium                     |           | -          |              |                         |                          | Kidney                     | -           |                | 0.0001   | 0.0001                   |
|           |                    |                      | Beryllium                  |           |            |              |                         |                          | GS                         |             |                | 0.001    | 0.001                    |
|           |                    |                      | Chromium                   |           |            | ٠            | _                       |                          | Fetotoxicity, GS, Bone     |             |                | 0.003    | 0.003                    |
|           |                    |                      | Cobalt                     | 1         |            |              |                         |                          | NA NA                      |             |                |          |                          |
|           |                    |                      | Copper                     |           |            |              | _                       | <u> </u>                 | GS                         | -           |                | 0.000004 | 0.000004                 |
|           |                    |                      | Iron                       |           | -          | <b></b>      | _                       |                          | GS GS                      | _           |                | 0.001    | 0.001                    |
|           |                    |                      | Manganese                  | <b>.</b>  |            |              |                         |                          | CNS                        |             |                | 0.03     | 0.03                     |
|           |                    |                      | Selenium                   |           |            |              | _                       | ••                       | Skin                       |             |                | 0.00002  | 0.00002                  |
|           |                    |                      | Silver                     |           |            |              |                         |                          | Skin                       |             |                | 0.00009  | 0.00009                  |
|           |                    |                      | Zinc                       | l         |            | l            |                         |                          | Blood                      | <u></u>     |                | 0.000003 | 0.000003                 |
|           |                    |                      | Tetrachloroethene          |           |            | 3E-09        | · _                     | 3E-09                    | Liver                      |             |                | 0.00004  | 0.00004                  |
|           |                    |                      | Dimethylphthalate          |           |            |              |                         |                          | NA.                        | l           |                |          |                          |
|           |                    |                      | Diethylphthelate           | l         |            |              | _                       |                          | Body Weight                |             |                | 0.000003 | 0.000003                 |
|           |                    |                      | Di-n-butylphthalate        | l         | l          |              |                         |                          | Mortality                  |             |                | 0.00009  | 0.00009                  |
|           |                    |                      | Bis(2-Ethylhexyl)phthalate |           |            | 7E-09        |                         | 7E-09                    | Liver                      |             |                | 0.002    | 0.002                    |
|           |                    |                      | Naphthalene                | l         |            |              |                         |                          | Body Weight                |             |                | 0.00002  | 0.00002                  |
| e e       |                    |                      | Phenanthrene               | <b>I</b>  |            |              |                         |                          | Kidney                     |             |                | _        |                          |
| •         |                    |                      | Fluoranthene               |           |            |              |                         |                          | Liver                      |             |                | _        | ·                        |
|           |                    |                      | Pyrene                     |           | <u> </u>   |              |                         |                          | Kidney                     |             |                | 0.00009  | 0.00009                  |
|           | . '                |                      | Benzo(a)anthracene         | l         | · <u> </u> |              |                         |                          | NA NA                      |             |                |          |                          |
|           |                    |                      | Chrysene                   | 1         |            |              | -                       |                          | NA NA                      |             |                |          |                          |
| *,        |                    |                      | Benzo(b)fluoranthene       |           |            |              |                         |                          | NA NA                      |             |                |          |                          |
|           |                    |                      |                            | 1         |            | l·           |                         | *                        | #                          |             |                | _        |                          |
|           |                    |                      | Benzo(k)fluoranthene       |           | -          |              | -                       |                          | NA<br>NA                   |             | i              |          |                          |
| •         |                    |                      | Benzo(a)pyrene             |           | -          | **           | -                       |                          | NA<br>NA                   | -           |                | -        | -                        |
|           |                    |                      | Dibenzo(a,h)anthracene     |           | -          |              | -                       | ••                       | NA NA                      | -           | "              | -        | -                        |
| ,         |                    |                      | Benzo(g,h,i)perylene       |           |            |              | -                       |                          | Kidney                     | <u> </u>    |                |          |                          |
|           | A 1                |                      | Chemical Total             | <u> </u>  | <u> </u>   | 1E-08        | L                       | 1E-08                    |                            | <u> </u>    | <u></u>        | 0.04     | 0.04                     |
|           |                    | Exposure Point Total |                            | <u> </u>  |            |              |                         | 1E-08<br>1E-08           |                            |             |                |          | 0.04                     |

#### TABLE 9.1.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS

# REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

...

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

| Medium        | Exposure<br>Medium    | Exposure Chemical Point of Potential |                            |           |                                       | Carcinogenio | : Risk               |                          |                            | Non-Carcino  | genic Hazard Q | luotient      |                          |
|---------------|-----------------------|--------------------------------------|----------------------------|-----------|---------------------------------------|--------------|----------------------|--------------------------|----------------------------|--------------|----------------|---------------|--------------------------|
|               |                       |                                      | Concern                    | Ingestion | Inhalation                            | Dermal       | External (Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion    | Inhalation     | Dermal        | Exposure<br>Routes Total |
| Groundwater   | Groundwater           | Site 23                              | Aluminum                   |           |                                       | -            | -                    |                          | CNS                        | <del> </del> |                |               | Routes rotal             |
|               |                       |                                      | Antimony                   |           |                                       |              | _                    |                          | NA NA                      |              |                |               |                          |
|               |                       |                                      | Arsenic                    |           |                                       | _            | _                    |                          | NA.                        |              |                |               |                          |
|               | 1                     |                                      | Barium                     |           |                                       |              |                      |                          | Fetotoxicity               |              | _              |               |                          |
|               |                       | 1                                    | Beryllium                  |           |                                       | _            | _                    |                          | GS                         |              |                | · · ·         |                          |
|               |                       |                                      | Chromium                   | <u></u>   |                                       | _            | _                    |                          | Lungs                      |              |                |               | -                        |
|               |                       |                                      | Cobalt                     | _         |                                       | _            | -                    |                          | NA NA                      |              |                |               | -                        |
|               |                       |                                      | Copper                     |           |                                       | -            |                      |                          | NA NA                      |              | -              |               | -                        |
|               |                       |                                      | Iron                       |           |                                       |              | _                    |                          | NA NA                      | 1            | -              |               | -                        |
|               | İ                     | · ·                                  | Manganese                  |           |                                       |              | _                    |                          | CNS                        |              |                |               | _                        |
|               | į                     |                                      | Selenium                   | -         |                                       |              | _                    |                          | NA NA                      |              | -              |               |                          |
|               |                       |                                      | Silver                     |           |                                       |              |                      |                          | NA<br>NA                   |              | -              |               |                          |
|               |                       |                                      | Zinc                       |           |                                       | -            | _                    |                          |                            |              | -              | ••            |                          |
|               |                       |                                      | Tetrachloroethene          |           | 5E-11                                 |              | ` -                  | 5E-11                    | NA .                       |              | -              | ••            | l <del></del>            |
|               |                       |                                      | Dimethylphthalate          |           |                                       |              | _                    | 35-11                    | Liver                      |              | 0.000002       |               | 0.000002                 |
|               |                       |                                      | Diethylphthalate           |           |                                       | <u></u>      |                      |                          | NA<br>                     |              | -              |               |                          |
|               |                       |                                      | Di-n-butylphthalate        | -         |                                       |              | -                    |                          | NA<br>                     |              | -              | ••            |                          |
|               | •                     |                                      | Bis(2-Ethylhexyl)phthalate |           |                                       | -            | -                    | • •                      | NA                         |              | -              | ••            |                          |
|               |                       |                                      | Naphthalene                |           |                                       |              | -                    |                          | NA .                       |              | -              |               |                          |
|               |                       |                                      | Phenanthrene               | 1         |                                       | -            | . *                  | • •                      | Nasal                      |              | 0.0001         |               | 0.0001                   |
|               |                       |                                      | Fluoranthene               | •         | ••                                    | •            | -                    |                          | . NA                       |              | -              | ••            |                          |
|               | ·                     |                                      | i i                        | -         |                                       | -            | -                    |                          | NA                         | ••           | -              |               |                          |
|               |                       |                                      | Pyrene                     |           |                                       |              | -                    | • •-                     | NA NA                      |              |                |               |                          |
|               |                       |                                      | Benzo(a)anthracene         | -         |                                       | -            | -                    | ••                       | NA                         |              | - [            |               |                          |
| •             |                       |                                      | Chrysene                   |           |                                       | -            | - '                  | ••                       | NA .                       |              | -              |               |                          |
|               | 1                     | · ·                                  | Benzo(b)fluoranthene       | -         |                                       | -            | -                    |                          | NA                         |              | -              | ••            |                          |
|               |                       | 1                                    | Benzo(k)fluoranthene       | -         | •••                                   | -            |                      | ••                       | NA .                       | ••           | -              |               |                          |
|               |                       | l I                                  | Benzo(a)pyrene             |           | • ••                                  |              | -                    | •-                       | NA                         | ••           | -              | •             |                          |
|               |                       | 1                                    | Dibenzo(a,h)anthracene     | -         |                                       | -            | - 1                  |                          | NA                         |              | -              |               |                          |
|               |                       | 1                                    | Benzo(g,h,i)perylene       |           |                                       | -            |                      |                          | NA NA                      | ••           |                |               |                          |
|               |                       |                                      | Chemical Total             |           | 5E-11                                 | -            |                      | 5E-11                    |                            |              | 0.0002         |               | 0.0002                   |
|               |                       | Exposure Point Total                 |                            |           | -                                     |              |                      | 5E-11                    |                            |              |                |               | 0.0002                   |
|               | Exposure Medium Total |                                      |                            |           | · · · · · · · · · · · · · · · · · · · |              |                      | 5E-11                    |                            |              |                |               | 0.0002                   |
| edium Total   | ****                  |                                      |                            |           |                                       |              |                      | 1E-08                    |                            |              |                |               | 0.04                     |
| eceptor Total |                       |                                      | <u> </u>                   |           |                                       | Recept       | or Risk Total        | 1E-08                    |                            |              | Rece           | ptor HI Total | 0.04                     |

#### TABLE 9.2.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

### REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 3

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium                  | Exposure<br>Medium | Exposure<br>Point    | Chemical of Potential      |           |               | Carcinogenio                           | c Risk                  |                          |                            | Non-Carcino | genic Hazard Q | uotient |                          |
|-------------------------|--------------------|----------------------|----------------------------|-----------|---------------|----------------------------------------|-------------------------|--------------------------|----------------------------|-------------|----------------|---------|--------------------------|
|                         |                    |                      | Concern                    | Ingestion | Inhalation    | Dermal                                 | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion   | Inhalation     | Dermal  | Exposure<br>Routes Total |
| Groundwater Groundwater | Groundwater        | Site 23              | Aluminum                   |           |               | ••                                     | (readiation)            |                          | CNS                        | 0.2         |                | 0.0003  | 0.2                      |
|                         |                    |                      | Antimony                   | l         |               |                                        |                         |                          | Blood                      | 0.8         |                | 0.006   | 0.8                      |
|                         | -                  |                      | Arsenic                    | 1E-04     |               | 4E-08                                  |                         | 1E-04                    | Skin, CVS                  | 3           |                | 0.003   | 3                        |
|                         |                    |                      | Barium                     |           |               | ••                                     |                         |                          | Kidney                     | 0.05        |                | 0.0007  | 0.05                     |
|                         |                    |                      | Beryllium                  | <b></b>   |               | ••                                     |                         |                          | GS                         | 0.05        |                | 0.007   | 0.05                     |
|                         |                    |                      | Chromium                   |           |               |                                        | -                       |                          | Fetotoxicity, GS, Bone     | 0.2         |                | 0.02    | 0.2                      |
|                         |                    |                      | Cobalt                     |           |               |                                        |                         |                          | NA NA                      |             | ]              |         | -                        |
|                         |                    |                      | Copper                     | l         |               |                                        |                         |                          | GS                         | 0.03        | <b></b>        | 0.00003 | 0.03                     |
|                         |                    |                      | Iron                       | l         |               | ••                                     |                         |                          | GS                         | 9           |                | 0.009   | 9                        |
|                         |                    |                      | Manganese                  |           |               |                                        | -                       |                          | CNS                        | 7           |                | 0.2     | 7                        |
|                         |                    |                      | Selenium                   |           |               |                                        | _                       |                          | Skin                       | 0.1         |                | 0.0001  | 0.1                      |
|                         |                    | 1.                   | Silver                     |           |               |                                        |                         |                          | Skin                       | 0.04        |                | 0.0006  | 0.04                     |
|                         |                    |                      | Zinc                       |           |               |                                        | _                       |                          | Blood                      | 0.03        |                | 0.00002 | 0.03                     |
|                         |                    |                      | Tetrachloroethene          | 2E-06     | <b></b>       | 1E-07                                  | -                       | 2E-06                    | Liver                      | 0.005       |                | 0.0009  | 0.006                    |
|                         | 1                  |                      | Dimethylphthalate          |           |               |                                        | _                       |                          | NA ·                       |             |                |         |                          |
|                         |                    |                      | Diethylphthalate           |           | _             |                                        |                         |                          | Body Weight                | 0.002       |                | 0.00008 | 0.002                    |
|                         |                    |                      | Di-n-butylphthalate        |           |               |                                        | -                       |                          | Mortality                  | 0.010       |                | 0.002   | 0.01                     |
|                         |                    |                      | Bis(2-Ethylhexyl)phthalate | 2E-06     | I             | 4E-07                                  |                         | 3E-06                    | Liver                      | 0.10        |                | 0.05    | 0.1                      |
|                         | 1                  |                      | Naphthalene                | <b>.</b>  |               |                                        | _                       | 1.                       | Body Weight                | 0.002       |                | 0.0004  | 0.002                    |
|                         |                    | ' '                  | Phenanthrene               | <b></b>   |               |                                        | -                       |                          | Kidney                     |             |                |         |                          |
|                         |                    |                      | Fluoranthene               |           |               |                                        | -                       |                          | Liver                      | 0.001       |                |         | 0.001                    |
|                         |                    | · ·                  | Pyrene                     |           |               |                                        | -                       |                          | Kidney                     | 0.002       |                | 0.002   | 0.004                    |
|                         | İ                  |                      | Benzo(a)anthracene         | 8E-06     |               |                                        |                         | 8E-06                    | NA NA                      |             |                |         |                          |
|                         |                    |                      | Chrysene                   | 1E-08     | _             |                                        | _ '                     | 1E-08                    | NA NA                      |             |                |         |                          |
|                         |                    |                      | Benzo(b)fluoranthene       | 1E-05     |               |                                        |                         | 1E-05                    | NA NA                      | -           |                | _       |                          |
|                         |                    |                      | Benzo(k)fluoranthene       | 6E-06     | -             |                                        |                         | 6E-06                    | NA NA                      | _           |                |         |                          |
|                         |                    |                      | Benzo(a)pyrene             | 2E-04     | - ·           |                                        | _                       | 2E-04                    | NA NA                      | _           |                | _       |                          |
|                         |                    |                      | Dibenzo(a,h)anthracene     | 2E-04     |               |                                        | -                       | 2E-04                    | NA NA                      | -           | I              | -       |                          |
|                         | ]                  |                      | Benzo(g,h,i)perylene       |           | <del>,.</del> | '                                      |                         | ••                       | Kidney                     | _           |                | -       |                          |
|                         |                    |                      | Chemical Total             | 5E-04     |               | 6E-07                                  |                         | 5E-04                    | 1                          | 20          |                | 0.3     | 20                       |
|                         |                    | Exposure Point Total | <u> </u>                   |           |               | · ···································· |                         | 5E-04                    |                            |             |                |         | 20                       |
| *                       | -                  | Medium Total         |                            |           |               |                                        | -,                      | 5E-04                    |                            |             |                |         | 20                       |

#### TABLE 9.2.RME

### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

# REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 3

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium    | Exposure<br>Medium    | Exposure<br>Point    | Chemical of Potential      |           |            | Carcinogeni | c Risk               |                          |                            | Non-Carcino  | genic Hazard Q | uotient |                        |
|-----------|-----------------------|----------------------|----------------------------|-----------|------------|-------------|----------------------|--------------------------|----------------------------|--------------|----------------|---------|------------------------|
|           |                       |                      | Concern                    | Ingestion | Inhalation | Dermal      | External (Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion    | Inhalation     | Dermal  | Exposure<br>Routes Tot |
| oundwater | Groundwater           | Site 23              | Aluminum                   |           |            | -           | -                    |                          | CNS                        |              | -              |         |                        |
|           |                       |                      | Antimony                   | -         |            | _           |                      |                          | NA .                       | ļ <u>.</u> . |                |         | -                      |
|           |                       | 1                    | Arsenic                    | -         |            |             |                      |                          | NA NA                      |              | _              |         | -                      |
|           |                       |                      | Barlum                     | -         |            |             | _                    |                          | Fetotoxicity               |              |                | ••      | -                      |
|           |                       |                      | Beryllium                  |           |            |             |                      | -                        | GS                         | 1            | i l            | ••      |                        |
|           |                       |                      | Chromium                   |           |            | _           | '                    |                          | Lungs                      |              | -              |         | _                      |
|           |                       |                      | Cobalt                     | ·]        |            |             |                      |                          | NA NA                      |              | -              | • •     | -                      |
| i         |                       | ļ                    | Copper                     | _         |            | -           |                      |                          | NA NA                      | -            | -              |         | -                      |
|           | · ·                   | [                    | Iron                       |           |            |             |                      |                          | NA NA                      |              | -              |         | -                      |
|           | · ·                   |                      | Manganese                  | l         |            |             | _                    |                          | CNS                        |              | -              | • • •   | -                      |
|           |                       |                      | Selenium                   |           | ]          |             | _                    |                          | NA NA                      |              | -              | *-      |                        |
|           |                       | 1                    | Silver                     |           |            | -           |                      |                          |                            | -            | •••            | • •     | -                      |
|           |                       |                      | Zinc                       |           |            |             |                      |                          | NA<br>NA                   |              | -              | ••      |                        |
|           |                       |                      | Tetrachloroethene          |           | 2E-06      |             |                      |                          | NA<br>                     |              | - [            |         |                        |
|           |                       | 1                    | Dimethylphthalate          |           |            |             | l f                  | 2E-06                    | Liver                      |              | 0.005          | '       | 0.005                  |
|           |                       | 1                    | Diethylphthalate           |           |            | -           | -                    | ••                       | NA                         | -            | -              | •••     |                        |
|           |                       | l I                  | Di-n-butylphthalate        |           |            |             | -                    |                          | NA                         |              | -              |         |                        |
|           |                       | 1                    | Bis(2-Ethylhexyl)phthalate |           |            |             | -                    |                          | NA                         | "            |                |         |                        |
|           |                       | 1                    | Naphthalene                |           |            | -           | - 1                  |                          | NA .                       |              | -              | ••      |                        |
|           |                       | 1                    | Phenanthrene               | _         | • •        | -           | -                    | •-                       | Nasal                      |              | 0.002          |         | 0.002                  |
|           |                       |                      | Fluoranthene               | 1         | -          |             | -                    |                          | NA NA                      |              | -              | •       |                        |
|           |                       | 1                    | Pyrene                     | -         |            | -           | -                    | ••                       | NA                         |              | -              | ••      |                        |
|           |                       | 1 1                  | Benzo(a)anthracene         | -         |            | -           | -                    |                          | NA .                       |              | - [            |         | ••                     |
|           |                       | i .i                 | Chrysene                   | -         | -          | -           | -                    |                          | NA                         |              | -              |         | ••                     |
|           |                       |                      |                            | -         | -          | -           | -                    |                          | NA                         |              |                |         |                        |
|           |                       | 1                    | Benzo(b)fluoranthene       | -         |            | -           |                      |                          | NA NA                      |              | -              |         |                        |
|           |                       | i i                  | Benzo(k)fluoranthene       | -         | •••        |             | -                    |                          | NA                         |              | -              |         |                        |
|           |                       | 1                    | Senzo(a)pyrene             |           | • •        | -           | -                    |                          | NA NA                      |              | -              | ••      |                        |
| j         |                       | I I                  | Dibenzo(a,h)anthracene     | -         |            | -           | -                    |                          | NA                         | ••,          | -              |         |                        |
|           |                       | l : <b>(</b> =       | Benzo(g,h,i)perylene       |           |            |             |                      |                          | NA '                       | ••           |                | [       |                        |
| ì         | ,                     |                      | Chemical Total             |           | 2E-06      |             |                      | 2E-06                    |                            |              | 0.007          |         | 0.007                  |
| ŀ         | Exposure Medium Total | Exposure Point Total |                            |           | -          |             |                      | 2E-06                    |                            |              |                | i i     | 0.007                  |
| ım Total  | Exposure Medium Total |                      |                            |           |            |             |                      | 2E-06                    |                            |              |                |         | 0.007                  |
| un rotal  |                       |                      | 1                          |           |            |             |                      | 5E-04                    |                            |              |                |         |                        |

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

#### TABLE 9.2.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

## REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 3 OF 3

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium | Exposure<br>Medium | Exposure<br>Point | Chemical of Potential |           |            | Carcinogenio |             |              |                 |           | genic Hazard Q |        |              |
|--------|--------------------|-------------------|-----------------------|-----------|------------|--------------|-------------|--------------|-----------------|-----------|----------------|--------|--------------|
| 1      |                    | ł                 | Concern               | Ingestion | Inhalation | Dermal       | External    | Exposure     | Primary         | Ingestion | Inhalation     | Dermal | Exposure     |
|        |                    |                   |                       |           |            |              | (Radiation) | Routes Total | Target Organ(s) |           |                |        | Routes Total |

| Total Body Weight HI  | 0.005 |
|-----------------------|-------|
| Total CNS HI          | 7     |
| Total CVS HI          | 3     |
| Total GS HI           | 9     |
| Total Kidney HI       | 0.05  |
| Total Liver HI        | 0.2   |
| Total Skin HI         | 3     |
| Total Nasal HI        | 0.002 |
| Total Bone HI         | 0.2   |
| Total Fetotoxicity HI | 0.2   |
| Total Mortality HI    | 0.01  |

#### TABLE 9.3.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS

# REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 3

Scenario Timeframe: Future Receptor Population: Residents

Receptor Age: Adult

| Medium        | Exposure<br>Medium | Exposure<br>Point    | Chemical of Potential      |           |              | Carcinogenio | Risk                    |                          |                            | Non-Carcino | genic Hazard C | uotient        |                         |
|---------------|--------------------|----------------------|----------------------------|-----------|--------------|--------------|-------------------------|--------------------------|----------------------------|-------------|----------------|----------------|-------------------------|
|               |                    |                      | Concern                    | Ingestion | Inhalation   | Demai        | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion   | Inhalation     | Dermal         | Exposure<br>Routes Tota |
| Groundwater   | Groundwater        | Site 23              | Aluminum                   |           |              |              | -                       |                          | CNS                        | 0.2         |                | 0.0004         | 0.2                     |
|               |                    | +                    | Antimony                   |           |              | ••           | -                       |                          | Blood                      | 0.5         |                | 0.008          | 0.5                     |
|               |                    |                      | Arsenic                    | 1E-04     |              | 3E-07        | -                       | 1E-04                    | Skin, CVS                  | 2           |                | 0.004          | 2                       |
|               |                    |                      | Barium                     |           |              |              | -                       |                          | Kidney                     | 0.03        |                | 0.001          | 0.03                    |
|               | ·                  |                      | Beryllium                  |           |              |              | -                       |                          | GS                         | 0.03        |                | 0.01           | 0.04                    |
|               |                    |                      | Chromium                   |           | -            | ••           | -                       |                          | Fetotoxicity, GS, Bone     | 0.1         |                | 0.03           | 0.2                     |
|               |                    |                      | Cobalt                     |           |              |              | -                       | ••                       | NA NA                      |             |                | -              |                         |
|               |                    |                      | Copper                     |           | -            | ••           | .                       |                          | GS                         | 0.02        |                | 0.00004        | 0.02                    |
| *             |                    | Î.                   | Iron                       |           |              | ••           |                         |                          | GS                         | 6           |                | 0.01           | 6                       |
|               |                    |                      | Manganese                  |           |              |              | _                       |                          | CNS                        | 4           |                | 0.3            | 5                       |
|               | ,                  |                      | Selenium                   |           |              |              |                         |                          | Skin                       | 0.07        |                | 0.0002         | 0.07                    |
| A contract of |                    |                      | Silver                     |           |              |              |                         |                          | Skin                       | 0.02        |                | 0.0008         | 0.03                    |
|               |                    |                      | Zinc                       |           |              |              |                         | ••                       | Blood                      | 0.02        |                | 0.00003        | 0.03                    |
|               |                    |                      | Tetrachloroethene          | 2E-06     |              | 1E-06        | \ _                     | 3E-06                    | Liver                      | 0.003       |                | 0.000          | 0.005                   |
|               | •                  | ]                    | Dimethylphthalate          |           |              | ••           |                         |                          | NA NA                      |             |                |                | 0.005                   |
|               |                    | İ                    | Diethylphthalate           |           | <u>.</u>     |              | _                       |                          | Body Weight                | 0.002       |                | 0.0001         | 0.002                   |
|               |                    |                      | Di-n-butylphthalate        |           |              |              | _                       |                          | Mortality                  | 0.007       |                | 0.003          | 0.002                   |
|               |                    |                      | Bis(2-Ethylhexyl)phthalate | 2E-06     |              | 3E-06        | _                       | 5E-06                    | Liver                      | 0.07        |                | 0.003          | 0.01                    |
|               |                    |                      | Naphthalene                |           |              |              | [                       |                          | Body Weight                | 0.001       |                | 0.0005         |                         |
|               |                    |                      | Phenanthrene               |           | .            |              | _                       |                          | Kidney                     |             |                |                | 0.002                   |
|               |                    |                      | Fluoranthene               |           |              |              |                         |                          | Liver                      | 0.0010      |                | -              | 2 2242                  |
|               |                    |                      | Pyrene                     |           |              |              |                         |                          | Kidney                     | 0.0010      |                | -              | 0.0010                  |
| *:            |                    |                      | Benzo(a)anthracene         | 3E-06     |              |              | _                       | 3E-06                    | NA NA                      |             |                | 0.003          | 0.004                   |
|               |                    | ·                    | Chrysene                   | 1E-08     |              | • •          | _                       | 1E-08                    | NA NA                      | -           | . **           | <del>-</del> . |                         |
|               |                    |                      | Benzo(b)fluoranthene       | 5E-06     |              |              | _                       | 5E-06                    | NA                         |             |                |                |                         |
|               |                    | 1                    | Benzo(k)fluoranthene       | 2E-06     | _            |              | _                       | 2E-06                    |                            | -           | ••             |                |                         |
| ·             |                    |                      | Benzo(a)pyrene             | 7E-05     |              |              | _                       | 7E-05                    | NA<br>NA                   | -           |                | -              |                         |
|               |                    |                      | Dibenzo(a,h)anthracene     | 6E-05     |              |              | _                       | 7E-05<br>6E-05           |                            | -           |                | -              |                         |
|               |                    |                      | Benzo(g,h,i)perylene       | 02-03     |              |              |                         |                          | NA M                       | ••          |                | -              | ••                      |
| ·             |                    |                      | Chemical Total             | 2E-04     | <del>-</del> | 4E-06        | <del></del>             |                          | Kidney                     |             |                |                |                         |
|               |                    | Exposure Point Total | onormosi (otal             | 21-04     |              | 46-00        |                         | 3E-04                    |                            | 13          |                | 0.4            | 14                      |
| · ·           |                    | edium Total          |                            |           |              |              |                         | 3E-04<br>3E-04           |                            |             |                |                | 14                      |

#### TABLE 9.3.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

### REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 3

Scenario Timeframe: Future Receptor Population: Residents

Receptor Age: Adult

| Medium      | Exposure<br>Medium    | Exposure<br>Point    | Chemical of Potential      |           |            | Carcinogenio | : Risk               |                          |                            | Non-Carcino | genic Hazard Q | uotient |                         |
|-------------|-----------------------|----------------------|----------------------------|-----------|------------|--------------|----------------------|--------------------------|----------------------------|-------------|----------------|---------|-------------------------|
|             |                       |                      | Concern                    | Ingestion | Inhalation | Dermal       | External (Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion   | Inhalation     | Dermal  | Exposure<br>Routes Tota |
| roundwater  | Groundwater           | Site 23              | Aluminum                   |           |            |              | _                    |                          | CNS                        |             | -              | ••      |                         |
|             |                       |                      | Antimony                   | <u> </u>  |            | _            | -                    |                          | NA                         |             |                |         | ••                      |
|             |                       |                      | Arsenic                    |           |            |              | _                    | ••                       | . NA                       |             | -              |         |                         |
|             |                       | İ                    | Barium                     | -         |            |              |                      | • ••                     | Fetotoxicity               |             |                |         |                         |
|             |                       | İ                    | Beryllium                  |           | <b></b>    | ·-           |                      |                          | GS                         |             | -              | •       |                         |
|             |                       |                      | Chromium                   |           |            |              |                      | ·                        | Lungs                      |             | -              | •-      |                         |
|             |                       |                      | Cobalt                     | -         |            | -            |                      |                          | NA .                       |             | -              | ••      |                         |
|             |                       |                      | Copper                     | -         |            | -            | -                    |                          | NA NA                      |             | -              | ••      | <b></b>                 |
|             |                       |                      | Iron                       | -         |            | -            | -                    | • • •                    | NA NA                      |             | -              | •       | -                       |
|             |                       |                      | Manganese                  |           |            | -            | -                    |                          | CNS                        |             | -              | ••      |                         |
|             |                       |                      | Selenium                   |           |            | -            |                      |                          | NA NA                      |             | -              | ••      |                         |
|             |                       |                      | Silver                     | -         |            | -            | -                    | ••                       | NA .                       |             | -              |         |                         |
|             |                       |                      | Zinc                       | -         |            | -            | -                    |                          | NA NA                      |             | -              | ••      |                         |
|             |                       |                      | Tetrachloroethene          |           | 2E-06      | -            | -                    | 2E-06                    | Liver                      |             | 0.003          |         | 0.003                   |
|             | ,                     |                      | Dimethylphthalate          | -         |            | -            | -                    |                          | NA ·                       |             |                |         |                         |
|             |                       |                      | Diethylphthalate           |           |            |              | -                    | ••                       | NA -                       |             | -              |         |                         |
|             |                       |                      | Di-n-butylphthalate        | -         |            | -            | -                    |                          | NA NA                      |             | -              |         |                         |
|             |                       |                      | Bis(2-Ethylhexyl)phthalate | -         |            | -            | -                    |                          | NA NA                      |             | -              |         | '                       |
|             |                       |                      | Naphthalene                | -         |            | -            | -                    | · :                      | Nasai                      |             | 0.001          |         | 0.001                   |
|             |                       |                      | Phenanthrene               | -         |            | -            | -                    |                          | . NA                       |             | -              |         |                         |
|             |                       |                      | Fluoranthene               | -         |            | ļ <b>-</b>   | -                    |                          | NA NA                      |             | -              |         |                         |
|             |                       |                      | Pyrene                     | -         |            | -            | -                    |                          | NA NA                      |             |                | •       |                         |
|             |                       |                      | Benzo(a)anthracene         | -         |            | -            | -,                   |                          | NA NA                      |             | -              |         |                         |
|             |                       | ,                    | Chrysene                   |           |            | -            | -                    |                          | NA                         |             | -              |         |                         |
|             |                       |                      | Benzo(b)fluoranthene       | -         |            | -            | -                    |                          | NA NA                      |             | -              | ••      |                         |
|             |                       |                      | Benzo(k)fluoranthene       | -         |            | -            | -                    |                          | NA .                       |             | -              | •-      |                         |
|             |                       |                      | Benzo(a)pyrene             |           |            | -            | -                    |                          | NA NA                      |             | -              |         |                         |
|             |                       |                      | Dibenzo(a,h)anthracene     |           |            | -            | -                    | <i>;••</i>               | NA                         |             | -              |         |                         |
|             |                       |                      | Benzo(g,h,i)perylene       |           |            | -            |                      | •                        | · NA                       | <u></u>     | -              |         |                         |
|             |                       |                      | Chemical Total             |           | 2E-06      | -            | -                    | 2E-06                    |                            | · ·         | 0.005          |         | 0.005                   |
|             |                       | Exposure Point Total |                            |           |            |              |                      | 2E-06                    |                            |             |                |         | 0.005                   |
|             | Exposure Medium Total |                      |                            |           |            |              |                      | 2E-06                    |                            |             |                |         | 0.005                   |
| edium Total |                       |                      |                            |           |            |              |                      | 3E-04                    |                            |             |                |         | 14                      |

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

#### TABLE 9.3.RME

# SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 3 OF 3

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Aduit

|        |                    |                   |                       |           |            |              |             | · · · · · · · · · · · · · · · · · · · |                                  |           |            |        |              |  |  |
|--------|--------------------|-------------------|-----------------------|-----------|------------|--------------|-------------|---------------------------------------|----------------------------------|-----------|------------|--------|--------------|--|--|
| Medium | Exposure<br>Medium | Exposure<br>Point | Chemical of Potential |           |            | Carcinogenio | Risk        |                                       | Non-Carcinogenic Hazard Quotient |           |            |        |              |  |  |
|        |                    |                   | Concern               | Ingestion | Inhalation | Dermal       | External    | Exposure                              | Primary                          | Ingestion | Inhalation | Dermal | Exposure     |  |  |
|        |                    |                   |                       |           |            |              | (Radiation) | Routes Total                          | Target Organ(s)                  | i i       | 1          |        | Routes Total |  |  |

| Total Body Weight HI  | 0.003 |
|-----------------------|-------|
| Total CNS HI          | 5     |
| Total CVS HI          | 2     |
| Total GS HI           | 6     |
| Total Kidney HI       | 0.04  |
| Total Liver HI        | 0.1   |
| Total Skin HI         | 2     |
| Total Nasal HI        | 0.001 |
| Total Bone HI         | 0.2   |
| Total Fetotoxicity HI | 0.2   |
| Total Mortality HI    | 0.01  |

#### TABLE 9.4.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

## REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Lifelong (Child and Adult)

Non-Carcinogenic Hazard Quotient Chemical Carcinogenic Risk Medium Exposure Exposure Medium Point of Potential Inhalation Exposure Inhalation External Primary Ingestion Concern Ingestion Dermal Exposure (Radiation) Routes Total Target Organ(s) Routes Total Site 23 Groundwater Groundwater Aluminum Antimony . . . . Arsenic 2E-04 3E-07 2E-04 Barium - -. . Beryllium Chromium Cobalt . . •• Copper . . - -.. Iron Manganese Selenium - -Silver . . Zinc - -Tetrachloroethene 4E-06 1E-06 5E-06 Dimethylphthalate .. . . Diethylphthalate .. Di-n-butylphthalate 4E-06 3E-06 8E-06 Bis(2-Ethylhexyl)phthalate Naphthalene Phenanthrene - -Fluoranthene . . . . . Pyrene . . Benzo(a)anthracene 1E-05 1E-05 Chrysene 2E-08 2E-08 2E-05 2E-05 Benzo(b)fluoranthene - -9E-06 Benzo(k)fluoranthene 9E-06 --Benzo(a)pyrene 3E-04 3E-04 . . 2E-04 Dibenzo(a,h)anthracene 2E-04

5E-06

8E-04

8E-04

Benzo(g.h,i)perylene Chemical Total

Exposure Point Total

Exposure Medium Total

8E-04

#### TABLE 9.4.RME

#### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

## REASONABLE MAXIMUM EXPOSURES - STORM SEWER REHABILITATION SAMPLING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Lifelong (Child and Adult)

| Medium      | Exposure<br>Medium    | Exposure<br>Point    | Chemical of Potential      |           |            | Carcinogeni | c Risk                  |                          |                                                  | Non-Carcino                            | genic Hazard Q    | uotient |                        |
|-------------|-----------------------|----------------------|----------------------------|-----------|------------|-------------|-------------------------|--------------------------|--------------------------------------------------|----------------------------------------|-------------------|---------|------------------------|
|             |                       |                      | Concern                    | Ingestion | Inhalation | Dermal      | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s)                       | Ingestion                              | Inhalation        | Dermal  | Exposure<br>Routes Tot |
| Groundwater | Groundwater           | Site 23              | Aluminum                   |           |            | ••          | _                       |                          | 33                                               |                                        |                   |         | Roules For             |
|             |                       |                      | Antimony                   | l         |            |             | _                       |                          |                                                  |                                        | ] ,               |         | İ                      |
|             |                       | 1                    | Arsenic                    | -         |            | _           |                         |                          |                                                  | 1                                      |                   |         |                        |
|             |                       | 1                    | Barium                     |           |            | _           | _                       |                          |                                                  | 1                                      |                   |         |                        |
|             |                       |                      | Beryllium                  |           | <b> </b>   | _           |                         | l                        |                                                  |                                        |                   |         |                        |
|             |                       |                      | Chromium                   | _         |            |             | _                       |                          | <b> </b>                                         |                                        |                   |         |                        |
|             | 1                     |                      | Cobalt                     | -         |            |             |                         |                          |                                                  |                                        |                   |         |                        |
|             | ]                     |                      | Copper                     |           |            |             |                         |                          |                                                  | 1                                      |                   |         |                        |
|             |                       |                      | iron                       |           |            | _           |                         |                          |                                                  |                                        |                   | *       |                        |
|             |                       |                      | Manganese                  |           |            | ·           |                         |                          |                                                  | 1                                      |                   |         |                        |
|             |                       |                      | Selenium                   |           |            | -           |                         |                          |                                                  |                                        |                   |         |                        |
|             |                       |                      | Silver                     |           | :.         |             | -                       | ••                       |                                                  |                                        |                   |         |                        |
|             |                       |                      | Zinc                       |           |            | _           | -                       | •                        |                                                  | 1                                      |                   |         |                        |
|             |                       |                      | Tetrachloroethene          |           | 4E-06      |             |                         |                          |                                                  |                                        |                   |         |                        |
|             |                       |                      | Dimethylphthalate          |           | 46-00      | -           | -                       | 4E-06                    |                                                  |                                        |                   |         |                        |
|             |                       | 2                    | Diethylphthalate           |           |            | -           | •                       |                          |                                                  | ] ]                                    |                   |         |                        |
|             |                       |                      | Di-n-butylphthalate        |           |            | -           | -                       |                          |                                                  |                                        | 1                 |         |                        |
|             |                       |                      | Bis(2-Ethylhexyl)phthalate |           |            |             | -                       | -                        |                                                  |                                        |                   |         |                        |
|             |                       |                      | Naphthalene                |           | ••         | -           | -                       | ••                       |                                                  | į i                                    |                   |         |                        |
|             | .*                    |                      | Phenanthrene               | -         |            |             | -                       |                          |                                                  |                                        |                   |         |                        |
|             |                       | ļ                    | Fluoranthene               | "         | ••         | -           | -                       | . ••                     |                                                  |                                        |                   |         |                        |
|             | •                     | İ                    | Pyrene                     | -         | ***        | •           |                         | •-                       |                                                  |                                        |                   |         |                        |
|             |                       |                      |                            | -         |            | - 1         | -                       |                          |                                                  | 1 1                                    |                   |         |                        |
| ;           | *                     | i                    | Benzo(a)anthracene         |           |            |             | -                       |                          |                                                  |                                        |                   | 1       |                        |
|             | •                     | 1                    | Chrysene                   | -         |            | -           |                         |                          |                                                  | '                                      |                   |         |                        |
|             |                       | f I                  | Benzo(b)fluoranthene       |           |            | -           | - [                     | ••                       |                                                  |                                        |                   | -       |                        |
|             |                       |                      | Benzo(k)fluoranthene       | -         |            | -           |                         | `                        |                                                  | •                                      |                   | İ       |                        |
|             |                       |                      | Benzo(a)pyrene             |           | ••         | - '         | -                       |                          |                                                  |                                        |                   |         |                        |
| *           |                       | 1                    | Dibenzo(a,h)anthracene     | -         | . ••       | -           | -                       |                          |                                                  |                                        |                   |         |                        |
|             |                       | ,                    | Benzo(g,h,i)perylene       |           |            |             | <u> </u>                |                          |                                                  |                                        | İ                 |         |                        |
| · ·         |                       | 20/                  | Chemical Total             |           | 4E-06      | -           |                         | 4E-06                    |                                                  |                                        | · · · · · · · · · |         |                        |
|             |                       | Exposure Point Total |                            |           |            |             |                         | 4E-06                    | <del>"                                    </del> | L                                      | L                 |         |                        |
|             | Exposure Medium Total |                      |                            |           |            |             |                         | 4E-06                    |                                                  | ······································ |                   |         | <u>-</u>               |
| dium Total  |                       |                      |                            |           |            |             |                         | 8E-04                    |                                                  |                                        |                   | ——      |                        |
| eptor Total |                       |                      |                            |           |            | Recent      | or Risk Total           | 8E-04                    |                                                  |                                        | -                 |         |                        |

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

ATTACHMENT A.4

TABLES FROM QUARTERLY UNDERDRAIN METERING PIT SAMPLING

TABLE 3-1

#### SUMMARY OF POSITIVE DETECTIONS FOR YEAR 1 MONITORING EVENTS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 3

| PARAMETER                | Surface Water<br>Protection Criteria <sup>(1)</sup> | Residentiat<br>Volatifization<br>Criteria <sup>(2)</sup> | Stormwater<br>Discharge<br>Permit Criteria <sup>(3)</sup> | 23MP01<br>S23GWMPM01<br>20070618<br>ORIGINAL | 23MP01<br>FD-061807<br>20070618<br>DUPLICATE | 23MP01<br>\$23GWMPM02<br>20070906<br>ORIGINAL | 23MP01<br>S23GWMPM-03<br>20071218<br>ORIGINAL | 23MP01<br>FD-121807-01<br>20071218<br>DUPLICATE | 23MP01<br>S23GWMPM-04<br>20080221<br>ORIGINAL |
|--------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|
| Volatile Organics (μg/L) |                                                     | ***************************************                  | <del> </del>                                              |                                              |                                              |                                               |                                               | <del></del>                                     |                                               |
| BENZENE                  | 710                                                 | 130                                                      | NA T                                                      | 0.5 U                                        | 0.5 U                                        | 0.5 U                                         | 0.5 U                                         | 0.5 U                                           | 0.2 J                                         |
| BROMODICHLOROMETHANE     | NE                                                  | NE                                                       | NA NA                                                     | 0.3 J                                        | 0.5 U                                        | 0.5 U                                         | 0.5 U                                         | 0.5 U                                           | 0.5 U                                         |
| CHLOROFORM               | 14100                                               | 26                                                       | NA NA                                                     | 3 J                                          | 2 J                                          | 0.5 U                                         | 0.5 U                                         | 0.5 U                                           | 0.5 U                                         |
| CYCLOHEXANE              | NE                                                  | NE                                                       | NA NA                                                     | 0.5 U                                        | 0.5 U                                        | 0.1 J                                         | 0.5 U                                         | 0.5 U                                           | 0.5 U                                         |
| CIS-1,2-DICHLOROETHENE   | NE                                                  | 830                                                      | NA NA                                                     | 0.3 J                                        | 0.2 J                                        | 0.3 J                                         | 0.2 J                                         | 0.5 U                                           | 0.2 J                                         |
| ISOPROPYLBENZENE         | NE                                                  | 2800                                                     | NA NA                                                     | 0.1 J                                        | 0.09 J                                       | 0.1 J                                         | 0.5 U                                         | 0.5 UJ                                          | 0.5 U                                         |
| METHYL TERT-BUTYL ETHER  | NE                                                  | 21000                                                    | NA NA                                                     | 1                                            | 0.9                                          | 0.4 J                                         | 0.6                                           | 0.6                                             | 0.7                                           |
| TETRACHLOROETHENE        | 88                                                  | 340                                                      | NA NA                                                     | 0.3 J                                        | 0.3 J                                        | 0.4 J                                         | 0.3 J                                         | 0.2 J                                           | 0.3 J                                         |
| TRICHLOROETHENE          | 2340                                                | 27                                                       | NA NA                                                     | 0.4 J                                        | 0.3 J                                        | 0.5 J                                         | 0.4 J                                         | 0.3 J                                           | 0.4 J                                         |
| PAHs (μg/L)              |                                                     |                                                          |                                                           |                                              | <del></del>                                  |                                               | <u> </u>                                      |                                                 |                                               |
| 1-METHYLNAPHTHALENE      | NE NE                                               | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.96 J                                        | 0.048 J                                         | 0.21 U                                        |
| 2-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA NA                                                     | 0.17 J                                       | 0.16 J                                       | 0.2 U                                         | 1.1 J                                         | 0.2 UJ                                          | 0.21 UJ                                       |
| 4-NITROANILINE           | NE                                                  | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 1 UJ                                          | 0.75 J                                        | 1.0 UR                                          | 1.0 UJ                                        |
| ACENAPHTHENE             | NE NE                                               | NE                                                       | NA ·                                                      | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.83 J                                        | 0.029 J                                         | 0.21 U                                        |
| ACENAPHTHYLENE           | 0.3                                                 | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.90 J                                        | 0.20 UJ                                         | 0.21 U                                        |
| ANTHRACENE               | 1,100,000                                           | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.92 J                                        | 0.20 UJ                                         | 0.21 U                                        |
| BENZO(A)ANTHRACENE       | 0.3                                                 | NE                                                       | NA NA                                                     | 0.07 U                                       | 0.07 U                                       | 0.041 U                                       | 1.0 J                                         | 0.042 UJ                                        | 0.045 U                                       |
| BENZO(A)PYRENE           | 0.3                                                 | NE                                                       | NA NA                                                     | 0.2 W                                        | 0.2 U                                        | 0,2 U                                         | 0.35 J                                        | 0.20 U                                          | 0.21 U                                        |
| BENZO(B)FLUORANTHENE     | 0.3                                                 | NE                                                       | NA NA                                                     | 0.08 U                                       | 0.08 U                                       | 0.075 U                                       | 0.64 J                                        | 0.078 UJ                                        | 0.082 U                                       |
| BENZO(G,H,I)PERYLENE     | NE                                                  | NE                                                       | NA NA                                                     | 0.2 UJ                                       | 0.2 U                                        | 0.2 U                                         | 0.31                                          | 0.20 U                                          | 0.21 U                                        |
| BENZO(K)FLUORANTHENE     | 0.3                                                 | NE                                                       | NA NA                                                     | 0.2 UJ                                       | 0.2 UJ                                       | 0.2 U                                         | 0.53 J                                        | 0.20 U                                          | 0.21 U                                        |
| CHRYSENE                 | NE                                                  | NE                                                       | NA NA                                                     | . 0.2 U                                      | 0.2 U                                        | 0.2 U                                         | 0.76 J                                        | 0.20 UJ                                         | 0.21 U                                        |
| DIBENZO(A,H)ANTHRACENE   | NE                                                  | NE                                                       | NA NA                                                     | 0.2 UJ                                       | 0.2 U                                        | 0.2 U                                         | 0.14 J                                        | 0.20 U                                          | 0.21 U                                        |
| FLUORANTHENE             | 3,700                                               | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 1.1 J                                         | 0.20 UJ                                         | 0.21 U                                        |
| FLUORENE                 | 140,000                                             | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.97 J                                        | 0.20 UJ                                         | 0.21 UJ                                       |
| HEXACHLOROBENZENE        | 0.077                                               | NE                                                       | NA NA                                                     | 1 U                                          | 1 U                                          | 0.2 U                                         | 1.2 J                                         | 0.20 UJ                                         | 0.21 U                                        |
| HEXACHLOROBUTADIENE      | NE                                                  | . NE                                                     | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.48 U                                        | 0.64 J                                        | 0.099 U                                         | 0.21 U                                        |
| INDENO(1,2,3-CD)PYRENE   | NE                                                  | NE                                                       | NA .                                                      | 0.2 UJ                                       | 0.2 U                                        | 0.2 U                                         | 0.22                                          | 0.20 U                                          | 0.21 UJ                                       |
| NAPHTHALENE              | NE                                                  | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 1.0 J                                         | 0.088 J                                         | 0.21 U                                        |
| PHENANTHRENE             | 0.3                                                 | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.98 J                                        | 0.20 UJ                                         | 0.21 U                                        |
| PYRENE                   | 110,000                                             | NE                                                       | NA NA                                                     | 0.2 U                                        | 0.2 U                                        | 0.2 U                                         | 0.84 J                                        | 0.20 UJ                                         | 0.21 U                                        |
| PAHs, Filtered (μg/L)    |                                                     |                                                          |                                                           |                                              |                                              |                                               |                                               | **************************************          |                                               |
| 1-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA .                                                      | NA NA                                        | NA                                           | NA NA                                         | NA                                            | NA NA                                           | 0.093 J                                       |
| 2-METHYLNAPHTHALENE      | NE                                                  | NE                                                       | NA NA                                                     | NA                                           | NA NA                                        | NA NA                                         | NA NA                                         | NA NA                                           | 0.2 UJ                                        |
| 4-NITROANILINE           | NE                                                  | NE                                                       | NA NA                                                     | NA NA                                        | NA ·                                         | · NA                                          | NA NA                                         | NA NA                                           | 1.0 UJ                                        |
| ACENAPHTHENE             | NE                                                  | NE                                                       | NA NA                                                     | NA .                                         | NA .                                         | NA NA                                         | NA NA                                         | NA NA                                           | 0.031 J                                       |
| ACENAPHTHYLENE           | 0.3                                                 | NE                                                       | NA NA                                                     | NA NA                                        | NA ·                                         | NA NA                                         | NA ·                                          | NA NA                                           | 0.2 U                                         |
| ANTHRACENE               | 1,100,000                                           | NE                                                       | NA NA                                                     | NA NA                                        | NA NA                                        | NA NA                                         | NA .                                          | NA NA                                           | 0.2 U                                         |
| BENZO(A)ANTHRACENE       | 0.3                                                 | NE                                                       | NA NA                                                     | NA                                           | NA NA                                        | NA NA                                         | NA NA                                         | NA NA                                           | 0.042 U                                       |

TABLE 3-1

### SUMMARY OF POSITIVE DETECTIONS FOR YEAR 1 MONITORING EVENTS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 3

|                                   | Surface Water          | Residential                               | Stormwater                                  | 23MP01<br>\$23GWMPM01 | 23MP01<br>FD-061807   | 23MP01<br>\$23GWMPM02 | 23MP01<br>S23GWMPM-03 | 23MP01<br>FD-121807-01 | 23MP01<br>S23GWMPM-04 |
|-----------------------------------|------------------------|-------------------------------------------|---------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|
| PARAMETER                         | Protection Criteria(1) | Volatilization<br>Criteria <sup>(2)</sup> | Discharge<br>Permit Criteria <sup>(3)</sup> | 20070618<br>ORIGINAL  | 20070618<br>DUPLICATE | 20070906<br>ORIGINAL  | 20071218<br>ORIGINAL  | 20071218<br>DUPLICATE  | 20080221<br>ORIGINAL  |
| PAHs, Filtered (continued) (μg/L) |                        | · · · · · · · · · · · · · · · · · · ·     | . <del> </del>                              |                       |                       | 1 000000              | - ONIONAL             | DOLLIONIE              | 1 011011172           |
| BENZO(A)PYRENE                    | 0.3                    | NE                                        | NA NA                                       | ,NA                   | NA NA                 | NA                    | NA NA                 | NA NA                  | 0.2 U                 |
| BENZO(B)FLUORANTHENE              | 0.3                    | NE                                        | NA NA                                       | NA                    | NA NA                 | NA NA                 | NA                    | NA NA                  | 0.078 U               |
| BENZO(G,H,I)PERYLENE              | NE                     | NE                                        | NA NA                                       | NA                    | NA NA                 | NA                    | NA NA                 | NA                     | 0.13 J                |
| BENZO(K)FLUORANTHENE              | 0.3                    | NE                                        | NA NA                                       | NA                    | . NA                  | NA NA                 | NA .                  | NA NA                  | 0.2 U                 |
| CHRYSENE                          | NE NE                  | NE                                        | NA NA                                       | NA NA                 | NA NA                 | NA.                   | NA NA                 | NA                     | 0.2 U                 |
| DIBENZO(A,H)ANTHRACENE            | · NE                   | NE                                        | NA                                          | NA                    | NA NA                 | NA                    | NA                    | NA ·                   | 0.2 U                 |
| FLUORANTHENE                      | 3,700                  | NE                                        | NA NA                                       | NA                    | NA NA                 | NA .                  | NA NA                 | NA NA                  | 0.2 U                 |
| FLUORENE                          | 140,000                | NE                                        | NA NA                                       | NA                    | NA NA                 | NA                    | NA NA                 | NA NA                  | 0.2 UJ                |
| HEXACHLOROBENZENE                 | 0.077                  | NE                                        | NA                                          | NA                    | NA NA                 | NA                    | NA .                  | NA NA                  | 0.2 U                 |
| HEXACHLOROBUTADIENE               | NE                     | NE                                        | NA NA                                       | NA                    | NA NA                 | NA                    | NA NA                 | NA NA                  | 0,2 ∪                 |
| INDENO(1,2,3-CD)PYRENE            | NE                     | . NE                                      | NA                                          | NA                    | NA NA                 | NA                    | NA NA                 | NA                     | 0.22 J                |
| NAPHTHALENE                       | NE                     | NE                                        | NA NA                                       | NA NA                 | NA NA                 | NA NA                 | NA .                  | NA                     | 0.069 J               |
| PHENANTHRENE                      | 0.3                    | NE                                        | NA NA                                       | NA                    | NA NA                 | NA                    | NA NA                 | NA NA                  | 0.2 U                 |
| PYRENE                            | 110,000                | NE                                        | NA .                                        | NA                    | NA NA                 | NA NA                 | NA .                  | NA                     | 0.2 U                 |
| inorganics, Total (μg/L)          |                        |                                           | ·                                           |                       |                       |                       |                       |                        |                       |
| ALUMINUM                          | NE                     | NA NA                                     | NA NA                                       | 473                   | 115                   | 322                   | 38.1                  | 21.8                   | . 29.4                |
| ARSENIC                           | 4                      | NA                                        | NA -                                        | 3.7 U                 | 3 U                   | 13.9                  | 2.2 U                 | 4.7 U                  | 3.1                   |
| BARIUM                            | NE                     | NA                                        | NA NA                                       | 48.2                  | 52.4                  | 87                    | 55.2                  | 53.4                   | 55.9                  |
| CALCIUM                           | NUT                    | NA NA                                     | NA NA                                       | 33800                 | 35800                 | 32000                 | 35,500                | 34,700                 | 34,300                |
| CHROMIUM                          | 110 (4)                | NA                                        | NA NA                                       | 0.94 U                | 0.81 U                | 2                     | 0.41                  | 0.28 U                 | 0.38 ∪                |
| COBALT                            | NE                     | NA                                        | NA .                                        | 0.84 U                | 0.64 U                | 0.26 U                | 0.66                  | 0.53                   | 0.6                   |
| COPPER                            | 48                     | NA                                        | 60                                          | - 3U                  | 3 U                   | 4.2                   | 0.44 U                | 0.22 U                 | 0.8 U                 |
| IRON                              | NUT                    | NA .                                      | NA NA                                       | 9,190                 | 11,900                | 70,800                | 9,860                 | 10,200                 | 4,380                 |
| LEAD                              | 13                     | NA                                        | 30                                          | 2.2                   | 9.3                   | 8.4                   | 2.5 U                 | 2.2 U                  | 1.4 ∪                 |
| MAGNESIUM                         | NUT                    | NA                                        | NA NA                                       | 7,260                 | 7660                  | 7,020                 | 7,660                 | 7,490                  | 7,450                 |
| MANGANESE                         | NE                     | NA                                        | . NA                                        | 661                   | 715                   | 845                   | 858                   | 815                    | 784                   |
| NICKEL                            | 880                    | NA                                        | NA NA                                       | 1.1 U                 | 0.88 U                | 0.41 U                | 0.53                  | 0.46                   | 0.64                  |
| POTASSIUM                         | NUT                    | NA NA                                     | NA NA                                       | 5210                  | 5490                  | 5,270                 | 5,590                 | 5,490                  | 5,150                 |
| SELENIUM                          | 50                     | NA                                        | NA NA                                       | 1.5 U                 | 2 J                   | 1.5 U                 | 1.5 U                 | 1.5 U                  | 2.2 U                 |
| SILVER                            | 12                     | NA                                        | NA NA                                       | 0.46 U                | 0.46 U                | 1.5                   | 0.46 U                | 0.46 U                 | 0.54 U                |
| SODIUM                            | NUT                    | NA NA                                     | NA NA                                       | 46,900                | 49,600                | 52,100                | 53,400                | 52,300                 | 50,100                |
| VANADIUM                          | NE                     | NA                                        | NA NA                                       | 1.3 U                 | 1.4 U                 | 3.7                   | 0.34 U                | 0.29 U                 | 0.52 U                |
| ZINC                              | 123                    | NA .                                      | 200                                         | 21.3 J                | 22.3                  | 47.1                  | 22.8                  | 20.0                   | 26.6                  |
| Inorganics, Filtered (μg/L)       |                        |                                           |                                             |                       |                       |                       |                       |                        |                       |
| ALUMINUM                          | NE                     | NA NA                                     | NA NA                                       | 20.4 J                | 36.7 J                | 21.3 J                | 19.0 U                | 19.0 U                 | 35.4                  |
| ARSENIC                           | 4                      | NA NA                                     | NA NA                                       | 3.5 U                 | 2.2 U                 | 1,2 J                 | 1.9 U                 | 1.1 U                  | 2.8                   |
| BARIUM                            | NE                     | NA .                                      | NA NA                                       | 44.6                  | 46.4                  | 50.1                  | 48.9                  | 49.6                   | 56.8                  |
| CALCIUM                           | NUT                    | NA                                        | NA NA                                       | 33,600                | 34,700                | 31,400                | 33,100                | 33,400                 | 36,000                |
| CHROMIUM                          | 110 (4)                | NA .                                      | NA NA                                       | 1.2 U                 | 0.44 U                | 0.3 J                 | 0.29                  | 0.48                   | 0.38 U                |
| COBALT                            | NE                     | NA NA                                     | NA NA                                       | 0.67 U                | 0.86 U                | 0.47 J                | 0.48                  | 0.51                   | 0.64                  |
| IRON                              | NUT                    | NA                                        | NA NA                                       | 3,470                 | 3,630                 | 3,600                 | 4,190                 | 4,140                  | 3,750                 |

TABLE 3-1

# SUMMARY OF POSITIVE DETECTIONS FOR YEAR 1 MONITORING EVENTS SITE 23 UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 3 OF 3

| PARAMETER                                                                                 | Surface Water<br>Protection Criteria <sup>(1)</sup> | Residential<br>Volatilization<br>Criteria <sup>(2)</sup> | Stormwater<br>Discharge<br>Permit Criteria <sup>(3)</sup> | 23MP01<br>S23GWMPM01<br>20070618<br>ORIGINAL | 23MP01<br>FD-061807<br>20070618<br>DUPLICATE | 23MP01<br>823GWMPM02<br>20070906<br>ORIGINAL | 23MP01<br>S23GWMPM-03<br>20071218 | 23MP01<br>FD-121807-01<br>20071218 | 23MP01<br>S23GWMPM-04<br>20080221 |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| Inorganics, Filtered (continued) (μg/L)                                                   |                                                     |                                                          |                                                           |                                              | DOFLICATE                                    | URIGINAL                                     | ORIGINAL                          | DUPLICATE                          | ORIGINAL                          |
| AD                                                                                        | 13                                                  | NA                                                       | 30                                                        | 1.3 J                                        | 1.8 J                                        | 1                                            |                                   |                                    | <u></u>                           |
| AGNESIUM                                                                                  | NUT                                                 | NA NA                                                    | NA NA                                                     | 7,200                                        |                                              | 1,1 U                                        | 2.1 U                             | 2.8 U                              | 1.4 U                             |
| NGANESE                                                                                   | NE                                                  | NA                                                       | NA NA                                                     |                                              | 7,480                                        | 6,980                                        | 7,250                             | 7,300                              | 8,020                             |
| CKEL                                                                                      | 880                                                 | NA NA                                                    |                                                           | 645                                          | 664                                          | 708                                          | 764                               | 770                                | 815                               |
| TASSIUM                                                                                   | NUT                                                 |                                                          | NA ·                                                      | 1.1 U                                        | 0.88 U                                       | 0.78 J                                       | 1.0                               | 0.64                               | 0.66                              |
| LENIUM                                                                                    | 50                                                  | NA NA                                                    | NA NA                                                     | 5,090                                        | 5,390                                        | 5,320                                        | 5,360                             | 5,390                              | 5,390                             |
| DIUM                                                                                      |                                                     | NA NA                                                    | NA NA                                                     | 1.5 U                                        | 1.7 J                                        | 2.4 U                                        | 1.5 U                             | 2.3 U                              | 2.2 U                             |
| IC .                                                                                      | NUT                                                 | NA NA                                                    | NA NA                                                     | 46,600                                       | 48,400                                       | 52,600                                       | 50,400                            | 51,400                             | 52.100                            |
|                                                                                           | 123                                                 | NA .                                                     | 200                                                       | 21.4 J                                       | 19.5 J                                       | 15                                           | 18.6                              | 20.8                               | 26                                |
| roleum Hydrocarbons (µg/L)                                                                |                                                     |                                                          |                                                           |                                              |                                              | <u> </u>                                     |                                   | 20.0                               | 20                                |
| ETPH (C09-C36)                                                                            | NE                                                  | NE                                                       | 2500 <sup>(5)</sup>                                       | 55 J                                         | 79 U                                         | 140 J                                        | 160 U                             |                                    |                                   |
| roleum Hydrocarbons, Filtered (µg/L)                                                      |                                                     |                                                          |                                                           |                                              |                                              | 1403                                         | 160 0                             | 1600 J                             | 75 ∪                              |
| ETPH (C09-C36)                                                                            | NE NE                                               | NE                                                       | 2500 <sup>(5)</sup>                                       | NA I                                         | NA I                                         |                                              |                                   | <u> </u>                           |                                   |
| Connecticut Remediation Standard Regulations Proposed Revisions to Connecticut's Remediat |                                                     |                                                          | 2000                                                      | iva.                                         | , NA J                                       | NA                                           | NA .                              | NA                                 | 75 U                              |

## ATTACHMENT A.5 RISKS BASED ON QUARTERLY UNDERDRAIN METERING PIT SAMPING RESULTS

# TABLE 2.1 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 4

Scenario Timeframe: Medium: Groundwater Exposure Medium: Groundwater

| cposure Point | CAS<br>Number | Chemical                | Minimum<br>Concentration <sup>(1)</sup>          | Maximum<br>Concentration <sup>(1)</sup> | Units    | Sample of Maximum<br>Concentration      | Frequency<br>of<br>Detection | Range of Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Concentrations <sup>(4)</sup> | Screening Toxicity<br>Value <sup>(5)</sup> | Potential<br>ARAR/TBC | Potential<br>ARAR/TBC<br>Source                    | COPC<br>Flag | Rationale for<br>Contaminan<br>Deletion or |
|---------------|---------------|-------------------------|--------------------------------------------------|-----------------------------------------|----------|-----------------------------------------|------------------------------|------------------------------------|-------------------------------------------------------|---------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------|--------------|--------------------------------------------|
| Site 23       |               | ganic Compounds         |                                                  |                                         | <u> </u> | <u> </u>                                |                              | <del></del>                        |                                                       |                                             | <u> </u>                                   |                       | Source                                             | لـــــا      | Selection <sup>(6)</sup>                   |
|               | /1-43-2       | Benzene                 | 0.2 J                                            | 0.2 J                                   | ug/L     | S23GWMPM04                              | 1/4                          | 0.5 - 0.5                          | 0.2                                                   | NA NA                                       | 0.35 C                                     | 1                     | CTDEP RSR                                          | No I         | BSL                                        |
|               |               |                         |                                                  | į į                                     | 1        |                                         | 1                            | 1                                  | i                                                     |                                             |                                            | 5                     | FED-MCL                                            | "            | DOL                                        |
|               | 75-27-4       | Bromodichloromethane    | 0.3 J                                            | 0.3 J                                   | ug/L     | S23GWMPM01                              | 1/4                          | 0.5 - 0.5                          | 0.3                                                   | NA NA                                       |                                            | 5                     | CTDEP-MCL                                          |              |                                            |
|               |               |                         |                                                  |                                         | -        | 1                                       | "-                           | 0.5 - 0.5                          | 0.3                                                   | NA.                                         | 0.18 C                                     | 0.56<br>80            | CTDEP RSR<br>FED-MCL                               | Yes          | ASL                                        |
|               | 67-66-3       | Chloroform              | 2 J                                              | 3 J                                     |          |                                         |                              |                                    |                                                       | İ                                           |                                            | 80                    | CTDEP-MCL                                          | 1 1          |                                            |
| 1             |               |                         | - 23                                             | 3 J                                     | ug/L     | S23GWMPM01                              | 1/4                          | 0.5 - 0.5                          | 3                                                     | NA NA                                       | 0.17 C                                     | 6                     | CTDEP RSR                                          | Yes          | ASL                                        |
| ļ             |               | <u> </u>                |                                                  |                                         |          | · ·                                     | i                            |                                    |                                                       |                                             | •                                          | 80                    | FED-MCL                                            |              |                                            |
|               | 156-59-2      | cis-1,2-Dichloroethene  | 0.2 J                                            | 0.3 J                                   | ug/L     | S23GWMPM01                              | 4/4                          | 0.5 - 0.5                          | 0.3                                                   | NA .                                        | 6.1 N                                      | 80<br>70              | CTDEP-MCL<br>CTDEP RSR                             | No           | BSL                                        |
|               |               |                         | 1.                                               |                                         |          | S23GWMPM02                              | i                            |                                    |                                                       | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,     | . 0.714                                    | 70                    | FED-MCL                                            | 140          | BSL                                        |
| ı             | 110-82-7      | Cyclohexane             | 0.1 J                                            | 0.1 J                                   | ug/L     | S23GWMPM02                              | 474                          | 0.50.5                             |                                                       |                                             |                                            | 70                    | CTDEP-MCL                                          |              |                                            |
| 1             |               |                         |                                                  | 0.70                                    | ugre     | 323GVVIVIPIVIUZ                         | 1/4                          | 0.5 - 0.5                          | 0.1                                                   | NA                                          | 1000 N                                     | NA                    | NA                                                 | No           | NTX                                        |
| ŀ             | 98-82-8       | 1                       |                                                  |                                         |          |                                         | ľ                            | 1 [                                |                                                       |                                             |                                            | NA<br>NA              | NA<br>NA                                           |              |                                            |
| l             | 90-02-8       | Isopropyibenzene        | 0.09 J                                           | 0.1 J                                   | ug/L     | S23GWMPM01                              | 2/4                          | 0.5 - 0.5                          | 0.1                                                   | NA NA                                       | 66 N                                       | 30                    | CTDEP RSR                                          | No           | BSL                                        |
| 1             |               |                         |                                                  |                                         |          | S23GWMPM02                              |                              | ! !                                |                                                       | •                                           |                                            | NA                    | NA NA                                              |              | USL                                        |
| Ī             | 1634-04-4     | Methyl Tert-Butyl Ether | 0.4 J                                            | 1                                       | ug/L     | \$23GWMPM01                             | 4/4                          | <del> </del>                       | 1                                                     |                                             |                                            | NA NA                 | NA .                                               |              |                                            |
|               |               |                         |                                                  |                                         | -5-=     | 020077777                               | 7/7                          |                                    | '                                                     | NA NA                                       | 11 C                                       | 70                    | CTDEP RSR                                          | No           | BSL                                        |
| F             | 127.19.4      | Tetrachloroethene       |                                                  |                                         |          |                                         |                              | ĺ                                  |                                                       |                                             | . 1                                        | NA<br>NA              | NA<br>NA                                           |              |                                            |
| ł             | 127-10-4      | retrachioroethene       | 0.2 J                                            | 0.4 J                                   | ug/L     | S23GWMPM02                              | 4/4                          | - :                                | 0.4                                                   | NA                                          | 0.1 C                                      | 5                     | CTDEP RSR                                          | Yes          | ASL                                        |
| . [           |               |                         | 1                                                |                                         |          | ,                                       |                              |                                    |                                                       |                                             |                                            | 5                     | FED-MCL                                            |              |                                            |
|               | 79-01-6       | Trichtoroethene         | 0.3 J                                            | 0.5 J                                   | ug/L     | S23GWMPM02                              | 4/4                          |                                    | 0.5                                                   | NA NA                                       | 0.000.0                                    | 5                     | CTDEP-MCL                                          |              |                                            |
|               |               |                         | 1                                                | !                                       |          |                                         | ,-,-                         | _                                  | 0.3                                                   | IVA .                                       | 0.028 C                                    | 5 .                   | CTDEP RSR<br>FED-MCL                               | Yes          | ASL                                        |
| h             | PAHs          | <u> </u>                |                                                  |                                         |          |                                         |                              |                                    |                                                       |                                             |                                            | 5                     | CTDEP-MCL                                          |              |                                            |
| · ř           |               | 1-Methylnaphthalene     | 0.048 J                                          | 0.96 J                                  |          | 000000000000000000000000000000000000000 |                              |                                    |                                                       |                                             |                                            |                       | O.DE. MOE                                          |              | -                                          |
| 1             |               | 7.11.1310               | 0.0483                                           | 0.96.1                                  | ug/L     | S23GWMPM-03                             | 1/4                          | 0.2 - 0.21                         | 0.96                                                  | NA                                          | 0.62 N <sup>(/)</sup>                      | 49                    | CTDEP RSR                                          | Yes          | ASL                                        |
| <u> </u>      |               |                         |                                                  |                                         |          |                                         |                              |                                    | 1                                                     | 5                                           | J                                          | NA                    | NA                                                 |              |                                            |
|               | 91-57-6       | 2-Methylnaphthalene     | 0.16 J                                           | 1.1 J                                   | ug/L     | S23GWMPM-03                             | 2/4                          | 0.2 - 0.21                         | 1.1                                                   | NA .                                        | 0.62 N <sup>(/)</sup>                      | NA<br>49              | NA<br>CTDEP RSR                                    |              |                                            |
| - 1           |               |                         | 1                                                |                                         |          |                                         |                              |                                    |                                                       |                                             | 0.02 1                                     | NA I                  | NA NA                                              | Yes          | ASL                                        |
|               | 100-01-6      | 4-Nitroaniline          | 0.75 J                                           | 0.75 J                                  | ug/L     | S23GWMPM-03                             | - 400                        |                                    |                                                       |                                             |                                            | NA                    | NA .                                               |              |                                            |
|               |               |                         |                                                  | 0.750                                   | ugic     | 323GVVIVIPIN-U3                         | 1/4                          | 0.2 - 1                            | 0.75                                                  | NA                                          | 3.2 C                                      |                       | CTDEP RSR                                          | No           | BSL                                        |
| . }-          | 83-32-9       |                         |                                                  |                                         |          |                                         |                              |                                    | ·                                                     |                                             | -                                          | NA<br>NA              | NA<br>NA                                           | 1            |                                            |
| i             | 03-32-9       | Acenaphthene            | 0.029 J                                          | 0.83 J                                  | ug/L     | S23GWMPM-03                             | 1/4                          | 0.2 - 0.21                         | 0.83                                                  | NA NA                                       | 37 N                                       | NA NA                 | NA NA                                              | No           | BSL                                        |
|               |               |                         |                                                  | 1                                       |          | 1                                       |                              | 1                                  |                                                       |                                             |                                            | NA                    | NA I                                               | 110          | DOL                                        |
|               | 208-96-8      | Acenaphthylene          | 0.9 J                                            | 0.9 J                                   | ug/L     | S23GWMPM-03                             | 1/4                          | 22 221                             |                                                       |                                             |                                            | NA                    | NA NA                                              |              |                                            |
|               |               |                         | ]                                                | 0.00                                    | ug/L     | 323GVVWFW-03                            | 1/4                          | 0.2 - 0.21                         | 0.9                                                   | NA NA                                       | 37 N <sup>(8)</sup>                        |                       | CTDEP RSR                                          | No           | BSL                                        |
| ⊢             | 120-12-7      | Aashaa                  |                                                  |                                         |          |                                         |                              |                                    | 1                                                     |                                             |                                            | NA<br>NA              | NA<br>NA                                           | - 1          |                                            |
| · i           | 120-12-7      | Anthracene              | 0.92 J                                           | 0.92 J                                  | ug/L     | S23GWMPM-03                             | 1/4                          | 0.2 - 0.21                         | 0.92                                                  | NA NA                                       | 180 N                                      |                       | CTDEP RSR                                          | No           | BSL                                        |
|               |               |                         |                                                  | 1                                       | - 1      | }                                       |                              | ľ                                  |                                                       | İ                                           |                                            | NA                    | NA                                                 |              | DOL                                        |
| Γ             | 56-55-3       | Benzo(a)anthracene      | 1 J                                              | 13                                      | ug/L     | S23GWMPM-03                             | 1/4                          | 0.041 - 0.07                       | 1                                                     | NA NA                                       |                                            | NA                    | NA .                                               |              |                                            |
| .             |               | -                       | 1 1                                              | J                                       |          |                                         | "7                           | 0.041 - 0.07                       | ' 1                                                   | . NA                                        | 0.092 C                                    | 0.06<br>NA            | CTDEP RSR<br>NA                                    | Yes          | ASL                                        |
| -             | 50-32-8       | Benzo(a)pyrene          | 0.35 J                                           |                                         |          |                                         |                              |                                    |                                                       |                                             | 1                                          | NA I                  | NA<br>NA                                           | 1            |                                            |
| 1             | 10.02.0       | DENZO(A)DYTENE          | 0.35 J                                           | 0.35 J                                  | ug/L     | S23GWMPM-03                             | 1/4                          | 0.2 - 0.21                         | 0.35                                                  | NA .                                        | 0.0092 C                                   | 0.2                   | CTDEP RSR                                          | Yes          | ASL                                        |
|               |               |                         | ]                                                |                                         |          |                                         |                              |                                    |                                                       |                                             |                                            | 0.2                   | FED-MCL                                            |              |                                            |
|               | 205-99-2      | Benzo(b)fluoranthene    | 0.64 J                                           | 0.64 J                                  | ug/L     | S23GWMPM-03                             | 1/4                          | 0.075 - 0.082                      | 0.64                                                  | NA NA                                       | 0.092 C                                    |                       | CTDEP-MCL                                          |              |                                            |
|               | •             | -                       |                                                  | .                                       | -        | ·                                       |                              |                                    | 1                                                     | ,*^                                         | 0.092 C                                    | 0.08<br>NA            | NA NA                                              | Yes          | ASL                                        |
| ⊢             | 191-24-2      | Benzo(g,h,i)perylene    | <del>                                     </del> |                                         |          |                                         |                              |                                    |                                                       |                                             | [                                          | NA I                  | NA I                                               |              |                                            |
| -             |               | oenzo(g,n,nperylene     | 0.31                                             | 0.31                                    | ug/L     | S23GWMPM-03                             | 1/4                          | 0.2 - 0.21                         | 0.31                                                  | NA                                          | 18 N <sup>(9)</sup>                        | NA                    | NA                                                 | No           | BSL                                        |
|               |               |                         |                                                  |                                         |          |                                         | . 1                          | j                                  |                                                       |                                             |                                            | NA                    | NA .                                               |              |                                            |
|               | 207-08-9      | Benzo(k)fluoranthene    | 0.53 J                                           | 0.53 J                                  | ug/L     | S23GWMPM-03                             | 1/4                          | 0.2 - 0.21                         | 0.53                                                  | NA NA                                       | 0.92 C                                     | NA<br>0.5             | NA<br>CTDEP RSR                                    |              |                                            |
| Γ             |               |                         |                                                  |                                         |          |                                         |                              | V.M.                               | 0.00                                                  | 13075 1                                     | U.92 C                                     | 0.5                   | 00 00 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | Yes          | ASL                                        |
| ſ             |               |                         | 1                                                | 1                                       | 1        | . 1                                     | - 1                          |                                    |                                                       | i                                           |                                            | NA I                  | NA                                                 | -50          | AGE                                        |

# TABLE 2.1 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 4

Scenario Timeframe: Medium: Groundwater Exposure Medium: Groundwater

| Exposure Point | CAS<br>Number | Chemical               | Minimum<br>Concentration <sup>(1)</sup> | Maximum<br>Concentration <sup>(1)</sup> | Units | Sample of Maximum<br>Concentration | Frequency<br>of<br>Detection | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Concentrations <sup>(4)</sup> | Screening Toxicity<br>Value <sup>(5)</sup> | Potential<br>ARAR/TBC          | Potential<br>ARAR/TBC<br>Source   | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|----------------|---------------|------------------------|-----------------------------------------|-----------------------------------------|-------|------------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------|-----------------------------------|--------------|-------------------------------------------------------------------------|
|                | 218-01-9      | Chrysene               | 0.76 J                                  | 0.76 J                                  | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 0.76                                                  | NA                                          | 9.2 C                                      | 4.8<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                | 53-70-3       | Dibenzo(a,h)anthracene | 0.14 J                                  | 0.14 J                                  | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 0.14                                                  | NA :                                        | 0.0029 C                                   | 0.2<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | Yes          | ASL                                                                     |
|                | 206-44-0      | Fluoranthene           | 1.1 J                                   | 1.1 J                                   | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 1,1                                                   | NA NA                                       | 150 N                                      | 280<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                | 86-73-7       | Fluorene               | 0.97 J                                  | 0.97 J                                  | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 0.97                                                  | NA .                                        | 24 N                                       | 280<br>NA                      | CTDEP RSR<br>NA                   | No           | BSL                                                                     |
|                | 118-74-1      | Hexachlorobenzene      | 1.2 J                                   | 1.2 J                                   | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 1                               | 1.2                                                   | NA NA                                       | 0.042 C                                    | NA<br>1                        | NA<br>CTDEP RSR<br>FED-MCL        | Yes          | ASL                                                                     |
|                | 87-68-3       | Hexachlorobutadiene    | 0.64 J                                  | 0.64 J                                  | ug/L  | S23GWMPM-03                        | 1/4                          | 0.099 - 0.48                          | 0.64                                                  | NA NA                                       | 0.86 C                                     | 1<br>49<br>NA                  | CTDEP-MCL<br>CTDEP RSR<br>NA      | No           | <b>B</b> SL                                                             |
|                | 193-39-5      | Indeno(1,2,3-cd)pyrene | 0.22                                    | 0.22                                    | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 0.22                                                  | NA NA                                       | 0.092 C                                    | 50<br>0.5<br>NA                | CTDEP-MCL<br>CTDEP RSR<br>NA      | Yes          | ASL                                                                     |
|                | 91-20-3       | Naphthalene            | 0.088 J                                 | 1 J                                     | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | : 1                                                   | NA .                                        | 0.62 N                                     | NA<br>280<br>NA<br>NA          | NA<br>CTDEP RSR<br>NA<br>NA       | Yes          | ASL                                                                     |
|                | 85-01-8       | Phenanthrene           | 0.98 J                                  | 0.98 J                                  | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 0.98                                                  | NA .                                        | 18 N <sup>(9)</sup>                        | 200<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                | 129-00-0      | Pyrene                 | 0.84 J                                  | 0.84 J                                  | ug/L  | S23GWMPM-03                        | 1/4                          | 0.2 - 0.21                            | 0.84                                                  | NA NA                                       | 18 N                                       | 200<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                | PAHs, Filter  | red                    |                                         | L                                       |       | <u> </u>                           | <del></del>                  |                                       |                                                       |                                             |                                            |                                |                                   | ·            |                                                                         |
|                |               | 1-Methylnaphthalene    | 0.093 J                                 | 0.093 J                                 | ug/L  | S23GWMPM04                         | 1/1                          | •                                     | 0.093                                                 | NA NA                                       | 0.62 N <sup>(7)</sup>                      | 49 <sup>(10)</sup><br>NA<br>NA | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                | 83-32-9       | Acenaphthene           | 0.031 J                                 | 0.031 J                                 | ug/L  | S23GWMPM04                         | 1/1                          | •                                     | 0.031                                                 | NA NA                                       | 37 N                                       | NA<br>NA<br>NA                 | NA<br>NA<br>NA                    | No           | BSL                                                                     |
|                | 191-24-2      | Benzo(g,h,i)perylene   | 0.13 J                                  | 0.13 J                                  | ug/L  | S23GWMPM04                         | 1/1                          | -                                     | 0.13                                                  | NA .                                        | 18 N <sup>(9)</sup>                        | NA<br>NA<br>NA                 | NA<br>NA<br>NA                    | No :         | BSL                                                                     |
|                | 193-39-5      | Indeno(1,2,3-cd)pyrene | 0.22 J                                  | 0.22 J                                  | ug/L  | S23GWMPM04                         | 1/1                          | - · · · ·                             | 0.22                                                  | . NA                                        | 0.092 C                                    | 0.5<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | Yes          | ASL                                                                     |
|                | 91-20-3       | Naphthalene            | 0.069 J                                 | 0.069 1                                 | ug/L  | S23GWMPM04                         | 1/1                          | •                                     | 0.069                                                 | NA .                                        | 0.62 N                                     | 280<br>NA<br>NA                | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                | Inorganics    | ·                      |                                         |                                         |       |                                    |                              |                                       | 473                                                   | 3560                                        | 3600 N                                     | NA.                            | l NA                              | Yes          | ASL                                                                     |
|                |               | Aluminum               | 21.8                                    | 473                                     | ug/L  | S23GWMPM01                         | 4/4                          | -                                     |                                                       |                                             |                                            | 50<br>NA                       | FED-SMCL<br>NA                    |              |                                                                         |
|                | 7440-38-2     | Arsenic                | 3.1                                     | 13.9                                    | ug/L  | S23GWMPM02                         | 2/4                          | 2.2 - 4.7                             | 13.9                                                  | 1.92                                        | 0.045 C                                    | 50<br>10<br>10                 | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL |              | ASL                                                                     |
|                | 7440-39-3     | Barium                 | 48.2                                    | 87                                      | ug/L  | S23GWMPM02                         | 4/4                          |                                       | 87                                                    | 227                                         | 260 N                                      | 1000<br>2000<br>2000           | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL | No           | BSL                                                                     |
| •              | 7440-70-2     | Calcium                | 32000                                   | 35800                                   | ug/L  | S23GWMPM01-D                       | 4/4                          | •                                     | 35800                                                 | 188000                                      | NA                                         | NA<br>NA<br>NA                 | NA<br>NA<br>NA                    | No           | NUT                                                                     |
|                | 15723-28-1    | Chromium               | 0.41                                    | 2                                       | ug/L  | S23GWMPM02                         | 2/4                          | 0.28 - 0.94                           | 2                                                     | 49.9                                        | 11 N <sup>(11)</sup>                       | 50<br>100<br>100               | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL | No           | BSL                                                                     |

# TABLE 2.1 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT PAGE 3 OF 4

Scenario Timeframe: Medium: Groundwater Exposure Medium: Groundwater

| Exposure Point | CAS<br>Number | Chemical  | Minimum<br>Concentration <sup>(1)</sup> | Maximum<br>Concentration <sup>(1)</sup> | Units | Sample of Maximum<br>Concentration | Frequency<br>of<br>Detection           | Range of<br>Nondetects <sup>(2)</sup> | Concentration Used for Screening <sup>(3)</sup> | Background<br>Concentrations <sup>(4)</sup> | Screening Toxicity<br>Value <sup>(5)</sup> | Potential<br>ARAR/TBC | Potential<br>ARAR/TBC<br>Source     | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|----------------|---------------|-----------|-----------------------------------------|-----------------------------------------|-------|------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------|---------------------------------------------|--------------------------------------------|-----------------------|-------------------------------------|--------------|-------------------------------------------------------------------------|
|                | 7440-48-4     |           | 0.53                                    | 0.66                                    | ug/L  | S23GWMPM-03                        | 2/4                                    | 0.26 - 0.84                           | 0.66                                            | 48.6                                        | 73 N                                       | NA<br>NA<br>NA        | NA<br>NA<br>NA                      | No           | BSL                                                                     |
|                | 7440-50-8     | Copper    | 4.2                                     | 4.2                                     | ug/L  | S23GWMPM02                         | 1/4                                    | 0.22 - 3                              | 4.2                                             | 107                                         | 150 N                                      | 1300<br>1300<br>1300  | FED-MCL<br>CTDEP-MCL                | No           | BSL                                                                     |
|                | 7439-89-6     | Iron      | 4380                                    | 70800                                   | ug/L  | S23GWMPM02                         | 4/4                                    |                                       | 70800                                           | 28200                                       | 1100 N                                     | NA<br>300<br>NA       | CTDEP RSR<br>FED-SMCL<br>CTDEP-MCL  | Yes          | ASL                                                                     |
|                | 7439-92-1     | Lead      | 2.2                                     | 9.3                                     | ug/L  | S23GWMPM01-D                       | 2/4                                    | 1.4 - 2.5                             | 9.3                                             | 6.63                                        | NA NA                                      | 15<br>15<br>15        | CTDEP-MCL<br>CTDEP-MCL<br>CTDEP-MCL | No           | BSL                                                                     |
|                | 7439-95-4     | Magnesium | 7020                                    | 7660                                    | ug/L  | S23GWMPM01-D<br>S23GWMPM-03        | 4/4                                    | •                                     | 7660                                            | 191000                                      | NA NA                                      | NA<br>NA              | NA<br>NA                            | No           | NUT                                                                     |
|                | 7439-96-5     | Manganese | 661                                     | 858                                     | ug/L  | S23GWMPM-03                        | 4/4                                    | •                                     | 858                                             | 11700                                       | 88 N                                       | NA<br>NA<br>50        | NA<br>NA<br>FED-SMCL                | Yes          | ASL                                                                     |
|                | 7440-02-0     | Nickel    | 0.46                                    | 0.64                                    | ug/L  | S23GWMPM04                         | 2/4                                    | 0.41 - 1                              | 0.64                                            | 32.2                                        | 73 N                                       | NA<br>100<br>NA       | NA<br>CTDEP RSR<br>NA               | No           | BSL                                                                     |
| ,              | 7440-09-7     | Potassium | 5150                                    | 5590                                    | ug/L  | \$23GWMPM-03                       | 4/4                                    | ÷                                     | 5590                                            | 70800                                       | NA NA                                      | NA<br>NA              | NA<br>NA                            | No No        | NUT                                                                     |
| ,              | 7782-49-2     | Selenium  | 2 J                                     | 2 J                                     | ug/L  | S23GWMPM01-D                       | 1/4                                    | 1.5 - 2.2                             | 2                                               | 3.19                                        | 18 N                                       | 50<br>50              | NA<br>CTDEP RSR<br>FED-MCL          | No           | BSL                                                                     |
|                | 7440-22-4     | Silver    | 1.5                                     | 1.5                                     | ug/L  | S23GWMPM02                         | 1/4.                                   | 0.46 - 0.54                           | 1.5                                             | NA NA                                       | 18 N                                       | 50<br>36<br>100       | NA<br>FED-SMCL                      | No           | BSL                                                                     |
|                | 7440-23-5     | Sodium    | 46900                                   | 53400                                   | ug/L  | S23GWMPM-03                        | 4/4                                    | •                                     | 53400                                           | 1900000                                     | NA NA                                      | NA<br>NA<br>NA        | NA<br>NA<br>NA                      | No           | NUT                                                                     |
|                | 7440-62-2     | Vanadium  | 3.7                                     | 3.7                                     | ug/L  | S23GWMPM02                         | 1/4                                    | 0.29 - 1.4                            | 3.7                                             | 10.2                                        | 3.6 N                                      | 50<br>NA<br>NA        | NA<br>CTDEP RSR<br>NA<br>NA         | Yes          | ASL                                                                     |
|                | 7440-66-6     | Zinc      | 20 J                                    | 47.1                                    | ug/L  | \$23GWMPM02                        | 4/4                                    | -                                     | 47.1                                            | 131                                         | 1100 N                                     | 5000<br>NA<br>NA      | CTDEP RSR<br>NA<br>NA               | No           | BSL                                                                     |
|                | Inorganics,   | Filtered  | · · · · · · · · · · · · · · · · · · ·   |                                         |       | <del></del>                        | لـــــــــــــــــــــــــــــــــــــ |                                       |                                                 |                                             | L                                          | N/A                   | 1 194                               |              |                                                                         |
|                | 7429-90-5     | Aluminum  | 20.4 J                                  | 36.7 J                                  | ug/L  | S23GWMPM01-D                       | 3/4                                    | 19 - 19                               | 36.7                                            | 64.4                                        | 3600 N                                     | NA<br>50<br>NA        | NA<br>FED-SMCL<br>NA                | No           | BSL                                                                     |
| •              | 7440-38-2     | Arsenic   | 1.2 J                                   | 2.8                                     | ug/L  | S23GWMPM04                         | 2/4                                    | 1.1 - 3.5                             | 2.8                                             | 2.55                                        | 0.045 C                                    | 50<br>10<br>10        | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL   | Yes          | ASL                                                                     |
| •              | 7440-39-3     | Barium    | 44.6                                    | 56.8                                    | ug/L  | S23GWMPM04                         | 4/4                                    | -                                     | 56.8                                            | 124                                         | 260 N                                      | 1000<br>2000<br>2000  | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL   | No .         | BSL                                                                     |
|                | 7440-70-2     | Calcium   | 31400                                   | 36000                                   | ug/L  | S23GWMPM04                         | 4/4                                    |                                       | 36000                                           | 152000                                      | NA                                         | NA<br>NA<br>NA        | NA<br>NA<br>NA                      | No           | NUT                                                                     |
|                | 15723-28-1    | Chromium  | 0.29 J                                  | 0.48                                    | ug/L  | S23GWMPM-03-D                      | 2/4                                    | 0.38 - 1.2                            | 0.48                                            | 16                                          | 11 N <sup>(11)</sup>                       | 50<br>100<br>100      | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL   | No           | BSL                                                                     |
|                | 7440-48-4     |           | 0.47 J                                  | 0.64                                    | ug/L  | S23GWMPM04                         | 3/4                                    | 0.67 - 0.86                           | 0.64                                            | 43.3                                        | 73 N                                       | NA<br>NA<br>NA        | NA<br>NA<br>NA                      | Nó           | BSL                                                                     |
|                | 7439-89-6     | Iron      | 3470                                    | 4190                                    | ug/L  | S23GWMPM-03                        | 4/4                                    | •                                     | 4190                                            | 25300                                       | 1100 N                                     | NA<br>300<br>NA       | NA<br>FED-SMCL                      | Yes          | ASL                                                                     |

### TABLE 2.1

#### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT

PAGE 4 OF 4

Scenario Timeframe: Medium: Groundwater Exposure Medium: Groundwater

| Exposure Point | CAS<br>Number | Chemical                     | Minimum<br>Concentration <sup>(1)</sup> | Maximum<br>Concentration <sup>(1)</sup> | Units | Sample of Maximum<br>Concentration          | Frequency<br>of<br>Detection | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Concentrations <sup>(4)</sup> | Screening Toxicity<br>Value <sup>(5)</sup> | Potential<br>ARAR/TBC | Potential<br>ARAR/TBC<br>Source   | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(6)</sup> |
|----------------|---------------|------------------------------|-----------------------------------------|-----------------------------------------|-------|---------------------------------------------|------------------------------|---------------------------------------|-------------------------------------------------------|---------------------------------------------|--------------------------------------------|-----------------------|-----------------------------------|--------------|-------------------------------------------------------------------------|
|                | 7439-92-1     | Lead                         | 1.3 J                                   | 1.8 J                                   | ug/L  | S23GWMPM01-D                                | 1/4                          | 1.1 - 2.8                             | 1.8                                                   | 2.52                                        | NA                                         | 15<br>15<br>15        | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL | No           | BSL                                                                     |
|                | 7439-95-4     | Magnesium                    | 6980                                    | 8020                                    | ug/L  | S23GWMPM04                                  | 4/4                          | •                                     | 8020                                                  | 150000                                      | NA NA                                      | NA<br>NA<br>NA        | NA<br>NA<br>NA                    | No           | NUT                                                                     |
|                | 7439-96-5     | Manganese                    | 645                                     | 815                                     | ug/L  | S23GWMPM04                                  | 4/4                          | •                                     | 815                                                   | 9400                                        | 88 N                                       | NA<br>50<br>NA        | NA<br>FED-SMCL<br>NA              | Yes          | ASL                                                                     |
|                | 7440-02-0     | Nickel                       | 0.64 J                                  | 1                                       | ug/L  | S23GWMPM-03                                 | 3/4                          | 0.88 - 1.1                            | 1                                                     | 15.3                                        | 73 N                                       | 100<br>NA<br>100      | NA<br>NA<br>NA                    | No           | BSL                                                                     |
| •              | 7440-09-7     | Potassium                    | 5090                                    | 5390                                    | ug/L  | S23GWMPM01-D<br>S23GWMPM-03-D<br>S23GWMPM04 | 4/4                          | •                                     | 5390                                                  | 60000                                       | NA NA                                      | NA<br>NA<br>NA        | NA<br>NA<br>NA                    | No           | NUT                                                                     |
|                | 7782-49-2     | Selenium                     | 1.7 J                                   | 1.7 J                                   | ug/L  | S23GWMPM01-D                                | 1/4                          | 1.5 - 2.4                             | 1.7                                                   | NA.                                         | 18 N                                       | 50<br>50<br>50        | CTDEP RSR<br>FED-MCL<br>CTDEP-MCL | No           | BSL                                                                     |
|                | 7440-23-5     | Sodium                       | 46600                                   | 52600                                   | ug/L  | S23GWMPM02                                  | 4/4                          | •                                     | 52600                                                 | 1580000                                     | NA                                         | NA<br>NA<br>NA        | NA<br>NA<br>NA                    | No           | NUT                                                                     |
|                | 7440-66-6     | Zinc                         | 15 J                                    | 26                                      | ug/L  | S23GWMPM04                                  | 4/4                          | -                                     | 26                                                    | 109                                         | 1100 N                                     | 5000<br>NA<br>NA      | CTDEP RSR<br>NA<br>NA             | No           | BSL                                                                     |
|                |               | lydrocarbons                 |                                         |                                         |       |                                             | D 6/4                        | 75 400                                | 4600                                                  |                                             | I NA                                       | 500                   | CTDEP RSR                         | Yes          | ASL                                                                     |
|                |               | Totał Petroleum Hydrocarbons | 55 J                                    | 1600 J                                  | ug/L  | S23GWMPM-03-D                               | 3/4                          | 75 - 160                              | 1600                                                  | NA .                                        | NA                                         | NA<br>NA              | NA<br>NA                          | res          | AGL                                                                     |

#### Footnotes:

- 1 Sample and duplicate are considered as two separate samples when determining the minimum and maximum concentrations.
- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 Values are from the Basewide Groundwater Operable Unit Remedial Investigation Report (Tetra Tech, January 2002).
- 5 USEPA Region IX Preliminary Remediation Goal (PRG). The noncarcinogenic values (denoted with a "N" flag) are the PRG divided by 10 to correspond 5 - USEPA Region IX Preinfilingly Remediation Goal (PRG). The honoractinggenic values (denoted with a "Nagy are the PRG divided by 16 to a target hazard quotient of 0.1. Carcinogenic values represent an incremental cancer risk of 1.0E-06 (carcinogens denoted with a "C" flag) (USEPA Region IX, October 2004, Updated December 28, 2004).
   6 - The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level.
- 7 Naphthalene is used as a surrogate for 1- and 2-methylnaphthalene.
- 8- Acenaphthene is used as a surrogate for acenaphthylene.
- 9 Pyrene is used as a surrogate for benzo(g.h,i)perylene and phenanthrene.
- 10 2-methylnaphthalene is used as a surrogate for 1-methylnaphthalene.
- 11 Value is for hexavalent chromium.

Shaded criterion indicates that the maximum detected concentration exceeds one or more screening criteria. Shaded chemical name indicates that the chemical was retained as a COPC.

**Associated Samples** S23GWMPM01 S23GWMPM01-D S23GWMPM02

\$23GWMPM-03 S23GWMPM-03-D

S23GWMPM04

Definitions:

ARAR/TBC = Applicable or Relevant and Appropriate Requirements To Be Considered

C = Carcinogen
COPC = Chemical Of Potential Concern

J = Estimated value

N = Noncarcinogen

NA = Not Applicable/Not Available

FED-MCL = Federal Maximum Contaminant Level (USEPA, 2006) FED-SMCL = Federal Maximum Contaminant Level (USEPA, 2006)

CTDEP-RSR = Connecticut DEP Remediation Standard Regulations, 1996.

CTDEP-MCL = Connecticut DEP Maximum Contaminant Level.

Rationale Codes:

For selection as a COPC:

ASL = Above Screening Level/ARAR/TBC

For elimination as a COPC:

BSL = Below COPC Screening Level

NUT = Essential nutrient

NTX = No toxicity criteria

EPA1 = USEPA Region 1 does not advocate evaluation of this chemical

# TABLE 3.1.RME EXPOSURE POINT CONCENTRATION SUMMARY REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

| Exposure Point | Chemical of            | Units | Arithmetic | 95% UCL        | Maximum<br>Concentration |        | Ex    | posure Point Concentration     |           |
|----------------|------------------------|-------|------------|----------------|--------------------------|--------|-------|--------------------------------|-----------|
|                | Potential Concern      | }     | Mean       | (Distribution) | (Qualifier)              | Value  | Units | Statistic                      | Rationale |
| Site 23        | Bromodichloromethane   | ug/L  | 0.26       | (1)            | 0.3 J                    | 0.3    | ug/L  | Maximum Detected Concentration | (2)       |
|                | Chloroform             | ug/L  | 0.81       | (1)            | 3 J                      | 2.5    | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Tetrachloroethene      | ug/L  | 0.31       | (1)            | 0.4 J                    | 0.4    | ug/L  | Maximum Detected Concentration | (2)       |
|                | Trichloroethene        | ug/L  | 0.40       | (1)            | 0.5 J                    | 0.5    | ug/L  | Maximum Detected Concentration | (2)       |
|                | 1-Methylnaphthalene    | ug/L  | 0.20       | (1)            | 0.96 J                   | 0.492  | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | 2-Methylnaphthalene    | ug/L  | 0.24       | (1)            | 1.1 J                    | 0.6    | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Benzo(a)anthracene     | ug/L  | 0.15       | (1)            | 1 J                      | 0.51   | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Benzo(a)pyrene         | ug/L  | 0.13       | (1)            | 0.35 J                   | 0.225  | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Benzo(b)fluoranthene   | ug/L  | 0.11       | (1)            | 0.64 J                   | 0.3395 | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Benzo(k)fluoranthene   | ug/L  | 0.16       | (1)            | 0.53 J                   | 0.315  | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Dibenzo(a,h)anthracene | ug/L  | 0.11       | (1)            | 0.14 J                   | 0.12   | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Hexachlorobenzene      | ug/L  | 0.34       | (1)            | 1.2 J                    | 0.65   | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Indeno(1,2,3-cd)pyrene | ug/L  | 0.12       | (1)            | 0.22                     | 0.16   | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Naphthalene            | ug/L  | 0.21       | (1)            | 1 J                      | 0.552  | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Aluminum               | ug/L  | 169        | (1)            | 473                      | 322    | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Arsenic                | ug/L  | 5.1        | (1)            | 13.9                     | 13.9   | ug/L  | Maximum Detected Concentration | (2)       |
|                | Iron                   | ug/L  | 23939      | (1)            | 70800                    | 70800  | ug/L  | Maximum Detected Concentration | (2)       |
|                | Manganese              | ug/L  | 788        | (1)            | 858                      | 845    | ug/L  | Maximum Detected Concentration | (2,3)     |
|                | Vanadium               | ug/L  | 1.2        | (1)            | 3.7                      | 3.7    | ug/L  | Maximum Detected Concentration | (2)       |

For non-detects, 1/2 sample quantitation limit was used as a proxy concentration.

J - Estimated value.

<sup>1 -</sup> There were an insufficent number of samples to calculate distribution statistics.

<sup>2 -</sup> There were only four rounds of results which is insufficient to calculate a temporal average, therefore the maximum detected concentration is used as the exposure point concentration.

### TABLE 4.1.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS

### REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

| Exposure Route | Receptor Population  | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition               | Value      | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name       |
|----------------|----------------------|--------------|----------------|-------------------|------------------------------------|------------|--------------|-------------------------|--------------------------------------|
| Dermal         | Construction Workers | Adult        | Site 23        | Daevent           | Dermally Absorbed Dose per Event   | Calculated | mg/cm2-event | U.S. EPA, 2004          | Dermally Absorbed Dose (mg/kg/day) = |
|                |                      |              |                | SA                | Skin Surface Available for Contact | 3300       | cm2          | U.S. EPA, 2004          |                                      |
|                |                      | *            |                | EV.               | Event Frequency                    | 1          | events/day   | (1)                     | DAevent x EV x EF x ED x SA          |
|                |                      |              |                | ET                | Exposure Time                      | 4.         | hours/day    | (1) .                   | BW x AT                              |
|                | ·                    |              |                | EF                | Exposure Frequency                 | 30         | days/year    | (1)                     |                                      |
|                | i                    |              |                | ED                | Exposure Duration                  | 1          | years        | (1)                     | See text for calculation of DAevent. |
|                |                      | **           |                | BW                | Body Weight                        | . 70       | · kg         | U.S. EPA, 1989          |                                      |
|                |                      |              |                | AT-C              | Averaging Time (Cancer)            | 25550      | days         | U.S. EPA, 1989          |                                      |
|                |                      |              |                | AT-N              | Averaging Time (Non-Cancer)        | 365        | days         | U.S. EPA, 1989          | <u> </u>                             |

### Sources:

- 1 Professional judgment.
- U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. EPA/540/1-86/060.
- U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

### **Unit Intake Calculations**

Ingestion intake = (IR-GW x EF x ED)/(BW x AT)

Dermal Intake = (SA x EV x EF x ED)/(BW x AT)

Cancer Ingestion Intake = NA

Cancer Dermai Intake = 5.54E-02

Noncancer Ingestion Intake = NA

Noncancer Dermal Intake = 3.87E+00

### TABLE 4.2.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS

### REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Air

| Exposure Route | Receptor Population  | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition             | Value      | Units          | Rationale/<br>Reference | Intake Equation/<br>Model Name |
|----------------|----------------------|--------------|----------------|-------------------|----------------------------------|------------|----------------|-------------------------|--------------------------------|
| Inhalation     | Construction Workers | Adult        | Site 23        | CA                | Chemical concentration in air    | Calculated | mg/m3          | VDEQ, 2004              | Intake (mg/kg/day) =           |
|                |                      | :*           | 1              | CW                | Chemical concentration in water. | Average    | ug/L           |                         |                                |
|                |                      |              |                | CF                | Conversion Factor                | 0.001      | mg/ug          |                         | CA x IR x ET x EF x ED         |
|                |                      |              |                | IR                | Inhalation Rate                  | 2.5        | m3/hour        | U.S. EPA, 1993          | BW x AT                        |
|                |                      |              |                | ET                | Exposure Time                    | 4          | hours/day      | (1)                     |                                |
| · .            |                      |              | •              | EF                | Exposure Frequency               | 30         | days/year      | (1)                     | CA = CW x CF x VF              |
|                |                      | ,            | ·              | ED                | Exposure Duration                | 1          | years          | (1)                     |                                |
|                |                      |              | +              | BW                | Body Weight                      | 70         | kg             | U.S. EPA, 1989          |                                |
|                |                      |              |                | AT-C              | Averaging Time (Cancer)          | 25550      | days           | U.S. EPA, 1989          |                                |
|                |                      |              |                | AT-N              | Averaging Time (Non-Cancer)      | 365        | days           | U.S. EPA, 1989          |                                |
|                |                      |              |                | VF                | Volatilization Factor            | Calculated | (mg/m3)/(mg/L) | VDEQ, 2004              |                                |

### Notes:

- 1 Professional judgment.
- U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. EPA/540/1-86/060.
- U.S. EPA, 1993: Superfund's Standard Default Exposure Factors for the Central Tendency and Reasonable Maximum Exposure.
- VDEQ, 2004: Virginia Department of Environmental Quality (VDEQ, online- http://www.deq.state.va.us/vrprisk/homepage.html).

### Unit Intake Calculations

Inhalation Intake = (IR x ET x EF x ED)/(BW x AT)

Cancer Inhalation Intake = 1.68E-04

Noncancer Inhalation Intake = 1,17E-02

### TABLE 4.3.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT

NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

| Exposure Route | Receptor Population | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition                  | Value          | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name           |
|----------------|---------------------|--------------|----------------|-------------------|---------------------------------------|----------------|--------------|-------------------------|------------------------------------------|
| Ingestion      | Residents           | Child        | Site 23        | CGW               | Chemical Concentration in Groundwater | Max or 95% UCL | mg/kg        | U.S. EPA, 2002a         | Chronic Daily Intake (CDI) (mg/kg/day) = |
|                |                     | !            | 1.             | CF                | Conversion Factor                     | 0.001          | mg/ug        | -                       |                                          |
|                |                     |              |                | IR-GW             | Ingestion Rate of Groundwater         | 1.5            | L/day        | U.S. EPA, 1994          | CW x CF x IR-GW x EF x ED                |
|                |                     |              |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          | BW x AT                                  |
| ·<br>·         |                     |              | ·              | ED1               | Exposure Duration (Age 0 - 2)         | 2              | years        | U.S. EPA, 1989          |                                          |
|                |                     |              |                | ED2               | Exposure Duration (Age 2 - 6)         | 4 /            | years        | U.S. EPA, 1989          |                                          |
|                |                     |              |                |                   | Body Weight                           | 15             | kg           | U.S. EPA, 1991          |                                          |
|                | ·                   |              |                | AT-C              | Averaging Time (Cancer)               | 25550          | days         | U.S. EPA, 1989          |                                          |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)           | 2190           | days         | U.S. EPA, 1989          |                                          |
| Dermal         | Residents           | Child        | Site 23        | Daevent           | Dermally Absorbed Dose per Event      | Calculated     | mg/cm2-event | U.S. EPA, 2004          | Dermally Absorbed Dose (mg/kg/day) =     |
|                |                     |              |                | SA                | Skin Surface Available for Contact    | 6,600          | cm2          | U.S. EPA, 2004          |                                          |
|                |                     |              |                | EV                | Event Frequency                       | 1              | events/day   | U.S. EPA, 2004          | DAevent x EV x EF x ED x SA              |
| -              |                     |              |                | ET                | Exposure Time                         | 0.25           | hours/day    | U,S. EPA, 1997          | BW x AT                                  |
|                |                     |              |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          |                                          |
|                |                     |              |                | ED1               | Exposure Duration (Age 0 - 2)         | 2              | years        | U.S. EPA, 1989          | See text for calculation of DAevent.     |
|                |                     |              | ,              | ED2               | Exposure Duration (Age 2 - 6)         | 4              | years        | U.S. EPA, 1989          |                                          |
|                |                     |              |                | BW                | Body Weight                           | 15             | kg           | U.S. EPA, 1991          |                                          |
|                |                     |              |                | AT-C              | Averaging Time (Cancer)               | 25550          | days         | U.S. EPA, 1989          |                                          |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)           | 2190           | days         | U.S. EPA, 1989          | 1                                        |

#### Sources:

- U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1; Human Health Evaluation Manual, Part A. EPA/540/1-86/060.
- U.S. EPA, 1991: Risk Assessment Guidance for Superfund Supplemental Guidance- Standard Default Exposure Factors Interim Final.
- U.S. EPA, 1994; U.S. EPA Region I Risk Updates, August 1994.
- U.S. EPA, 1997: Exposure Factors Handbook. EPA/600/P-95/002Fa
- U.S. EPA, 2002:Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10, December.
- U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

### Unit Intake Calculations

Ingestion Intake = (IR-GW x EF x ED)/(BW x AT)

Dermal Intake = (SA x EV x EF x ED)/(BW x AT)

Cancer Ingestion Intake (Age 0 - 2) = 2.74E-06Cancer Ingestion Intake (Age 2 - 6) = 5.48E-06 Cancer Dermal Intake (Age 0 - 2) = 1.21E+01 Cancer Dermal Intake (Age 2 - 6) = 2.41E+01

Noncancer Ingestion Intake = 9.59E-05

Noncancer Dermal Intake = 4.22E+02

### TABLE 4.4.RME

### VALUES USED FOR DAILY INTAKE CALCULATIONS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT

NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

| Exposure Route | Receptor Population | Receptor Age | Exposure Point | Parameter<br>Code | Parameter Definition                  | Value          | Units        | Rationale/<br>Reference | Intake Equation/<br>Model Name           |
|----------------|---------------------|--------------|----------------|-------------------|---------------------------------------|----------------|--------------|-------------------------|------------------------------------------|
| Ingestion      | Residents           | Adult        | Site 23        | CGW               | Chemical Concentration in Groundwater | 95% UCL or Max | ug/L         | U.S. EPA, 2002          | Chronic Daily Intake (CDI) (mg/kg/day) = |
|                |                     |              |                | CF                | Conversion Factor                     | 0.001          | mg/ug        | <b></b> '               |                                          |
|                |                     |              |                | IR-GW             | Ingestion Rate of Groundwater         | 2              | L/day        | U.S. EPA, 1994          | CW x CF x IR-GW x EF x ED                |
|                |                     |              |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          | BW x AT                                  |
|                |                     |              |                | ED1               | Exposure Duration (Age 10 - 16)       | 10             | years        | U.S. EPA, 1989          |                                          |
|                |                     |              |                | ED2               | Exposure Duration (Age 16 - 30)       | 14             | years        | U.S. EPA, 1989          |                                          |
|                |                     |              |                | BW                | Body Weight                           | 70             | kg           | U.S. EPA, 1989          |                                          |
|                |                     |              |                | AT-C              | Averaging Time (Cancer)               | 25,550         | days         | U.S. EPA, 1989          | * .                                      |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)           | 3,650          | days         | U.S. EPA, 1989          |                                          |
| Dermal         | Residents           | Adult        | Site 23        | Daevent           | Dermally Absorbed Dose per Event      | Calculated     | mg/cm2-event | U.S. EPA, 2004          | Dermally Absorbed Dose (mg/kg/day) =     |
| 1.0            |                     |              |                | SA                | Skin Surface Available for Contact    | 18,000         | cm2          | U.S. EPA, 2004          |                                          |
|                |                     |              |                | ΕV                | Event Frequency                       | . 1            | events/day   | U.S. EPA, 2004          | DAevent x EV x EF x ED x SA              |
|                |                     |              |                | ET                | Exposure Time                         | 0.25           | hours/day    | U.S. EPA, 2004          | BW x AT                                  |
|                |                     |              |                | EF                | Exposure Frequency                    | 350            | days/year    | U.S. EPA, 1994          |                                          |
|                |                     |              |                | ED1               | Exposure Duration (Age 10 - 16)       | 10             | years        | U.S. EPA, 1989          | See text for calculation of DAevent.     |
|                |                     |              | *              | ED2               | Exposure Duration (Age 16 - 30)       | 14             | years        | U.S. EPA, 1989          |                                          |
|                | 2.5                 |              |                | BW                | Body Weight                           | 70 .           | kg           | U.S. EPA, 1989          |                                          |
|                |                     |              |                | AT-C              | Averaging Time (Cancer)               | 25,550         | days         | U.S. EPA, 1989          | •                                        |
|                |                     |              |                | AT-N              | Averaging Time (Non-Cancer)           | 3,650          | days         | U.S. EPA, 1989          |                                          |

### Sources:

- U.S. EPA, 1989: Risk Assessment Guidance for Superfund. Vol 1: Human Health Evaluation Manual, Part A. EPA/540/1-86/060.
- U.S. EPA, 1991; Risk Assessment Guidance for Superfund Supplemental Guidance- Standard Default Exposure Factors Interim Final.
- U.S. EPA, 1994; U.S. EPA Region I Risk Updates, August 1994.
- U.S. EPA, 1997: Exposure Factors Handbook, U.S. EPA/600/8-95/002FA.
- U.S. EPA, 2002: Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. OSWER 9285.6-10.
- U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. EPA/540/R/99/005.

### Unit Intake Calculations

Ingestion Intake = (IR-GW x EF x ED)/(BW x AT)

Dermal Intake = (SA x EV x EF x ED)/(BW x AT)

Cancer Ingestion Intake Age 10 - 16) = 3.91E-06

Cancer Dermal Intake Age 10 - 16) = 3.52E+01

Cancer Ingestion Intake Age 16 - 30) = 5.48E-06

Cancer Dermal Intake (Age 16 - 30) = 4.93E+01

Noncancer Ingestion Intake = 6.58E-05

Noncancer Dermai Intake = 5.92E+02

## TABLE 4.5 INTERMEDIATE VARIABLES FOR CALCULATING DA(EVENT) SITE 23 - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

| Chemical of                           | Media       | Dermal Absorption | FA    | K       | (p      | T(e)  | /ent) | Та      | ıu    | ĭ       | *     | В       |
|---------------------------------------|-------------|-------------------|-------|---------|---------|-------|-------|---------|-------|---------|-------|---------|
| Potential Concern                     | l'          | Fraction (soil)   | Value | Value   | Units   | Value | Units | Value   | Units | Value   | Units | Value   |
| Volatile Organic Compounds            |             |                   |       |         |         |       |       |         |       |         |       |         |
| Bromodichloromethane                  | Groundwater | NA .              | 1     | 4.6E-03 | cm/hr   | (1)   | hr    | 8.8E-01 | hr    | 2.1E+00 | hr    | 2.3E-02 |
| Chloroform                            | Groundwater | NA NA             | 1     | 6.8E-03 | cm/hr   | (1)   | hr    | 5.0E-01 | hr    | 1.2E+00 | hr    | 2.9E-02 |
| Tetrachloroethene                     | Groundwater | NA NA             | 1     | 3.3E-02 | cm/hr   | (1)   | hr    | 9.1E-01 | hr    | 2.2E+00 | hr    | 1.7E-01 |
| Trichloroethene                       | Groundwater | NA NA             | 1     | 1.2E-02 | cm/hr   | (1)   | hr    | 5.8E-01 | hr    | 1.4E+00 | hr    | 5.1E-02 |
| Semivolatile Organic Compou           | unds        |                   |       |         |         |       |       |         |       |         |       |         |
| 1-Methylnaphthalene                   | Groundwater | NA NA             | 1     | 9.1E-02 | cm/hr   | (1)   | hr    | 6.6E-01 | hr    | 1.6E+00 | hr    | 4.2E-01 |
| 2-Methylnaphthalene                   | Groundwater | NA .              | 1     | 8.9E-02 | cm/hr   | (1)   | hr    | 6.6E-01 | hr    | 1.6E+00 | hr    | 4.1E-01 |
| Benzo(a)anthracene <sup>(2)</sup>     | Groundwater | NA NA             | . NA  | NA      | NA      | NA    | NA    | NA.     | NA    | NA      | NA    | NA      |
| Benzo(a)pyrene <sup>(2)</sup>         | Groundwater | NA                | NA    | NA      | NA      | NA    | NA    | NA      | NA    | NA      | NA    | NA      |
| Benzo(b)fluoranthene(2)               | Groundwater | NA NA             | NA    | NA      | NA.     | NA    | NA    | , NA    | NA    | NA      | NA    | NA      |
| Benzo(k)fluoranthene(2)               | Groundwater | NA                | NA    | NA      | NA      | NA    | NA    | NA      | NA    | NA      | NA    | NA      |
| Dibenzo(a,h)anthracene(2)             | Groundwater | NA NA             | NA    | NA      | NA      | NA    | NA    | NA      | NA    | NA NA   | NA    | NA      |
| Hexachlorobenzene                     | Groundwater | NA NA             | 0.9   | 1.3E-01 | cm/hr   | (1)   | hr    | 4.2E+00 | hr    | 1.6E+01 | hr    | 8.7E-01 |
| Indeno(1,2,3-cd)pyrene <sup>(2)</sup> | Groundwater | NA                | NA    | NA      | NA      | NA    | NA    | NA      | NA    | NA      | NA    | NA      |
| Naphthalene                           | Groundwater | NA NA             | 1     | 4.7E-02 | cm/hr   | (1)   | hr    | 5.6E-01 | hr    | 1.3E+00 | hr    | 2.0E-01 |
| Inorganics                            |             |                   |       | 1.      |         |       |       |         |       |         |       |         |
| Aluminum                              | Groundwater | NA NA             | 1     | 1.0E-03 | - cm/hr | (1)   | hr    | NA      | NA    | NA      | NA    | NA      |
| Arsenic                               | Groundwater | NA NA             | 1     | 1.0E-03 | cm/hr   | (1)   | hr    | NA      | NA    | NA      | NA    | NA      |
| Iron                                  | Groundwater | NA                | 1     | 1.0E-03 | cm/hr   | (1)   | hr    | NA      | NA    | NA      | NA    | NA      |
| Manganese                             | Groundwater | NA NA             | 1     | 1.0E-03 | cm/hr   | (1)   | hr    | NA      | NA    | NA      | NA    | NA      |
| Vanadium                              | Groundwater | NA NA             | . 1   | 1.0E-03 | cm/hr   | (1)   | hr    | NA .    | NA    | NA      | NA    | NA      |

### Notes:

All values from EPA's Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final, July 2004.

- 1 T<sub>event</sub> is 4 hours for the construction worker and 0.25 hours for the child and adult resident.
- 2 RAGS Part E recommends that dermal exposures to PAHs in water should not be quantitatively evaluated in the risk assessment.

FA = Fraction Absorbed Water

Kp = Dermal Permeability Coefficient of Compound in Water

T(event) = Event Duration

Tau = Lag Time

T\* = Time to Reach Steady-State

B = Dimensionless Ratio of the Permeability Coefficient of a Compound Through the

Stratum Corneum Relative to its Permeability Coefficient Across the Viable Epidermis

NA = Not applicable.

# TABLE 5.1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT

| Chemical of Potential             | Chronic/<br>Subchronic |         | al RfD    | Oral Absorption<br>Efficiency | Absorbed Ri | D for Dermal <sup>(2)</sup> | Primary<br>Target | Combined<br>Uncertainty/Modifying | RfD:Targ                               | et Organ(s)             |
|-----------------------------------|------------------------|---------|-----------|-------------------------------|-------------|-----------------------------|-------------------|-----------------------------------|----------------------------------------|-------------------------|
| Concern                           |                        | Value   | Units     | for Dermal <sup>(1)</sup>     | Value       | Units                       | Organ(s)          | Factors                           | Source(s)                              | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compound         | S                      |         |           |                               |             |                             |                   |                                   |                                        |                         |
| 3romodichloromethane              | Chronic                | 2.0E-01 | mg/kg/day | 1                             | 2.0E-01     | mg/kg/day                   | Kidney            | 1000/1                            | IRS                                    | 4/24/2008               |
| Chloroform                        | Chronic                | 1.0E-02 | mg/kg/day | 1                             | 1.0E-02     | mg/kg/day                   | Liver             | 100/1                             | IRS                                    | 4/24/2008               |
| Tetrachloroethene                 | Chronic                | 1.0E-02 | mg/kg/day | 1                             | 1.0E-02     | mg/kg/day                   | Liver             | 1000/1                            | IRS                                    | 4/24/2008               |
| Trichloroethene                   | Chronic                | 3.0E-04 | mg/kg/day | 1                             | 3.0E-04     | mg/kg/day                   | Liver, Kidney     | NA NA                             | USEPA(1)                               | 8/2001                  |
| Semivolatile Organic Compo        | ounds                  |         |           |                               |             | ·                           |                   |                                   | ······································ |                         |
| -Methylnaphthalene <sup>(3)</sup> | Chronic                | 4.0E-03 | mg/kg/day | 1                             | 4.0E-03     | mg/kg/day                   | Lungs             | 1000/1                            | IRS                                    | 4/24/2008               |
| 2-Methylnaphthalene               | Chronic                | 4.0E-03 | mg/kg/day | 1                             | 4.0E-03     | mg/kg/day                   | Lungs             | 1000/1                            | IRS                                    | 4/24/2008               |
| Benzo(a)anthracene                | NA NA                  | NA NA   | NA NA     | NA                            | NA          | NA                          | NA                | NA NA                             | NA                                     | NA NA                   |
| 3enzo(a)pyrene                    | NA                     | NA .    | NA NA     | NA                            | NA          | NA                          | NA                | NA I                              | NA                                     | NA                      |
| Benzo(b)fluoranthene              | NA                     | NA      | NA        | NA.                           | NA .        | NA                          | NA                | NA NA                             | NA                                     | NA                      |
| Benzo(k)fluoranthene              | NA NA                  | NA      | NA        | NA NA                         | NA          | NA                          | NA .              | NA I                              | NA                                     | NA NA                   |
| Dibenzo(a,h)anthracene            | NA NA                  | NA      | NA.       | NA                            | NA .        | NA                          | · NA              | NA I                              | NA                                     | NA NA                   |
| lexachlorobenzene                 | Chronic                | 8.0E-04 | mg/kg/day | 1                             | 8.0E-04     | mg/kg/day                   | Liver             | 100/1                             |                                        |                         |
| ndeno(1,2,3-cd)pyrene             | NA NA                  | NA      | NA .      | NA                            | NA          | NA                          | NA                | NA I                              | NA                                     | NA                      |
| Naphthalene                       | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02     | mg/kg/day                   | Body Weight       | 3000/1                            | IRS                                    | 4/24/2008               |
| norganics                         |                        |         |           |                               |             |                             | ·                 |                                   | <del></del>                            | <del></del>             |
| Aluminum                          | Chronic                | 1.0E+00 | mg/kg/day | 1                             | 1.0E+00     | mg/kg/day                   | CNS               | 100                               | PPRTV                                  | 10/23/2006              |
| Arsenic                           | Chronic                | 3.0E-04 | mg/kg/day | 1                             | 3.0E-04     | mg/kg/day                   | Skin, CVS         | 3/1                               | IRS                                    | 4/24/2008               |
| ron                               | Chronic                | 7.0E-01 | mg/kg/day | 1 1                           | 7.0E-01     | mg/kg/day                   | GS                | 1.5                               | PPRTV                                  | 9/11/2006               |
| /langanese                        | Chronic                | 2.4E-02 | mg/kg/day | 0.04                          | 9.6E-04     | mg/kg/day                   | CN\$              | 1/3                               | IRS                                    | 4/24/2008               |
| /anadium                          | Chronic                | 1.0E-03 | mg/kg/day | 0.026                         | 2.6E-05     | mg/kg/day                   | Kidney            | 300                               | USEPA III                              | 10/11/2007              |

#### Notes:

- 1 U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.
- 2 Adjusted dermal RfD = Oral RfD x Oral Absorption Efficiency for Dermal.
- 3 -Value is for 2-methylnaphthalene.

### Definitions:

CNS = Central Nervous System

CVS = Cardiovascular system

USEPA(1) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

GS = Gastrointestinal system

IRIS = Integrated Risk Information System

NA = Not Applicable

# TABLE 5.2 NON-CANCER TOXICITY DATA -- INHALATION SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT

| Chemical<br>of Potential       | Chronic/<br>Subchronic | Inhalat | tion RfC          | Extrapol | ated RfD <sup>(1)</sup> | Primary<br>Target | Combined Uncertainty/Modifying | RfC : Targ | get Organ(s)            |
|--------------------------------|------------------------|---------|-------------------|----------|-------------------------|-------------------|--------------------------------|------------|-------------------------|
| Concern                        |                        | Value   | Units             | Value    | Units                   | Organ(s)          | Factors                        | Source(s)  | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compounds     |                        |         |                   |          |                         |                   |                                |            |                         |
| Bromodichloromethane           | NA                     | NA      | . NA              | NA       | NA NA                   | NA                | NA NA                          | NA         | NA                      |
| Chloroform                     | NA                     | NA      | NA                | NA NA    | NA                      | NA                | NA NA                          | NA         | NA                      |
| Tetrachloroethene              | Chronic                | 2.8E-01 | mg/m <sup>3</sup> | 8.0E-02  | (mg/kg/day)             | Liver             | NA NA                          | USEPA III  | 10/11/2007              |
| Trichloroethene                | Chronic                | 3.5E-02 | mg/m3             | 1.0E-02  | (mg/kg/day)             | Liver, CNS        | NA.                            | USEPA(1)   | 8/2001                  |
| Semivolatile Organic Compounds |                        |         |                   |          |                         |                   |                                |            |                         |
| 1-Methylnaphthalene            | NA                     | NA      | NA                | NA       | NA                      | NA                | NA NA                          | NA         | NA NA                   |
| 2-Methylnaphthalene            | NA                     | NA      | NA                | NA       | NA NA                   | NA                | NA NA                          | NA         | NA                      |
| Benzo(a)anthracene             | NA                     | NA      | NA                | NA       | NA                      | NA                | NA NA                          | NA         | NA                      |
| Benzo(a)pyrene                 | NA .                   | NA ·    | NA                | NA       | NA                      | NA                | NA NA                          | NA ·       | NA                      |
| Benzo(b)fluoranthene           | NA                     | NA      | NA                | NA       | NA                      | NA                | NA NA                          | NA         | NA                      |
| Benzo(k)fluoranthene           | NA                     | NA      | NA                | NA       | NA                      | NA                | NA NA                          | NA         | NA                      |
| Dibenzo(a,h)anthracene         | NA                     | NA      | NA                | NA       | NA                      | NA ·              | NA                             | . NA       | NA                      |
| Hexachlorobenzene              | NA                     | NA      | NA                | NA       | NA.                     | . NA              | NA NA                          | NA         | NA                      |
| Indeno(1,2,3-cd)pyrene         | NA                     | NA      | . NA              | NA       | NA                      | NA                | NA NA                          | NA         | NA NA                   |
| Naphthalene                    | Chronic                | 3.0E-03 | mg/m³             | 8.6E-04  | (mg/kg/day)             | Nasal             | 3000/1                         | IRIS       | 4/24/2008               |
| Inorganics                     |                        |         |                   |          |                         |                   |                                |            |                         |
| Aluminum                       | Chronic                | 0.005   | mg/m3             | 1.4E-03  | (mg/kg/day)             | CNS               | 300                            | PPRTV      | 10/23/2006              |
| Arsenic                        | NA                     | NA      | NA                | NA       | NA                      | NA                | NA NA                          | NA         | NA                      |
| Iron                           | NA                     | NA      | NA                | NA .     | NA                      | NA                | NA                             | NA .       | NA                      |
| Manganese                      | Chronic                | 5.0E-05 | mg/m³             | 1.4E-05  | (mg/kg/day)             | CNS               | 1000/1                         | IRIS       | 4/24/2008               |
| Vanadium                       | NA                     | . NA    | NA                | NA       | NA                      | NA                | NA                             | . NA       | NA                      |

### Notes:

1 - Extrapolated RfD = RfC \*20m3/day / 70 kg

Definitions:

CNS = Central Nervous System

EPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

HEAST= Health Effects Assessment Summary Tables

IRIS = Integrated Risk Information System

NA = Not Applicable

USEPA(1) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

### TABLE 6.1 CANCER TOXICITY DATA -- ORAL/DERMAL SITE 23 - UNDERDRAIN METERING PIT SAMPLING

### **NSB-NLON, GROTON, CONNECTICUT**

| Chemical of Potential     |         | er Slope Factor           | Oral Absorption<br>Efficiency |         | ncer Slope Factor<br>Permal <sup>(2)</sup> | Weight of Evidence/<br>Cancer Guideline | Ora              | al CSF                  |
|---------------------------|---------|---------------------------|-------------------------------|---------|--------------------------------------------|-----------------------------------------|------------------|-------------------------|
| Concern                   | Value   | Units                     | for Dermal <sup>(1)</sup>     | Value   | Units                                      | Description                             | Source(s)        | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compound | S       |                           |                               |         |                                            |                                         |                  | (WINN/DD/TTTT)          |
| Bromodichloromethane      | 6.2E-02 | (mg/kg/day)-1             | 1 1                           | 6.2E-02 | (mg/kg/day)-1                              | B2 T                                    | IRIS             | 4/04/0000               |
| Chloroform                | NA NA   | NA                        | NA NA                         | NA      | NA NA                                      | B2                                      | IRIS             | 4/24/2008               |
| Tetrachloroethene         | 5.4E-01 | (mg/kg/day)-1             | 1                             | 5.4E-01 | (mg/kg/day)-1                              | NA NA                                   | IRIS             | 4/24/2008               |
| Trichloroethene           | 4.0E-01 | (mg/kg/day)-1             | 1                             | 4.0E-01 | (mg/kg/day)-1                              | t c                                     | USEPA(1)         | 4/24/2008               |
| Semivolatile Organic Comp | ounds   |                           | <u> </u>                      |         | 1 (mg/ng/day)-1                            |                                         | USEPA(I)         | 8/2001                  |
| 1-Methylnaphthalene       | NA NA   | NA                        | NA I                          | NA      | l NA                                       | l NA T                                  | NA NA            | T NA                    |
| 2-Methylnaphthalene       | NA.     | NA                        | NA NA                         | NA      | NA NA                                      | NA NA                                   | NA NA            | NA<br>NA                |
| Benzo(a)anthracene        | 7.3E-01 | (mg/kg/day)-1             | 1                             | 7.3E-01 | (mg/kg/day)-1                              | B2                                      | USEPA(2)         |                         |
| Benzo(a)pyrene            | 7.3E+00 | (mg/kg/day)-1             | 1                             | 7.3E+00 | (mg/kg/day)-1                              | B2                                      | IRIS             | 7/1993                  |
| Benzo(b)fluoranthene      | 7.3E-01 | (mg/kg/day)-1             | 1                             | 7.3E-01 | (mg/kg/day)-1                              | B2                                      | USEPA(2)         | 7/20/2007               |
| Benzo(k)fluoranthene      | 7.3E-02 | (mg/kg/day)-1             | 1                             | 7.3E-02 | (mg/kg/day)-1                              | B2                                      | USEPA(2)         | 7/1993                  |
| Dibenzo(a,h)anthracene    | 7.3E+00 | (mg/kg/day)-1             | 1                             | 7.3E+00 | (mg/kg/day)-1                              | B2                                      |                  | 7/1993                  |
| Hexachlorobenzene         | 1.6E+00 | (mg/kg/day)-1             | 1                             | 1.6E+00 | (mg/kg/day)-1                              | B2                                      | USEPA(2)         | 7/1993                  |
| ndeno(1,2,3-cd)pyrene     | 7.3E-01 | (mg/kg/day)-1             | 1                             | 7.3E-01 | (mg/kg/day)-1                              | B2                                      |                  | 4/24/2008               |
| Naphthalene               | NA      | NA NA                     | NA NA                         | NA      | NA NA                                      | C                                       | USEPA(2)<br>IRIS | 7/1993                  |
| norganics                 |         | <del></del>               |                               | 777     | 1 190                                      | <u> </u>                                | IRIS             | 4/24/2008               |
| Aluminum                  | NA      | NA NA                     | NA I                          | NA      | l NA                                       | NA I                                    | NA               | 1 11                    |
| Arsenic                   | 1.5E+00 | (mg/kg/day) <sup>-1</sup> | 1                             | 1,5E+00 | (mg/kg/day)                                | A                                       |                  | NA<br>A/OA/ROOS         |
| ron                       | NA      | NA NA                     | NA NA                         | NA NA   | NA NA                                      | NA NA                                   | IRIS             | 4/24/2008               |
| /anganese                 | NA      | NA                        | NA                            | NA NA   | NA NA                                      | D                                       | NA IDIO          | NA NA                   |
| /anadium                  | NA      | NA                        | NA NA                         | NA .    | NA NA                                      | NA NA                                   | IRIS<br>NA       | 4/24/2008<br>NA         |

### Notes:

- 1 U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.
- 2 Adjusted cancer slope factor for dermal =

Oral cancer slope factor / Oral Absorption Efficiency for Dermal.

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

IRIS = Integrated Risk Information System.

NA = Not Available.

USEPA(1) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

USEPA(2) = U.S. EPA, Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons, July 1993, EPA/600/R-93/089.

### EPA Group:

- A Human carcinogen.
- B1 Probable human carcinogen indicates that limited human data are available.
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans .
- C Possible human carcinogen.
- D Not classifiable as a human carcinogen.
- E Evidence of noncarcinogenicity.

# TABLE 6.2 CANCER TOXICITY DATA -- INHALATION SITE 23 - UNDERDRAIN METERING PIT SAMPLING NSB-NLON, GROTON, CONNECTICUT

| Chemical of Potential      | Uni     | t Risk                             |         | on Cancer<br>Factor <sup>(1)</sup> | Weight of Evidence/<br>Cancer Guideline | Unit Risk : I | nhalation CSF        |
|----------------------------|---------|------------------------------------|---------|------------------------------------|-----------------------------------------|---------------|----------------------|
| Concern                    | Value   | Units                              | Value   | Units                              | Description                             | Source(s)     | Date(s) (MM/DD/YYYY) |
| Volatile Organic Compounds | s       |                                    |         |                                    |                                         |               |                      |
| Bromodichloromethane       | NA NA   | NA NA                              | NA      | NA                                 | B2                                      | IRIS          | 4/24/2008            |
| Chloroform                 | 2.3E-05 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 8.1E-02 | (mg/kg/day) <sup>-1</sup>          | B2                                      | IRIS          | 4/24/2008            |
| Tetrachloroethene          | 5.7E-06 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 2.0E-02 | (mg/kg/day) <sup>-1</sup>          | NA                                      | USEPA III     | 10/11/2007           |
| Trichloroethene            | 1.1E-04 | (ug/m3)-1                          | 4.0E-01 | (mg/kg/day)-1                      | С                                       | USEPA(1)      | 8/2001               |
| Semivolatile Organic Compo | ounds   |                                    |         |                                    |                                         |               |                      |
| 1-Methylnaphthalene        | NA      | NA .                               | NA      | NA                                 | NA                                      | NA            | 4/24/2008            |
| 2-Methylnaphthalene        | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | 4/24/2008            |
| Benzo(a)anthracene         | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                   |
| Benzo(a)pyrene             | 8.9E-04 | (ug/m <sup>3</sup> ) 1             | 3.1E+00 | (mg/kg/day) <sup>-1</sup>          | NA                                      | USEPA III     | 10/11/2007           |
| Benzo(b)fluoranthene       | NA      | NA                                 | NA      | NA                                 | NA NA                                   | NA .          | NA                   |
| Benzo(k)fluoranthene       | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                   |
| Dibenzo(a,h)anthracene     | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                   |
| Hexachlorobenzene          | 4.6E-04 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 1.6E+00 | (mg/kg/day) <sup>-1</sup>          | B2                                      | IRIS          | 4/24/2008            |
| Indeno(1,2,3-cd)pyrene     | NA      | NA NA                              | NA      | NA                                 | NA                                      | NA            | NA                   |
| Naphthalene                | NA      | NA                                 | NA      | NA                                 | С                                       | IRIS          | 4/24/2008            |
| Inorganics                 |         |                                    |         |                                    |                                         |               |                      |
| Aluminum                   | NA .    | NA                                 | NA      | NA                                 | NA NA                                   | NA            | NA                   |
| Arsenic                    | 4.3E-03 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 1.5E+01 | (mg/kg/day) <sup>-1</sup>          | Α                                       | iris .        | 4/24/2008            |
| Iron                       | NA      | NA                                 | NA      | NA                                 | NA                                      | NA            | NA                   |
| Manganese                  | NA NA   | NA                                 | NA      | NA                                 | D                                       | IRIS          | 4/24/2008            |
| Vanadium                   | NA      | NA                                 | NA      | NA                                 | NA NA                                   | NA;           | NA                   |

### Notes:

1 - Inhalation CSF = Unit Risk \* 70 kg / 20m³/day.

Definitions:

IRIS = Integrated Risk Information System.

NA = Not Available.

USEPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

EPA Group:

- A Human carcinogen.
- B1 Probable human carcinogen indicates that limited human data are available.
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans .
- C Possible human carcinogen.
- D Not classifiable as a human carcinogen.
- E Evidence of noncarcinogenicity.

USEPA(1) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

#### TABLE 7.1.RME

### CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 1

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

| Medium       | Exposure Medium        | Exposure Point       | Exposure Route   | Chemical of                             | E        | PC     |                | Car              | cer Risk Calcula | ations                    |                    |                | Non-Ca           | ncer Hazard C    | alculations |                |
|--------------|------------------------|----------------------|------------------|-----------------------------------------|----------|--------|----------------|------------------|------------------|---------------------------|--------------------|----------------|------------------|------------------|-------------|----------------|
|              |                        |                      |                  | Potential Concern                       | Value    | Units  | Intake/Exposur | re Concentration |                  | Jnit Risk                 | Cancer Risk        | intake/Exposur | re Concentration |                  | D/RfC       | Hazard Quotier |
|              |                        |                      |                  |                                         | 1        |        | Value          | Units            | Value            | Units                     |                    | Value          | Units            | Value            | Units       | 1              |
| iroundwater  | Groundwater            | Site 23              | Dermal           | Bromodichloromethane                    | 0.300    | ug/L   | 4.4E-10        | (mg/kg/day)      | 6.2E-02          | (mg/kg/day) 1             | 2.7E-11            | 3.1E-08        | (mg/kg/day)      | 2.0E-02          | (mg/kg/day) | 0.000002       |
|              |                        |                      |                  | Chloroform                              | 2.500    | ug/L   | 4.6E-09        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |                    | 3.2E-07        | (mg/kg/day)      | 1.0E-02          | (mg/kg/day) | 0.00003        |
|              |                        |                      |                  | Tetrachloroethene                       | 0.400    | ug/L   | 4.1E-09        | (mg/kg/day)      | 5.4E-01          | (mg/kg/day) <sup>-1</sup> | 2.2E-09            | 2.9E-07        | (mg/kg/day)      | 1.0E-02          | (mg/kg/day) | 0.00003        |
|              |                        | ,                    |                  | Trichloroethene                         | 0.500    | ug/L   | 1.6E-09        | (mg/kg/day)      | 4.0E-01          | (mg/kg/day) <sup>-1</sup> | 6.5E-10            | 1.1E-07        | (mg/kg/day)      | 3.0E-04          | (mg/kg/day) | 0.0004         |
|              |                        |                      |                  | 1-Methylnaphthalene                     | 0.492    | ug/L   | 1.1E-08        | (mg/kg/day)      | NA NA            | (mg/kg/day) <sup>-1</sup> |                    | 8.0E-07        | (mg/kg/day)      | 4.0E-03          | (mg/kg/day) | 0.0002         |
|              |                        |                      |                  | 2-Methylnaphthalene                     | 0.600    | ug/L   | 1.4E-08        | (mg/kg/day)      | NA ·             | (mg/kg/day) <sup>-1</sup> |                    | 9.7E-07        | (mg/kg/day)      | 4.0E-03          | (mg/kg/day) | 0.0002         |
|              |                        |                      | 1                | Benzo(a)anthracene                      | 1.       | ug/L   | 0.0E+00        | (mg/kg/day)      | 7.3E-01          | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) |                |
|              |                        |                      |                  | Benzo(a)pyrene                          | 0.2      | ug/L   | 0.0E+00        | (mg/kg/day)      | 7.3E+00          | (mg/kg/day)*1             | ••                 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      |                  | Benzo(b)fluoranthene                    | 0.3      | ug/L   | 0.0E+00        | (mg/kg/day)      | 7.3E-01          | (mg/kg/day)*1             |                    | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      |                  | Benzo(k)fluoranthene                    | 0.32     | ug/L   | 0.0E+00        | (mg/kg/day)      | 7.3E-02          | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        | ,                    |                  | Dibenzo(a,h)anthracene                  | 0.12     | ug/L   | 0.0E+00        | (mg/kg/day)      | 7.3E+00          | (mg/kg/day) <sup>-1</sup> |                    | 0.05+00        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      |                  | Hexachlorobenzene                       | 0.65     | ug/L   | 4.9E-08        | (mg/kg/day)      | 1.6E+00          | (mg/kg/day) <sup>-1</sup> | 7.9E-08            | 3.4E-06        | (mg/kg/day)      | 8.0E+04          | (mg/kg/day) | 0.004          |
|              |                        |                      |                  | Indeno(1,2,3-cd)pyrene                  | 0        | ug/L   | 0.0E+00        | (mg/kg/day)      | 7.3E-01          | (mg/kg/day)*1             | ••                 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) | ļ              |
|              |                        |                      |                  | Naphthalene                             | 1        | ug/L   | 6.6E-09        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> | **                 | 4.6E-07        | (mg/kg/day)      | 2.0E-02          | (mg/kg/day) | 0.00002        |
|              |                        |                      | Ì                | Aluminum                                | 322.00   | ug/L   | 7.1E-08        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |                    | 5.0E-06        | (mg/kg/day)      | 1.0E+00          | (mg/kg/day) | 0.000005       |
|              |                        |                      |                  | Arsenic                                 | 13.90    | ug/L   | 3.1E-09        | (mg/kg/day)      | 1.5E+00          | (mg/kg/day) <sup>-1</sup> | 4.6E-09            | 2.2E-07        | (mg/kg/day)      | 3.0E-04          | (mg/kg/day) | 0.0007         |
|              |                        | +*                   |                  | Iron                                    | 70800.00 | ug/L   | 1.6E-05        | (mg/kg/day)      | NA               | (mg/kg/day)*1             | ·· .               | 1.1E-03        | (mg/kg/day)      | 7.0E-01          | (mg/kg/day) | 0.002          |
|              |                        |                      | · .              | Manganese                               | 845.0    | ug/L   | . 1.9E-07      | (mg/kg/day)      | NA               | (mg/kg/day)*1             | ••                 | 1.3E-05        | (mg/kg/day)      | 9.6E-04          | (mg/kg/day) | 0.01           |
|              |                        |                      |                  | Vanadium                                | 3.7      | ug/L   | 8.2E-10        | (mg/kg/day)      | NA .             | (mg/kg/day) <sup>-1</sup> | ••                 | 5.7E-08        | (mg/kg/day)      | 2.6E-05          | (mg/kg/day) | 0.002          |
|              |                        |                      | Exp. Route Total |                                         |          |        |                |                  |                  |                           | 8.6E-08            |                |                  |                  |             | 0.02           |
|              |                        | Exposure Point Total |                  |                                         |          |        |                | `                |                  |                           | 8.6E-08            |                |                  |                  |             | 0.02           |
|              | Exposure Medium Total  |                      |                  |                                         |          |        |                |                  |                  |                           | 8.6E-08            |                |                  |                  |             | . 0.02         |
|              | Air ·                  | Site 23              | Inhalation       | Bromodichloromethane                    | 8.4E-6   | mg/m3  | 1.4E-09        | (mg/kg/day)      | NA               | (mg/kg/day) 1             | ••                 | 9.9E-08        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      |                  | Chloroform                              | 8.4E-5   | mg/m3  | 1.46-08        | (mg/kg/day)      | 8.1E-02          | (mg/kg/day) <sup>1</sup>  | 1.1E-09            | 9.8E-07        | (mg/kg/day)      | 1.4E-02          | (mg/kg/day) | 0.00007        |
|              |                        |                      |                  | Tetrachiomethene                        | 1.1E-5   | mg/m3  | 1.9E-09        | (mg/kg/day)      | 2.0E-02          | (mg/kg/day) <sup>-1</sup> | 3.9E-11            | 1.3E-07        | (mg/kg/day)      | 8.0E-02          | (mg/kg/day) | 0.000002       |
|              |                        |                      |                  | Trichloroethene                         | 1.6E-5   | mg/m3  | 2.7E-09        | (mg/kg/day)      | 4.0E-01          | (mg/kg/day)               | 1.1E-09            | 1.9E-07        | (mg/kg/day)      | 1.0E-02          | (mg/kg/day) | 0.00002        |
|              |                        |                      | 1                | 1-Methylnaphthalene                     | 1.4E-5   | mg/m3  | 2.4E-09        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> | • •                | 1.7E-07        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      |                  | 2-Methylnaphthalene                     | 9.5E-6   | mg/m3  | 1.6E-09        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>1</sup>  |                    | 1.1E-07        | (mg/kg/day)      | NA .             | (mg/kg/day) |                |
|              |                        |                      | -                | Benzo(a)anthracene                      | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      | ·                | Benzo(a)pyrene                          | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | 3.1E+00          | (mg/kg/day) 1             |                    | 0.0E+00        | (mg/kg/day)      | 'NA              | (mg/kg/day) | -              |
|              |                        |                      |                  | Benzo(b)fluoranthene                    | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> | ••                 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) |                |
|              |                        |                      |                  | Benzo(k)fluoranthens                    | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> | ••                 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) |                |
|              |                        |                      | 1                | Dibenzo(a,h)anthracene                  | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) 1             |                    | 0.0€+00        | (mg/kg/day)      | , NA             | (mg/kg/day) |                |
|              |                        |                      |                  | Hexachlorobenzene                       | 0.0E+0   | mg/m3  | 0,0E+00        | (mg/kg/day)      | 1.6E+00          | (mg/kg/day) '             | ••                 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) |                |
|              |                        | •                    | .                | Indeno(1,2,3-cd)pyrene                  | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | · NA             | (mg/kg/day)               | ••                 | 0.0E+00        | (mg/kg/day)      | NA .             | (mg/kg/day) |                |
|              | į l                    |                      |                  | Naphthalene                             | 1.6E-5   | mg/m3  | 2.7E-09        | (mg/kg/day)      | NA .             | (mg/kg/day) <sup>-1</sup> | ••                 | 1.9E-07        | (mg/kg/day)      | 9.0E-04          | (mg/kg/day) | 0.0002         |
|              |                        |                      |                  | Atuminum                                | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day)               |                    | 0.0E+00        | (mg/kg/day)      | 1.4E-03          | (mg/kg/day) |                |
|              |                        |                      |                  | Arsenic                                 | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | 1.5E+01          | (mg/kg/day) 1             | ••                 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) | -              |
|              |                        |                      |                  | Iron                                    | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) |                |
|              |                        |                      |                  | Manganese                               | 0.0E+0   | mg/m3  | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) <sup>-1</sup> | ••                 | 0.0E+00        | (mg/kg/day)      | 1.4E-05          | (mg/kg/day) | -              |
|              |                        |                      |                  | Vanadium                                | 0.0E+0   | rng/m3 | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) 1             |                    | 0.0E+00        | (mg/kg/day)      | NA               | (mg/kg/day) |                |
|              |                        |                      | Exp. Route Total | L                                       |          |        |                |                  |                  |                           | 2.3E-09            |                | · · · · · · ·    |                  |             | 0.0003         |
|              |                        | Exposure Point Total |                  | <del> </del>                            |          |        |                |                  |                  |                           | 2.3E-09            |                |                  |                  |             | 0.0003         |
|              | Exposure Medium Total  |                      |                  |                                         |          |        | ¥ .            |                  |                  |                           | 2.3E-09            | ı              |                  |                  |             | 0.0003         |
|              | Exposore mediani rotar |                      |                  | * * * * * * * * * * * * * * * * * * * * |          |        |                |                  |                  |                           |                    |                |                  |                  |             | ·              |
| Medium Total | Exposure mediani rotal |                      |                  | · · · · · · · · · · · · · · · · · · ·   |          |        |                |                  |                  | Across All Media          | 8.8E-08<br>8.8E-08 |                |                  | Across All Media | 0.02        |                |

# TABLE 7.2.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium      | Exposure Medium       | Exposure Point       | Exposure Route   | Chemical of            | E     | PC    | 1             | Car              | cer Risk Calcula                      | tions                     | *************************************** |               | Non Co           | ncer Hazard C | alculations |                 |
|-------------|-----------------------|----------------------|------------------|------------------------|-------|-------|---------------|------------------|---------------------------------------|---------------------------|-----------------------------------------|---------------|------------------|---------------|-------------|-----------------|
|             |                       |                      |                  | Potential Concern      | Value | Units | Intake/Exposu | re Concentration |                                       | Jnit Risk                 | Cancer Risk                             | Intake/Exposu | re Concentration |               | D/RfC       | Hazard Quotient |
|             |                       |                      |                  |                        |       |       | Value         | Units            | Value                                 | Units                     | Cancernak                               | Value         | Units            | Value         | Units       | Hazard Guotient |
| Groundwater | Groundwater           | Site 23              | Ingestion        | Bromodichloromethane   | 0.300 | ug/L  | 2.5E-06       | (mg/kg/day)      | 6.2E-02                               | (mg/kg/day)*1             | 1.5E-07                                 | 2.9E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.001           |
|             |                       |                      | 1                | Chloroform             | 2.500 | ug/L  | 2.1E-05       | (mg/kg/day)      | NA NA                                 | (mg/kg/day) <sup>-1</sup> |                                         | 2.4E-04       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.02            |
|             |                       |                      | '                | Tetrachloroethene      | 0.400 | ug/L  | 3.3E-06       | (mg/kg/day)      | 5.4E-01                               | (mg/kg/day) <sup>-1</sup> | 1.8E-06                                 | 3.8E-05       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.004           |
|             |                       |                      |                  | Trichloroethene        | 0.500 | ug/L  | 4.1E-06       | (mg/kg/day)      | 4.0E-01                               | (mg/kg/day)*1             | 1.6E-06                                 | 4.8E-05       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.2             |
|             | ļ                     |                      |                  | 1-Methylnaphthalene    | 0.492 | ug/L  | 4.0E-06       | (mg/kg/day)      | . NA                                  | (mg/kg/day) 1             |                                         | 4.7E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.01            |
|             | [                     |                      |                  | 2-Methylnaphthalene    | 0.600 | ug/L  | 4.9E-06       | (mg/kg/day)      | NA NA                                 | (mg/kg/day) <sup>1</sup>  |                                         | 5.8E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.01            |
| •           |                       |                      |                  | Benzo(a)anthracene     | 0.510 | ug/L  | 2.2E-05       | (mg/kg/day)      | 7.3E-01                               | (mg/kg/day)*1             | 1.6E-05                                 | 4.9E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|             |                       |                      |                  | Benzo(a)pyrene         | 0.225 | ug/L  | 9.9E-06       | (mg/kg/day)      | 7.3E+00                               | (mg/kg/day) <sup>-1</sup> | 7.2E-05                                 | 2.2E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|             |                       | *                    |                  | Benzo(b)fluoranthene   | 0.340 | ug/L  | 1.5E-05       | (mg/kg/day)      | 7.3E-01                               | (mg/kg/day) <sup>-1</sup> | 1.1E-05                                 | 3.3E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      |                  | Benzo(k)fluoranthene   | 0.315 | ug/L  | 1.4E-05       | (mg/kg/day)      | 7.3E-02                               | (mg/kg/day) <sup>-1</sup> | 1.0E-06                                 | 3.0E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|             |                       |                      |                  | Dibenzo(a,h)anthracene | 0.120 | ug/L  | 5.3E-06       | (mg/kg/day)      | 7.3E+00                               | (mg/kg/day)*1             | 3.8E-05                                 | 1.2E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             | 1                     |                      |                  | Hexachlorobenzene      | 0.650 | ug/L  | 5.3E-06       | (mg/kg/day)      | 1.6E+00                               | (mg/kg/day)*1             | 8.5E-06                                 | 6.2E-05       | (mg/kg/day)      | 8.0E-04       | (mg/kg/day) | 0.08            |
|             |                       |                      |                  | Indeno(1,2,3-cd)pyrene | 0.160 | ug/L  | 7.0E-06       | (mg/kg/day)      | 7.3E-01                               | (mg/kg/day)*1             | 5.1E-06                                 | 1.5E-05       | (mg/kg/day)      | NA            | (mg/kg/day) | -               |
| 1           |                       |                      |                  | Naphthalene            | 0.552 | ug/L  | 4.5E-06       | (mg/kg/day)      | · NA                                  | (mg/kg/day) <sup>-1</sup> |                                         | 5.3E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.003           |
|             |                       |                      |                  | Aluminum               | 322   | ug/L  | 2.6E-03       | (mg/kg/day)      | NA                                    | (mg/kg/day)*1             |                                         | 3.1E-02       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.03            |
|             |                       |                      | 1                | Arsenic                | 13.90 | ug/L  | 1.1E-04       | (mg/kg/day)      | 1.5E+00                               | (mg/kg/day)*3             | 1.7E-04                                 | 1.3E-03       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 4.4             |
| i ·         |                       |                      |                  | Iron                   | 70800 | ug/L  | 5.8E-01       | (mg/kg/day)      | NA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 6.8E+00       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 9.7             |
|             |                       |                      |                  | Manganese              | 845   | ug/L  | 6.9E-03       | (mg/kg/day)      | ŇA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 8.1E-02       | (mg/kg/day)      | 2.4E-02       | (mg/kg/day) | 3.4             |
| ĺ           |                       |                      |                  | Vanadium               | 3.70  | ug/L  | 3.0E-05       | (mg/kg/day)      | NA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 3.5E-04       | (mg/kg/day)      | 1.0E-03       | (mg/kg/day) | 0.4             |
|             |                       |                      | Exp. Route Total |                        |       | •     |               | , , , , ,        | · · · · · · · · · · · · · · · · · · · |                           | 3.3E-04                                 |               |                  |               |             | 18              |
|             |                       |                      | Dermal .         | Bromodichloromethane   | 0.300 | ug/L  | 2.2E-08       | (mg/kg/day)      | 6.2E-02                               | (mg/kg/day) <sup>-1</sup> | 1.3E-09                                 | 7.6E-07       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.00004         |
|             |                       |                      | 1                | Chloroform             | 2.500 | ug/L  | 2.0E-07       | (mg/kg/day)      | NA                                    | (mg/kg/day)"              |                                         | 7.0E-06       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.0007          |
|             |                       |                      | i                | Tetrachioroethene      | 0.400 | ug/L  | 2.1E-07       | (mg/kg/day)      | 5.4E-01                               | (mg/kg/day) <sup>-1</sup> | 1.1E-07                                 | 7.4E-06       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.0007          |
|             |                       |                      |                  | Trichloroethene        | 0.500 | ug/L  | 7.4E-08       | (mg/kg/day)      | 4.0E-01                               | (mg/kg/day) <sup>-1</sup> | 3.0E-08                                 | 2.6E-06       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.009           |
| }           |                       |                      |                  | 1-Methylnaphthalene    | 0.492 | ug/L  | 6.0E-07       | (mg/kg/day)      | NA ·                                  | (mg/kg/day) <sup>-1</sup> |                                         | 2.1E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.005           |
|             | 1                     |                      |                  | 2-Methylnaphthalene    | 0.600 | ug/L  | 7.2E-07       | (mg/kg/day)      | NA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 2.5E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.006           |
|             |                       |                      | 1                | Benzo(a)anthracene     | 0.510 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01                               | (mg/kg/day)"              |                                         | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      |                  | Benzo(a)pyrene         | 0.225 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00                               | (mg/kg/day) <sup>-1</sup> |                                         | 0,0€+00       | (mg/kg/day)      | · NA          | (mg/kg/day) |                 |
|             | +                     |                      |                  | Benzo(b)fluoranthene   | 0.340 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01                               | (mg/kg/day) <sup>1</sup>  |                                         | 0.0E+00       | (mg/kg/day)      | . NA          | (mg/kg/day) | -               |
|             |                       |                      |                  | Benzo(k)fluoranthene   | 0.315 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-02                               | (mg/kg/day)*1             |                                         | 0.0€+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      |                  | Dibenzo(a,h)anthracene | 0.120 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00                               | (mg/kg/day)*1             |                                         | 0.0€+00       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|             |                       |                      |                  | Hexachlorobenzene      | 0.650 | ug/L  | 2.7E-06       | (mg/kg/day)      | 1.6E+00                               | (mg/kg/day)*1             | 4.3E-06                                 | 9.4E-05       | (mg/kg/day)      | 8.0E-04       | (mg/kg/day) | 0.1             |
|             |                       |                      | :                | Indeno(1,2,3-cd)pyrene | 0.160 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01                               | (mg/kg/day) <sup>-1</sup> |                                         | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
| :           |                       |                      |                  | Naphthalene            | 0.552 | ug/L  | 3.2E-07       | (mg/kg/day)      | NA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 1.1E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.0006          |
|             |                       |                      |                  | Aluminum               | 322   | ug/L  | 9.7E-07       | (mg/kg/day)      | NA                                    | (mg/kg/day)"              |                                         | 3.4E-05       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.00003         |
|             |                       |                      |                  | Arsenic                | 13.90 | ug/L  | 4.2É-08       | (mg/kg/day)      | 1.5E+00                               | (mg/kg/day) <sup>-1</sup> | 6.3E-08                                 | 1.5E-06       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.005           |
|             | · .                   |                      |                  | Iron                   | 70800 | ug/L  | 2.1E-04       | (mg/kg/day)      | NA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 7.5E-03       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 0.01            |
|             |                       |                      | ' .              | Manganese              | 845   | ug/L  | 2.5E-06       | (mg/kg/day)      | NA                                    | (mg/kg/day) 1             |                                         | 8.9E-05       | (mg/kg/day)      | 9.6E-04       | (mg/kg/day) | 0.09            |
|             |                       |                      |                  | Vanadium               | 3.70  | ug/L  | 1.1E-08       | (mg/kg/day)      | NA                                    | (mg/kg/day) <sup>-1</sup> |                                         | 3.9E-07       | (mg/kg/day)      | 2.6E-05       | (mg/kg/day) | 0.02            |
| *           |                       |                      | Exp. Route Total |                        |       |       |               |                  |                                       |                           | 4.5E-06                                 |               |                  |               |             | 0.3             |
|             |                       | Exposure Point Total |                  |                        |       |       |               |                  |                                       |                           | 3.3E-04                                 |               |                  |               |             | 18              |
|             | Exposure Medium Total |                      |                  |                        |       |       |               |                  |                                       |                           | 3.3E-04                                 |               |                  |               |             | 18              |

#### TABLE 7.2.RME

### CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT

NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

Medium Exposure Medium Exposure Point Exposure Route Chemical of EPC Cancer Risk Calculations Non-Cancer Hazard Calculations Potential Concern Intake/Exposure Concentration CSF/Unit Risk Intake/Exposure Concentration Cancer Risk RfD/RfC Hazard Quotier Value Units Value Units Value Units Value Units Site 23 Inhalation 0.300 2.5E-06 Bromodichloromethane 6.2E-02 (mg/kg/day) (mg/kg/day) 1.5E-07 2.9E-05 (mg/kg/day) 2.0E-02 (mg/kg/day) 0.001 Chloroform 2 500 ug/L 2.1E-05 (mg/kg/day) NA (mg/kg/day)<sup>-1</sup> 2.4E-04 (mg/kg/day) 1.0E-02 (mg/kg/day) 0.02 0.400 Tetrachioroethene ug/L 3.3E-06 (mg/kg/day) 5.4E-01 (mg/kg/day)<sup>-1</sup> 1.8E-06 3.8E-05 (mg/kg/day) 1.0E-02 (mg/kg/day) 0.004 Trichlomethene 0.500 ug/L 4.1E-06 (mg/kg/day) 4.0E+01 (mg/kg/day)<sup>-1</sup> 1.6E-06 4.8E-05 (mg/kg/day) 3.0E-04 (mg/kg/day) 0.2 1-Methylnaphthalene 0.492 ug/L 4.0E-06 (mg/kg/day) NA (mg/kg/day)<sup>-1</sup> 4.7E-05 (mg/kg/day) 4.0E-03 .. (mg/kg/day) 0.01 2-Methylnaphthalene 0.600 ug/L 4.9E-06 (mg/kg/day) NA (mg/kg/day)<sup>-1</sup> 5.8E-05 (mg/kg/day) . . 4.0E-03 0.01 (mg/kg/day) Benzo(a)anthracene 0.0E+00 (mg/kg/day) ug/L 7.3E-01 0.0E+00 (mg/kg/day)\*1 .. (mg/kg/day) (mg/kg/day) Benzo(a)pyrene 0.225 ug/L 0.0E+00 (mg/kg/day) 7.3E+00 .. (mg/kg/day) 1 .0.0E+00 (mg/kg/day) (mg/kg/day) Benzo(b)fluoranthene 0.340 0.0E+00 ug/L 7.3E-01 (mg/kg/day) (mg/kg/day)<sup>1</sup> --0.0E+00 (mg/kg/day) (mg/kg/day) 0.315 0.0E+00 Benzo(k)fluoranthene ug/L (mg/kg/day) 7.3E-02 (mg/kg/day)<sup>1</sup> 0.0E+00 (mg/kg/day) (mg/kg/day) Dibenzo(a.h)anthracene 0.120 ug/L 0.0E+00 (mg/kg/day) 7.3E+00 (mg/kg/day)<sup>-1</sup> --0.0E+00 (mg/kg/day) NA (mg/kg/day) Hexachlombenzene 0.650 ug/L 0.0E+00 (mg/kg/day) 1.6E+00 (mg/kg/day)<sup>1</sup> 0.0E+00 (mg/kg/day) 8.0E-04 (mg/kg/day) Indeno(1,2,3-cd)pyrene 0.160 ug/L 0.0E+00 (mg/kg/day) 7.3E-01 (mg/kg/day)<sup>-1</sup> 0.0E+00 (mg/kg/day) NA (mg/kg/day) Nachthalene 0.552 ug/L. 4.5E-06 (mg/kg/day) --5.3E-05 (mg/kg/day) 2.0E-02 0.003 (mg/kg/day)\* (mg/kg/day) 322 ug/L 0.0E+00 (mg/kg/day) NA - -1.05+00 (mg/kg/day) 0.0E+00 (mg/kg/day) (mg/kg/day) Arsenic 13.90 ug/L 0.0E+00 (mg/kg/day) 1.5F+00 (mg/kg/day)<sup>1</sup> .. 0.05+00 (mg/kg/day) 3.0E-04 (mg/kg/day) 70800 ug/L 0.06+00 (mg/kg/day) NA (mg/kg/day)<sup>-1</sup> .. 0.0E+00 (mg/kg/day) 7.0E-01 (mg/kg/day) Manganese 845 ug/L 0.0E+00 (mg/kg/day) NA (mg/kg/day)<sup>-1</sup> 0.0E+00 (mg/kg/day) 2.4E-02 (mg/kg/day) Vanadium 3.70 0.05+00 ug/L (mg/kg/day) NA (mg/kg/day)<sup>-1</sup> (mg/kg/day) 1.0E-03 (mg/kg/day) Exp. Route Total 3.6E-06 0.2 Exposure Point Total 3.6E-06 0.2 Exposure Medium Total 3.6E-06 0.2 Medium Total 3.4E-04 19 Total of Receptor Risks Across All Media 3.4E-04 Total of Receptor Hazards Across All Media

Note:

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

### TABLE 7.3.RME

## CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Adult

| Medium      | Exposure Medium       | Exposure Point       | Exposure Route   | Chemical of            | E     | PC    | 1             | Can              | ncer Risk Calcula | ations                    |             |               | Non-Ca           | ncer Hazard C | alculations |                 |
|-------------|-----------------------|----------------------|------------------|------------------------|-------|-------|---------------|------------------|-------------------|---------------------------|-------------|---------------|------------------|---------------|-------------|-----------------|
| indui       |                       |                      |                  | Potential Concern      | Value | Units | Intake/Exposu | re Concentration |                   | Unit Risk                 | Cancer Risk | Intake/Exposu | re Concentration |               | D/RfC       | Hazard Quotient |
|             |                       |                      |                  | 1                      |       |       | Value         | Units            | Value             | Units                     |             | Value         | Units            | Value         | Units       | 1               |
| Groundwater | Groundwater           | Site 23              | Ingestion        | Bromodichloromethane   | 0.300 | ug/L  | 2.3E-06       | (mg/kg/day)      | 6.2E-02           | (mg/kg/day) <sup>-1</sup> | 1.5E-07     | 2.0E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.0010          |
|             |                       |                      |                  | Chloroform             | 2.500 | ug/L  | 2.0€-05       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.6E-04       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.02            |
|             |                       |                      |                  | Tetrachloroethene      | 0.400 | ug/L  | 3.1E-06       | (mg/kg/day)      | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 1.7E-06     | 2.6E-05       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.003           |
|             |                       |                      | 1                | Trichloroethene        | 0.500 | ug/L  | 3.9E-06       | (mg/kg/day)      | 4.0E-01           | (mg/kg/day) <sup>-1</sup> | 1.6E-06     | 3.3E-05       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.1             |
|             | •                     |                      |                  | 1-Methylnaphthalene    | 0.492 | ug/L  | 3.9E-06       | (mg/kg/day)      | NA.               | (mg/kg/day)               |             | 3.2E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.008           |
|             |                       |                      |                  | 2-Methylnaphthalene    | 0.600 | ug/L  | 4.7E-06       | (mg/kg/day)      | NA NA             | (mg/kg/day) 1             |             | 3.9E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.010           |
|             |                       |                      |                  | Benzo(a)anthracene     | 0.510 | ug/L  | 8.0E-06       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day)"              | 5.8E-06     | 3.4E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             | 1                     |                      |                  | Benzo(a)pyrene         | 0.225 | ug/L  | 3.5E-06       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day) <sup>-1</sup> | 2.6E-05     | 1.5E-05       | (mg/kg/day)      | NA:           | (mg/kg/day) |                 |
|             |                       | i                    |                  | Benzo(b)fluoranthene   | 0.340 | ug/L  | 5.3E-06       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day)               | 3.9E-06     | 2.2E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) | -               |
|             |                       |                      |                  | Benzo(k)fluoranthene   | 0.315 | ug/L  | 4.9E-06       | (mg/kg/day)      | 7.3E-02           | (mg/kg/day) <sup>-1</sup> | 3.6E-07     | 2.1E-05       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      | 1.               | Dibenzo(a,h)anthracene | 0.120 | .ug/L | 1.9E-06       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day)"              | 1.4E-05     | 7.9E-06       | (mg/kg/day)      | NA · .        | (mg/kg/day) | -               |
|             |                       |                      |                  | Hexachiorobenzene      | 0.650 | ug/L  | 5.1E-06       | (mg/kg/day)      | 1.6E+00           | (mg/kg/day) <sup>-1</sup> | 8.16-06     | 4.3E-05       | (mg/kg/day)      | 8.0E-04       | (mg/kg/day) | 0.05            |
|             |                       |                      |                  | Indeno(1,2,3-cd)pyrene | 0.160 | ug/L  | 2.5E-06       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>-1</sup> | 1.8E-06     | 1.1E-05       | (mg/kg/day)      | NA.           | (mg/kg/day) | -               |
| ·           | . '                   |                      |                  | Naphthalene            | 0,552 | ug/L  | 4.3E-06       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 3.6E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.002           |
|             |                       |                      |                  | Aluminum               | 322   | ug/L  | 2.5E-03       | (mg/kg/day)      | NA NA             | (mg/kg/day)*1             | ·           | 2.1E-02       | (mg/kg/day)      | 1,0E+00       | (mg/kg/day) | 0.02            |
|             |                       |                      | 1                | Arsenic                | 13.90 | ug/L  | 1.1E-04       | (mg/kg/day)      | 1.5E+00           | (mg/kg/day) <sup>-1</sup> | 1.6E-04     | 9.1E-04       | (mg/kg/day)      | 3.0E+04       | (mg/kg/day) | 3.0             |
|             |                       |                      |                  | Iron                   | 70800 | ug/L  | 5.5E-01       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 4.7E+00       | (mg/kg/day)      | 7.0E+01       | (mg/kg/day) | 6.7             |
|             |                       |                      |                  | Manganese              | 845   | ug/L  | 6.6E-03       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> | ••          | 5.6E-02       | (mg/kg/day)      | 2.4E-02       | (mg/kg/day) | 2.3             |
|             |                       |                      |                  | Vanadium -             | 3.70  | ug/L  | 2.9E-05       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |             | 2.4E-04       | (mg/kg/day)      | 1.0E-03       | (mg/kg/day) | 0.2             |
|             |                       |                      | Exp. Route Total |                        |       |       |               |                  |                   |                           | 2.3E-04     |               |                  |               |             | 12              |
|             |                       |                      | Dermal           | Bromodichloromethane   | 0.300 | ug/L  | 1.5E-07       | (mg/kg/day)      | 6.2E-02           | (mg/kg/day) <sup>-1</sup> | 9.4E-09     | 1.1E-06       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.00005         |
|             |                       | -                    |                  | Chloroform             | 2.500 | ug/L  | 1.4E+06       | (mg/kg/day)      | NA .              | (mg/kg/day) <sup>-1</sup> |             | 9.8E-06       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.0010          |
|             |                       |                      |                  | Tetrachioroethene      | 0.400 | ug/L  | 1.5E-06       | (mg/kg/day)      | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 8.0E-07     | 1.0E-05       | (mg/kg/day)      | 1.0E-02       | (mg/kg/day) | 0.001           |
|             |                       | ·                    |                  | Trichloroethene        | 0.500 | ug/L  | 5.2E-07       | (mg/kg/day)      | 4.0E-01           | (mg/kg/day) <sup>-1</sup> | 2.1E-07     | 3.6E-06       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.01            |
|             | · ·                   |                      |                  | 1-Methylnaphthalene    | 0.492 | ug/L  | 4.2E-06       | (mg/kg/day)      | NA.               | (mg/kg/day)*1             |             | 3.0€-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.007           |
|             |                       |                      |                  | 2-Methylnaphthalene    | 0.600 | ug/L  | 5.1E-06       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 3.6E-05       | (mg/kg/day)      | 4.0E-03       | (mg/kg/day) | 0.009           |
|             |                       |                      |                  | Benzo(a)anthracene     | 0.510 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA.           | (mg/kg/day) | **              |
|             |                       |                      |                  | Benzo(a)pyrene         | 0.225 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      |                  | Benzo(b)fluoranthene   | 0.340 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|             |                       |                      |                  | Benzo(k)fluoranthene   | 0.315 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-02           | (mg/kg/day)*1             |             | 0.0E+00       | (mg/kg/day)      | NA.           | (mg/kg/day) |                 |
|             |                       |                      |                  | Dibenzo(a,h)anthracene | 0.120 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      | -                | Hexachlorobenzene      | 0.650 | ug/L  | 1.9E-05       | (mg/kg/day)      | 1.6E+00           | (mg/kg/day) <sup>-1</sup> | 3.0E-05     | 1.3E-04       | (mg/kg/day)      | 8.0E-04       | (mg/kg/day) | 0.2             |
|             | 1                     |                      | 1                | Indeno(1,2,3-cd)pyrene | 0.160 | ug/L  | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>-1</sup> |             | 0.0E+00       | (mg/kg/day)      | NA            | (mg/kg/day) |                 |
|             |                       |                      |                  | Naphthalene            | 0.552 | ug/L  | 2.2E-06       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |             | 1.6E-05       | (mg/kg/day)      | 2.0E-02       | (mg/kg/day) | 0.0008          |
|             |                       |                      |                  | Aluminum               | 322   | ug/L  | 6.8E-06       | (mg/kg/day)      | NA NA             | (mg/kg/day) 1             |             | 4.8E-05       | (mg/kg/day)      | 1.0E+00       | (mg/kg/day) | 0.00005         |
|             |                       |                      |                  | Arsenic                | 13.90 | ug/L  | 2.9E-07       | (mg/kg/day)      | 1.5E+00           | (mg/kg/day) <sup>-1</sup> | 4.4E-07     | 2.1E-06       | (mg/kg/day)      | 3.0E-04       | (mg/kg/day) | 0.007           |
|             | 1                     |                      |                  | iron                   | 70800 | ug/L  | 1.5E-03       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> | •••         | 1.0E-02       | (mg/kg/day)      | 7.0E-01       | (mg/kg/day) | 0.01            |
|             |                       |                      |                  | Manganese              | 845   | ug/L  | 1.8E-05       | (mg/kg/day)      | NA .              | (mg/kg/day) <sup>-1</sup> |             | 1.3E-04       | (mg/kg/day)      | 9.6E-04       | (mg/kg/day) | 0.1             |
|             |                       | , ·                  |                  | Vanadium               | 3.70  | ug/L  | 7.8E-08       | (mg/kg/day)      | NA                | (mg/kg/day) <sup>-1</sup> | ••          | 5.5€-07       | (mg/kg/day)      | 2.6E-05       | (mg/kg/day) | 0.02            |
|             |                       |                      | Exp. Route Total |                        |       |       |               |                  |                   |                           | 3.1E-05     |               |                  |               |             | 0.4             |
|             |                       | Exposure Point Total |                  |                        |       |       |               |                  |                   |                           | 2.6E-04     |               |                  |               |             | 13              |
|             | Exposure Medium Total |                      |                  |                        |       |       |               |                  |                   |                           | 2.6E-04     |               |                  |               |             | 13              |

### TABLE 7.3.RME

### CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS

REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT

NSB-NLON, GROTON, CONNECTICUT

PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Adult

| Medium                                | Exposure Medium       | Exposure Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exposure Route   | Chemical of                             |                                       | PC       |               | Car              | ncer Risk Calcula | ations                    |                    |               | Non-Ca                                  | ncer Hazard C | alculations                |               |
|---------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|---------------------------------------|----------|---------------|------------------|-------------------|---------------------------|--------------------|---------------|-----------------------------------------|---------------|----------------------------|---------------|
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Potential Concern                       | Value                                 | Units    | Intake/Exposu | re Concentration | CSF/              | Unit Risk                 | Cancer Risk        | Intake/Exposu | re Concentration                        | Rf            | D/RfC                      | Hazard Quotie |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                       | <u> </u> | Value         | Units            | Value             | Units                     |                    | Value         | Units                                   | Value         | Units                      | 1             |
| roundwater                            | Air                   | Site 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inhalation       | Bromodichloromethane                    | 0.300                                 | ug/L     | 2.3E-06       | (mg/kg/day)      | 6.2E-02           | (mg/kg/day) <sup>-1</sup> | 1.5E-07            | 2.0E-05       | (mg/kg/day)                             | 2.0E-02       | (mg/kg/day)                | 0.0010        |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Chloroform                              | 2.500                                 | ug/L     | 2.0E-05       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |                    | 1.6E-04       | (mg/kg/day)                             | 1.0E-02       | (mg/kg/day)                | 0.02          |
|                                       |                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | Tetrachloroethene                       | 0.400                                 | ug/L     | 3.1E-06       | (mg/kg/day)      | 5.4E-01           | (mg/kg/day) <sup>-1</sup> | 1.7E-06            | 2.6E-05       | (mg/kg/day)                             | 1.0E-02       | (mg/kg/day)                | 0.003         |
|                                       |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Trichloroethene                         | 0.500                                 | ug/L     | 3.9E-06       | (mg/kg/day)      | 4.0E-01           | (mg/kg/day)"              | 1.6E-06            | 3.3€-05       | (mg/kg/day)                             | 3.0E-04       | (mg/kg/day)                | 0.1           |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1-Methylnaphthalene                     | 0.492                                 | ug/L     | 3.9E-06       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |                    | 3.2E-05       | (mg/kg/day)                             | 4.0E-03       | (mg/kg/day)                | 0.008         |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 2-Methylnaphthalene                     | 0.600                                 | ug/L     | 4.7E-06       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>-1</sup> |                    | 3.9E-05       | (mg/kg/day)                             | 4.0E-03       | (mg/kg/day)                | 0.010         |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Benzo(a)anthracene                      | 0.510                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day)*1             |                    | 0.0E+00       | (mg/kg/day)                             | NA            | (mg/kg/day)                |               |
|                                       |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | Benzo(a)pyrene                          | 0.225                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day)"              |                    | 0.0E+00       | (mg/kg/day)                             | NA            | (mg/kg/day)                |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                | Benzo(b)fluoranthene                    | 0.340                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day)*1             |                    | 0.0E+00       | (mg/kg/day)                             | NA            | (mg/kg/day)                |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                | Benzo(k)fluoranthene                    | 0.315                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 7.3E-02           | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00       | (mg/kg/day)                             | NA.           | (mg/kg/day)                |               |
|                                       |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Dibenzo(a,h)anthracene                  | 0.120                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 7.3E+00           | (mg/kg/day)'              |                    | 0.0E+00       | (mg/kg/day)                             | NA            | (mg/kg/day)                |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.               | Hexachlorobenzene                       | 0.650                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 1.6E+00           | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00       | (mg/kg/day)                             | 8.0E-04       | (mg/kg/day)                |               |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Indeno(1,2,3-cd)pyrene                  | 0.160                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 7.3E-01           | (mg/kg/day) <sup>1</sup>  |                    | 0.0E+00       | (mg/kg/day)                             | NA.           | (mg/kg/day)                |               |
|                                       |                       | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Naphthalene                             | 0.552                                 | ug/L     | 4.3E-06       | (mg/kg/day)      | NA .              | (mg/kg/day)"              |                    | 3.6E-05       | (mg/kg/day)                             | 2.0E-02       | (mg/kg/day)                | 0.002         |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Į.               | Aluminum                                | 322                                   | ug/L     | 0.0E+00       | (mg/kg/day)      | NA.               | (mg/kg/day) <sup>1</sup>  |                    | 0.0E+00       | (mg/kg/day)                             | 1.0E+00       | (mg/kg/day)                |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Arsenic                                 | 13.90                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | 1.5E+00           | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00       | (mg/kg/day)                             | 3.0E-04       | (mg/kg/day)                | 1 [           |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 .              | Iron                                    | 70800                                 | ug/L     | 0.0E+00       | (mg/kg/day)      | NA.               | (mg/kg/day)*1             |                    | 0.0E+00       | (mg/kg/day)                             | 7.0E-01       | (mg/kg/day)                |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Manganese                               | 845                                   | ug/L     | 0.0E+00       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00       | (mg/kg/day)                             | 2.4E-02       | (mg/kg/day)                |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Vanadium                                | 3.70                                  | ug/L     | 0.0E+00       | (mg/kg/day)      | NA NA             | (mg/kg/day) <sup>-1</sup> |                    | 0.0E+00       | (mg/kg/day)                             | 1.0E-03       | (mg/kg/day)<br>(mg/kg/day) |               |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exp. Route Total | *************************************** | 1 5.70                                | 1. dg/L  | 0.02.100      | (Highey/GBY)     | 140               | (mg/kg/day)               | 3.4E-06            | 0.02+00       | (mg/kg/day)                             | 1.06+03       | (mg/kg/day)                | 0.1           |
|                                       |                       | Exposure Point Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comp             |                                         |                                       | ·        |               |                  |                   |                           | 3.4E-06            |               | *************************************** |               |                            | 0.1           |
|                                       | Exposure Medium Total | I STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                  |                                         |                                       |          |               |                  | ****              |                           | 3.4E-06            |               |                                         |               |                            |               |
| Medium Total                          | 1 - 7000              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                       |          |               |                  |                   |                           | 3.4E-06<br>2.6E-04 |               | -                                       |               |                            | 0.1           |
|                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         | · · · · · · · · · · · · · · · · · · · |          |               |                  | Receptor Risks    |                           | 2.6E-04            |               |                                         |               | Across All Media           | 13            |

Note: Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

### TABLE 9.1.RME

### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 2

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

| Medium      | Exposure<br>Medium | Exposure<br>Point    | Chemical of Potential  |                                                  |            | Carcinogenio | Risk        |                |                 | Non-Carcino | genic Hazard Q | uotient  |              |
|-------------|--------------------|----------------------|------------------------|--------------------------------------------------|------------|--------------|-------------|----------------|-----------------|-------------|----------------|----------|--------------|
|             |                    |                      | Concern                | Ingestion                                        | Inhalation | Dermal       | External    | Exposure       | Primary         | ingestion   | Inhalation     | Dermal   | Exposure     |
|             |                    |                      |                        |                                                  |            |              | (Radiation) | Routes Total   | Target Organ(s) | ]           |                |          | Routes Total |
| Groundwater | Groundwater        | Site 23              | Bromodichloromethane   |                                                  | •          | 3E-11        | -           | 3E-11          | Kidney          | -           |                | 0.000002 | 0.000002     |
|             |                    | ·                    | Chloroform             |                                                  | -          | ••           | -           | ••             | Liver           | -           | ••             | 0.00003  | 0.00003      |
|             | ' <u> </u>         |                      | Tetrachloroethene      |                                                  |            | 2E-09        | - 1         | 2E-09          | Liver           | -           | ••             | 0.00003  | 0.00003      |
|             |                    |                      | Trichloroethene        |                                                  | -          | 6E-10        |             | 6E-10          | Liver, Kidney   | -           |                | 0.0004   | 0.0004       |
|             |                    |                      | 1-Methylnaphthalene    |                                                  |            |              | -           |                | Lungs           | -           |                | 0.0002   | 0.0002       |
|             |                    |                      | 2-Methylnaphthalene    |                                                  | -          |              | -           |                | Lungs           | -           |                | 0.0002   | 0.0002       |
|             |                    |                      | Benzo(a)anthracene     |                                                  | -          |              | -           |                | NA NA           |             |                | -        |              |
|             |                    |                      | Benzo(a)pyrene         |                                                  |            |              | _           |                | NA.             | _           |                | -        |              |
|             |                    |                      | Benzo(b)fluoranthene   |                                                  | -          |              | -           |                | NA NA           | -           |                | -        |              |
|             |                    |                      | Benzo(k)fluoranthene   |                                                  |            |              | 1 - 1       |                | NA NA           | -           |                | -        |              |
|             |                    |                      | Dibenzo(a,h)anthracene |                                                  | _          |              | _           |                | NA NA           | -           |                | _        |              |
|             |                    |                      | Hexachlorobenzene      |                                                  | <b></b>    | 8E-08        |             | 8 <b>€</b> -08 | Liver           | -           |                | 0.004    | 0.004        |
|             |                    |                      | indeno(1,2,3-cd)pyrene |                                                  |            |              |             |                | NA ·            | -           |                | _        |              |
|             |                    |                      | Naphthalene            | ļ <u>.</u> .                                     |            |              | \ <u></u>   |                | Body Weight     | -           |                | 0.00002  | 0.00002      |
|             |                    |                      | Aluminum               | l                                                |            |              | _           |                | CNS             |             |                | 0:000005 | 0.000005     |
|             |                    |                      | Arsenic                |                                                  |            | 5E-09        |             | 5E-09          | Skin, CVS       |             |                | 0.0007   | 0.0007       |
|             |                    |                      | Iron                   | l                                                |            |              |             |                | GS              |             |                | 0.002    | 0.002        |
|             |                    |                      | Manganese              | l                                                | _          |              |             |                | CNS             | _           |                | 0.01     | 0.01         |
|             |                    |                      | Vanadium               |                                                  |            |              |             |                | Kidney          |             |                | 0.002    | 0.002        |
|             | • '                |                      | Chemical Total         | <b>†</b> •                                       |            | 9E-08        |             | 9E-08          |                 |             |                | 0.02     | 0.02         |
|             |                    | Exposure Point Total | Jordan Vota            |                                                  | <u> </u>   |              | ·           | 9E-08          |                 | <del></del> | <u> </u>       |          | 0.02         |
| ·           | Exposure           | Medium Total         | <del></del>            |                                                  |            |              |             | 9E-08          |                 |             |                |          | 0.02         |
|             | Groundwater        | Site 23              | Bromodichloromethane   | <del>                                     </del> |            | -            |             |                | NA NA           | T           |                | T        |              |
|             |                    |                      | Chloroform             | l                                                | 1E-09      |              |             | 1E-09          | Liver           |             | 0.00007        |          | 0.00007      |
|             |                    |                      | Tetrachloroethene      |                                                  | 4E-11      |              |             | 4E-11          | Liver           |             | 0.000002       |          | 0.000002     |
|             |                    |                      | Trichloroethene        |                                                  | 1E-09      | -            |             | 1E-09          | Liver, CNS      |             | 0.00002        |          | 0.00002      |
|             |                    |                      | 1-Methylnaphthalene    |                                                  |            | _            | _           |                | NA NA           |             | _              |          |              |
|             |                    |                      | 2-Methylnaphthalene    |                                                  |            | _            |             |                | NA.             |             |                |          |              |
|             | ļ                  |                      | Benzo(a)anthracene     |                                                  |            | _            | _           |                | NA NA           |             | _              |          |              |
|             |                    |                      | Benzo(a)pyrene         | l _                                              |            |              |             |                | NA NA           | 1           |                |          |              |
|             | 1                  |                      | Benzo(b)fluoranthene   | I                                                |            | -            |             |                | NA NA           |             | _              |          |              |
|             |                    | ľ                    | Benzo(k)fluoranthene   |                                                  |            |              |             |                | NA NA           |             |                |          |              |
|             |                    |                      | Dibenzo(a,h)anthracene |                                                  |            |              |             | -              | NA NA           |             |                |          |              |
|             |                    | 4                    |                        | 1                                                |            |              |             |                | NA NA           |             | -              |          |              |
|             | l                  |                      | Hexachlorobenzene      | ] -                                              |            |              | 1 .         |                | NA<br>NA        |             |                | · · ·    |              |
|             | _ L                | 1                    | Indeno(1,2,3-cd)pyrene | <u> </u>                                         |            |              | -           |                | NA NA           |             |                |          |              |

### TABLE 9.1.RME

## SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe: Future

Receptor Population: Construction Workers

Receptor Age: Adult

| Medium         | Exposure<br>Medium    | Exposure<br>Point    | Chemical of Potential |           |                                         | Carcinogenic | Risk                    |                          |                             | Non-Carcino | genic Hazard Q |               |                          |
|----------------|-----------------------|----------------------|-----------------------|-----------|-----------------------------------------|--------------|-------------------------|--------------------------|-----------------------------|-------------|----------------|---------------|--------------------------|
|                |                       |                      | Concern               | Ingestion | Inhalation                              | Dermai       | External<br>(Radiation) | Exposure<br>Routes Total | Primary.<br>Target Organ(s) | Ingestion   | Inhalation     | Dermal        | Exposure<br>Routes Total |
| Groundwater    | Groundwater           | Site 23              | Naphthalene           |           | ••                                      | -            | -                       |                          | NA NA                       | ••          | 0.0002         |               | 0.0002                   |
|                |                       |                      | Aluminum              |           |                                         | -            | -                       |                          | CNS                         |             | - 1            |               |                          |
| ·              |                       |                      | Arsenic               |           |                                         | _            | -                       |                          | » NA                        |             | -              |               |                          |
| •              |                       |                      | iron                  |           |                                         | · · -        | -                       | ••                       | NA.                         |             | -              |               |                          |
|                |                       |                      | Manganese             | -         |                                         |              | _                       |                          | CNS                         |             | - 1            |               |                          |
|                | -                     |                      | Vanadium              |           |                                         |              | -                       |                          | NA.                         |             | -              |               |                          |
| •              |                       |                      | Chemical Total        |           | 2E-09                                   |              | -                       | 2E-09                    |                             |             | 0.0003         |               | 0.0003                   |
|                |                       | Exposure Point Total |                       |           |                                         |              |                         | 2E-09                    |                             |             |                |               | 0.0003                   |
|                | Exposure Medium Total |                      |                       |           |                                         |              |                         | 2E-09                    |                             |             |                |               | 0.0003                   |
| Medium Total   |                       |                      |                       |           |                                         |              |                         | 9E-08                    |                             |             |                |               | 0.02                     |
| Receptor Total |                       |                      |                       |           | *************************************** |              | tor Risk Total          | 9E-08                    |                             |             | Rece           | ptor HI Total | 0.02                     |

### TABLE 9.2.RME

### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

### REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT

NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium      | Exposure<br>Medium | Exposure<br>Point    | Chemical of Potential  |           |            | Carcinogenio | Risk                    |                          |                            | Non-Carcin                            | nogenic Hazard                        | Quotient |                          |
|-------------|--------------------|----------------------|------------------------|-----------|------------|--------------|-------------------------|--------------------------|----------------------------|---------------------------------------|---------------------------------------|----------|--------------------------|
|             |                    |                      | Concern                | Ingestion | Inhalation | Dermal       | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion                             | Inhalation                            | Dermal   | Exposure<br>Routes Total |
| Groundwater | Groundwater        | Site 23              | Bromodichloromethane   | 2E-07     | -          | 1E-09        |                         | 2E-07                    | Kidney                     | 0.001                                 |                                       | 0.00004  | 0.001                    |
|             |                    |                      | Chloroform             | '         | -          |              | -                       |                          | Liver                      | 0.02                                  |                                       | 0.0007   | 0.02                     |
|             |                    |                      | Tetrachloroethene      | 2E-06     | -          | 1E-07        | -                       | 2E-06                    | Liver                      | 0.004                                 |                                       | 0.0007   | 0.005                    |
|             |                    |                      | Trichloroethene        | 2E-06     | -          | 3E-08        |                         | 2E-06                    | Liver, Kidney              | 0.2                                   |                                       | 0.009    | 0.2                      |
|             |                    |                      | 1-Methylnaphthalene    |           | -          |              |                         |                          | Lungs                      | 0.01                                  |                                       | 0.005    | 0.02                     |
|             |                    |                      | 2-Methylnaphthalene    |           | -          |              | -                       |                          | Lungs                      | 0.01                                  |                                       | 0.006    | 0.02                     |
|             |                    |                      | Benzo(a)anthracene     | 2E-05     | _          |              |                         | 2E-05                    | NA NA                      | -                                     |                                       |          |                          |
|             |                    | ,                    | Benzo(a)pyrene         | 7E-05     |            |              | ,                       | 7E-05                    | NA NA                      |                                       |                                       |          | _                        |
|             |                    |                      | Benzo(b)fluoranthene   | 1E-05     | -          |              |                         | 1E-05                    | NA NA                      | -                                     |                                       |          |                          |
|             |                    |                      | Benzo(k)fluoranthene   | 1E-06     | _          |              |                         | 1E-06                    | NA.                        |                                       |                                       |          | _                        |
|             |                    |                      | Dibenzo(a,h)anthracene | 4E-05     | _          |              |                         | 4E-05                    | NA .                       | -                                     |                                       |          |                          |
|             |                    |                      | Hexachiorobenzene      | 9E-06     | _          | 4E-06        |                         | 1E-05                    | Liver                      | 0.08                                  |                                       | 0.1      | 0.2                      |
|             |                    | •                    | Indeno(1,2,3-cd)pyrene | 5E-06     |            |              |                         | 5E-06                    | NA NA                      |                                       |                                       |          |                          |
|             | -                  |                      | Naphthalene            |           | - 1        |              | _                       |                          | Body Weight                | 0.003                                 |                                       | 0.0006   | 0.003                    |
|             |                    |                      | Aluminum               |           | _          |              | -                       |                          | CNS                        | 0.03                                  | <b></b> :                             | 0.00003  | 0.03                     |
|             |                    |                      | Arsenic                | 2E-04     | - 1        | 6E-08        | _                       | 2E-04                    | Skin, CVS                  | 4                                     |                                       | 0.005    | 4                        |
|             |                    |                      | Iron .                 |           |            |              |                         | ••                       | GS                         | 10                                    |                                       | 0.01     | 10                       |
|             |                    |                      | Manganese              |           | -          |              |                         | ••                       | CNS                        | 3                                     |                                       | 0.09     | 3                        |
|             |                    |                      | Vanadium               |           | _ '        |              |                         |                          | Kidney                     | 0.4                                   |                                       | 0.02     | 0.4                      |
|             |                    |                      | Chemical Total         | 3E-04     | -          | 4E-06        |                         | 3E-04                    |                            | 18                                    |                                       | 0.3      | 18                       |
| •           |                    | Exposure Point Total |                        |           |            |              |                         | 3E-04                    |                            | L                                     | · · · · · · · · · · · · · · · · · · · |          | 18                       |
|             | Exposure M         | ledium Total         | ·                      |           |            | ****         |                         | 3E-04                    |                            | · · · · · · · · · · · · · · · · · · · |                                       |          | 18                       |
| 1           | Groundwater        | Site 23              | Bromodichloromethane   |           | 2E-07      | -            |                         | 2E-07                    | NA NA                      |                                       | 0.001                                 |          | 0.001                    |
|             |                    |                      | Chioroform             | -         |            | _            |                         |                          | Liver                      |                                       | 0.02                                  |          | 0.02                     |
|             |                    |                      | Tetrachloroethene      |           | 2E-06      |              | _                       | 2E-06                    | Liver                      |                                       | 0.004                                 |          | 0.004                    |
| · ·         |                    |                      | Trichloroethene        |           | 2E-06      |              |                         | 2E-06                    | Liver, CNS                 |                                       | 0.2                                   |          | 0.2                      |
|             |                    |                      | 1-Methylnaphthalene    | _         |            | -            |                         |                          | NA.                        | ••                                    | 0.01                                  |          | 0.01                     |
|             |                    |                      | 2-Methylnaphthalene    |           |            | _            |                         |                          | NA NA                      |                                       | 0.01                                  | •        | 0.01                     |
|             |                    |                      | Benzo(a)anthracene     |           |            | _            |                         |                          | NA.                        |                                       |                                       |          |                          |
|             |                    |                      | Benzo(a)pyrene         |           |            | -            | _                       |                          | NA.                        |                                       |                                       |          | -                        |
|             | 7.1                | •                    | Benzo(b)fluoranthene   | -         |            |              | _                       |                          | NA.                        |                                       |                                       |          | -                        |
|             |                    | ·                    | Benzo(k)fluoranthene   |           |            | _            | _                       |                          | NA<br>NA                   |                                       |                                       |          | _                        |
|             |                    |                      | Dibenzo(a,h)anthracene |           | l          |              | _                       |                          | NA.                        |                                       | -                                     |          | _                        |
|             |                    |                      | Hexachlorobenzene      |           |            | _            | _                       |                          | NA ·                       |                                       | -                                     |          | -                        |
|             |                    |                      | , leverillo opeuseue   |           |            | -            | - 1                     | 1                        | INA '                      | •••                                   |                                       |          |                          |

### TABLE 9.2.RME

### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

### REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT

ON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Child

| Medium         | Exposure<br>Medium    | Exposure<br>Point    | Chemical<br>of Potential |           |            | Carcinogenio | c Risk               | •                        |                            | Non-Carcin | ogenic Hazard | Quotient      |                          |
|----------------|-----------------------|----------------------|--------------------------|-----------|------------|--------------|----------------------|--------------------------|----------------------------|------------|---------------|---------------|--------------------------|
|                |                       |                      | Concern                  | Ingestion | Inhalation | Dermal       | External (Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion  | Inhalation    | Dermal        | Exposure<br>Routes Total |
| Groundwater    | Groundwater           | Site 23              | Naphthalene              |           |            |              | -                    |                          | NA NA                      | ••         | 0.003         | • •           | 0.003                    |
|                |                       | 1                    | Aluminum                 | -         |            | · -          |                      | ••                       | CNS                        |            |               |               |                          |
|                |                       |                      | Arsenic                  |           |            | -            | -                    | ,                        | . NA                       |            | -             |               | _                        |
|                |                       |                      | Iron                     |           |            |              | - 1                  |                          | NA .                       |            | _             |               |                          |
|                |                       |                      | Manganese                | -         |            | -            | -                    |                          | CNS                        | ••         |               |               | _                        |
|                |                       |                      | Vanadium                 |           |            |              | -                    |                          | NA ·                       |            | -             |               |                          |
|                | ,                     |                      | Chemical Total           |           | 4E-06      |              |                      | 4E-06                    |                            |            | 0.2           |               | 0.2                      |
|                |                       | Exposure Point Total |                          |           |            |              |                      | 4E-06                    |                            |            |               |               | 0.2                      |
|                | Exposure Medium Total |                      |                          |           |            |              |                      | 4E-06                    |                            |            | 10            |               | 0.2                      |
| Medium Total   |                       |                      |                          |           |            |              |                      | 3E-04                    |                            |            |               |               | 19                       |
| Receptor Total |                       |                      |                          |           |            | Recep        | otor Risk Total      | 3E-04                    |                            |            | Rece          | ptor HI Total | 19                       |

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

| Total Body Weight HI | 0.003 |
|----------------------|-------|
| Total CNS HI         | 4     |
| Total CVS HI         | 4     |
| Total GS HI          | 10    |
| Total Kidney HI      | 0.5   |
| Total Liver HI       | 0.6   |
| Total Skin HI        | 4     |

### TABLE 9.3.RME

### SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs

### REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Adult

| Medium    | Exposure<br>Medium | Exposure<br>Point    | Chemical of Potential                                         |            |        | Carcinogenio            | Risk                     |                            | Non-Carcinogenic Hazard Quotient |            |        |                         |        |  |
|-----------|--------------------|----------------------|---------------------------------------------------------------|------------|--------|-------------------------|--------------------------|----------------------------|----------------------------------|------------|--------|-------------------------|--------|--|
|           | ;                  | Concern              | Ingestion                                                     | Inhalation | Dermal | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion                        | Inhalation | Dermal | Exposure<br>Routes Tota |        |  |
| oundwater | Groundwater        | Site 23              | Bromodichloromethane                                          | 1E-07      | -      | 9E-09                   | -                        | 2E-07                      | Kidney                           | 0.0010     | . ••   | 0.00005                 | 0.001  |  |
|           |                    |                      | Chloroform                                                    |            | -      |                         | · -                      |                            | Liver                            | 0.02       | ••     | 0.0010                  | 0.02   |  |
|           |                    |                      | Tetrachloroethene                                             | 2E-06      | -      | 8E-07                   |                          | 2E-06                      | Liver                            | 0.003      | ••     | 0.001                   | 0.004  |  |
|           |                    |                      | Trichloroethene                                               | 2E-06      | - '    | 2E-07                   | -                        | 2E-06                      | Liver, Kidney                    | 0.1        |        | 0.01                    | 0.1    |  |
|           |                    |                      | 1-Methylnaphthalene                                           |            | -      | ••                      | -                        |                            | Lungs                            | 0.008      |        | 0.007                   | 0.02   |  |
|           |                    |                      | 2-Methylnaphthalene                                           |            |        |                         | -                        | ••                         | Lungs                            | 0.010      |        | 0.009                   | 0.02   |  |
|           | 1                  |                      | Benzo(a)anthracene                                            | 6E-06      |        |                         | -                        | 6E-06                      | NA.                              |            |        |                         | -      |  |
|           |                    |                      | Benzo(a)pyrene                                                | 3E-05      | -      |                         | -                        | 3E-05                      | . NA                             |            |        | -                       | -      |  |
|           |                    |                      | Benzo(b)fluoranthene                                          | 4E-06      |        |                         | _                        | 4E-06                      | NA                               | -          |        | -                       | -      |  |
|           |                    |                      | Benzo(k)fluoranthene                                          | 4E-07      |        |                         |                          | 4E-07                      | NA NA                            |            |        | -                       |        |  |
|           | 1                  |                      | Dibenzo(a,h)anthracene                                        | 1E-05      |        |                         | _                        | 1E-05                      | NA NA                            |            |        |                         |        |  |
|           |                    | · ·                  | Hexachlorobenzene                                             | 8E-06      | _      | 3E-05                   | -                        | 4E-05                      | Liver                            | 0.05       | ·      | 0.2                     | 0.2    |  |
|           |                    | ļ.                   | Indeno(1,2,3-cd)pyrene                                        | 2E-06      |        |                         | _                        | 2E-06                      | NA NA                            | _          |        |                         | _      |  |
|           |                    |                      | Naphthalene                                                   |            | -      | • •                     | .                        |                            | Body Weight                      | 0.002      |        | 0.0008                  | 0.003  |  |
|           |                    |                      | Aluminum                                                      |            | _      | <b></b>                 |                          |                            | CNS                              | 0.02       |        | 0.00005                 | 0.02   |  |
|           |                    |                      | Arsenic                                                       | 2E-04      | -      | 4E-07                   |                          | 2E-04                      | Skin, CVS                        | 3          |        | 0.007                   | 3      |  |
|           |                    |                      | Iron                                                          |            | _      |                         |                          |                            | GS                               | 7          |        | 0.01                    | 7      |  |
|           |                    |                      | Manganese                                                     |            |        |                         | _                        |                            | CNS                              | 2          |        | 0.1                     | 2      |  |
|           |                    | * -                  | Vanadium                                                      |            |        |                         |                          |                            | Kidney                           | 0.2        |        | 0.02                    | 0.3    |  |
|           |                    |                      | Chemical Total                                                | 2E-04      |        | 3E-05                   |                          | 3E-04                      | ,                                | 12         |        | 0.4                     | 13.    |  |
|           |                    | Exposure Point Total | 12                                                            |            |        |                         |                          | 3E-04                      |                                  |            |        |                         | 13     |  |
|           | Exposure M         | Nedium Total         |                                                               | 3E-04      |        |                         |                          |                            |                                  |            | 13     |                         |        |  |
|           | Groundwater        | Site 23              | Bromodichloromethane                                          | _          | 1E-07  | _                       |                          | 1E-07                      | NA NA                            |            | 0.0010 |                         | 0.0010 |  |
|           |                    |                      | Chloroform                                                    |            | ••     |                         |                          |                            | Liver                            |            | 0.02   |                         | 0.02   |  |
|           |                    |                      | Tetrachloroethene                                             |            | 2E-06  | _                       |                          | 2E-06                      | Liver                            |            | 0.003  |                         | 0.003  |  |
|           | 1                  |                      | Trichloroethene                                               |            | 2E-06  | _                       | _                        | 2E-06                      | Liver, CNS                       | •          | 0.1    |                         | 0.1    |  |
|           |                    |                      | 1-Methylnaphthalene                                           |            |        |                         | _                        |                            | NA.                              |            | 0.008  |                         | 0.008  |  |
|           | ŧ.                 |                      | 2-Methylnaphthalene                                           |            |        | _                       | _                        |                            | NA                               |            | 0.010  |                         | 0.010  |  |
|           |                    |                      | Benzo(a)anthracene                                            |            |        | _                       |                          |                            | NA I                             |            | 0.010  |                         | 0.010  |  |
|           |                    |                      | Benzo(a)pyrene                                                |            |        | _                       |                          |                            | NA NA                            |            |        |                         | _      |  |
|           |                    |                      | Benzo(b)fluoranthene                                          |            |        |                         |                          |                            | NA NA                            |            |        |                         | -      |  |
|           | 1                  |                      |                                                               |            |        | -                       |                          |                            | NA<br>NA                         |            |        |                         |        |  |
|           |                    | i .                  | Donzo/k\fly.oconthono                                         |            |        |                         |                          |                            |                                  |            |        |                         |        |  |
|           | ·                  |                      | Benzo(k)fluoranthene                                          | -          |        |                         | l i                      |                            |                                  |            |        |                         |        |  |
|           |                    |                      | Benzo(k)fluoranthene Dibenzo(a,h)anthracene Hexachlorobenzene | -          |        | _                       | -                        |                            | NA<br>NA                         |            |        |                         |        |  |

### TABLE 9.3.RME

## SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Adult

| Medium         | Exposure<br>Medium    | Exposure<br>Point    | Chemical of Potential |                           |            | Carcinogenio | : Risk                  |                          |                            | Non-Carcinogenic Hazard Quotient |            |        |                          |  |  |
|----------------|-----------------------|----------------------|-----------------------|---------------------------|------------|--------------|-------------------------|--------------------------|----------------------------|----------------------------------|------------|--------|--------------------------|--|--|
|                |                       |                      | Concern               | Ingestion                 | Inhalation | Dermal       | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s) | Ingestion                        | Inhalation | Dermal | Exposure<br>Routes Total |  |  |
| Groundwater    | Groundwater           | Site 23              | Naphthalene           |                           | ••         |              | -                       | ••                       | NA NA                      | ••                               | 0.002      |        | 0.002                    |  |  |
|                |                       |                      | Aluminum              |                           |            |              |                         |                          | CNS                        |                                  | .          |        |                          |  |  |
|                | ·                     |                      | Arsenic               | -                         |            | -            | -                       |                          | NA .                       |                                  |            |        |                          |  |  |
|                |                       |                      | Iron                  |                           |            | _            | _                       |                          | NA NA                      |                                  |            |        | _                        |  |  |
|                |                       |                      | Manganese             | -                         | ••         | -            | - 1                     |                          | CNS                        |                                  |            |        | _                        |  |  |
|                |                       |                      | Vanadium              |                           |            | -            | _                       |                          | . NA                       |                                  |            |        |                          |  |  |
|                | ·                     |                      | Chemical Total        |                           | 3E-06      | -            | - 1                     | 3E-06                    |                            |                                  | 0,1        |        | 0.1                      |  |  |
|                |                       | Exposure Point Total |                       |                           |            |              |                         | 3E-06                    |                            |                                  |            |        | 0.1                      |  |  |
|                | Exposure Medium Total |                      |                       |                           |            | 3E-06        |                         |                          |                            |                                  |            |        |                          |  |  |
| Medium Total   |                       |                      |                       |                           |            |              |                         | 3E-04                    |                            | 0.1<br>13                        |            |        |                          |  |  |
| Receptor Total |                       |                      |                       | Receptor Risk Total 3E-04 |            |              |                         |                          |                            | 13                               |            |        |                          |  |  |

Note:

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

| Total Body Weight HI | 0.003 |
|----------------------|-------|
| Total CNS HI         | 3     |
| Total CVS HI         | 3     |
| . Total GS HI        | 7     |
| Total Kidney HI      | 0.4   |
| Total Liver HI       | 0.5   |
| Total Skin HI        | 3     |

### TABLE 9.4.RME

# SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 1 OF 2

Scenario Timeframe: Future Receptor Population: Residents Receptor Age: Lifelong (Child and Adult)

| Medium      | Exposure       | Exposure             | Chemical               |               | Non-Carcinogenic Hazard Quotient |              |                         |                          |                                  |           |                                       |        |                          |  |
|-------------|----------------|----------------------|------------------------|---------------|----------------------------------|--------------|-------------------------|--------------------------|----------------------------------|-----------|---------------------------------------|--------|--------------------------|--|
| Medidiii    | Medium         | Point                | of Potential           |               |                                  | Carcinogenio | RISK                    |                          | HALL-DELMINAGOIN LIBERIA RODUCIA |           |                                       |        |                          |  |
|             |                | neuioin Foliit       | Concern                | Ingestion     | Inhalation                       | Dermal       | External<br>(Radiation) | Exposure<br>Routes Total | Primary<br>Target Organ(s)       | Ingestion | Inhalation                            | Dermal | Exposure<br>Routes Total |  |
| Groundwater | Groundwater    | Site 23              | Bromodichloromethane   | 3E-07         | -                                | 1E-08        | - 1                     | 3E-07                    | •                                |           |                                       |        |                          |  |
|             |                |                      | Chloroform             |               | -                                |              | _                       | ••                       |                                  |           | r.                                    |        |                          |  |
|             |                | 15                   | Tetrachloroethene      | 3E-06         |                                  | 9E-07        | -                       | 4E-06                    |                                  | 1         |                                       |        |                          |  |
|             |                |                      | Trichloroethene        | 3E-06         |                                  | 2E-07        | -                       | 3E-06                    |                                  |           |                                       | *      |                          |  |
|             |                | ·                    | 1-Methylnaphthalene    |               | -                                |              | -                       |                          |                                  | }         |                                       |        |                          |  |
|             |                |                      | 2-Methylnaphthalene    |               |                                  |              | -                       | *,                       |                                  |           |                                       |        | Ī                        |  |
|             |                |                      | Benzo(a)anthracene     | 2E-05         |                                  |              | -                       | 2E-05                    |                                  |           |                                       |        |                          |  |
|             |                |                      | Benzo(a)pyrene         | 1E-04         |                                  |              | -                       | 1E-04                    |                                  | 1         |                                       |        |                          |  |
|             |                | •                    | Benzo(b)fluoranthene   | 1E-05         | -                                |              | -                       | 1E-05                    |                                  |           | ļ.                                    |        |                          |  |
| İ           |                | i.                   | Benzo(k)fluoranthene   | 1E-06         | -                                | •            | -                       | 1E-06                    | ,                                |           |                                       |        |                          |  |
|             |                |                      | Dibenzo(a,h)anthracene | 5E-05         | -                                |              | -                       | 5E-05                    |                                  |           |                                       |        |                          |  |
| :           |                |                      | Hexachlorobenzene      | 2E-05         | -                                | 3E-05        | -                       | 5E-05                    |                                  | İ .       |                                       |        |                          |  |
|             |                |                      | Indeno(1,2,3-cd)pyrene | 7E-06         |                                  | ••           |                         | 7E-06                    |                                  |           |                                       |        |                          |  |
|             |                |                      | Naphthalene            |               | -                                | ••           | -                       | ••                       |                                  |           | <b>]</b>                              |        |                          |  |
|             |                |                      | Aluminum               |               | -                                |              |                         |                          |                                  |           |                                       |        |                          |  |
|             |                |                      | Arsenic                | 3E-04         | _                                | 5E-07        | -                       | 3E-04                    |                                  |           |                                       |        |                          |  |
|             |                |                      | iron                   |               |                                  |              | -                       |                          |                                  |           |                                       |        |                          |  |
|             |                |                      | Manganese              |               |                                  |              |                         | *-                       |                                  |           |                                       |        |                          |  |
|             |                |                      | Vanadium               |               | -                                |              |                         | ••                       |                                  |           |                                       |        |                          |  |
|             |                |                      | Chemical Total         | 6E-04         |                                  | 4E-05        | -                       | 6E-04                    |                                  |           |                                       |        |                          |  |
|             |                | Exposure Point Total |                        |               |                                  |              |                         | 6E-04                    |                                  |           |                                       |        |                          |  |
|             | Exposure M     | fedium Total         |                        |               |                                  |              |                         | 6E-04                    |                                  |           |                                       |        |                          |  |
|             | Groundwater    | Site 23              | Bromodichloromethane   | ••            | 3E-07                            | ••           | -                       | 3E-07                    |                                  |           |                                       |        |                          |  |
|             |                |                      | Chioroform             |               |                                  | -            | -                       |                          |                                  | . * *     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |        |                          |  |
|             |                |                      | Tetrachloroethene      | <del></del> , | 3E-06                            | -            | -                       | 3E-06                    |                                  |           |                                       |        |                          |  |
|             |                |                      | Trichloroethene        |               | 3E-06                            |              | -                       | 3E-06                    |                                  |           |                                       |        |                          |  |
|             |                |                      | 1-Methylnaphthalene    |               |                                  | -            |                         | ••                       |                                  |           |                                       |        |                          |  |
|             |                |                      | 2-Methylnaphthalene    | -             |                                  | -            | -                       |                          |                                  |           |                                       |        |                          |  |
|             |                | 1                    | Benzo(a)anthracene     | -             | ••                               |              |                         | ••                       |                                  |           |                                       |        |                          |  |
|             |                | ļ ,                  | Benzo(a)pyrene         | -             |                                  | -            |                         |                          |                                  |           |                                       |        |                          |  |
|             |                |                      | Benzo(b)fluoranthene   | -             | ••                               | -            | -                       | ••                       |                                  |           |                                       |        |                          |  |
|             | and the second |                      | Benzo(k)fluoranthene   | -             |                                  |              | - 1                     |                          |                                  | ,         |                                       |        |                          |  |
|             |                |                      | Dibenzo(a,h)anthracene | -             | ••                               | -            | -                       | ••                       |                                  |           |                                       |        |                          |  |
|             |                |                      | Hexachlorobenzene      | ••            | ••                               | •            | -                       |                          |                                  |           |                                       |        |                          |  |
|             |                | l                    | Indeno(1,2,3-cd)pyrene |               |                                  |              |                         | ••                       | L                                |           |                                       |        |                          |  |

### TABLE 9.4.RME

## SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURES - UNDERDRAIN METERING PIT NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 2

Scenario Timeframe; Future Receptor Population: Residents Receptor Age: Lifelong (Child and Adult)

| Medium         | Exposure Exposure<br>Medium Point |                      | Chemical of Potential |           |            | Carcinogenio | : Risk         |              | Non-Carcinogenic Hazard Quotient |                                       |                                        |        |              |  |
|----------------|-----------------------------------|----------------------|-----------------------|-----------|------------|--------------|----------------|--------------|----------------------------------|---------------------------------------|----------------------------------------|--------|--------------|--|
|                |                                   |                      | Concern               | Ingestion | Inhalation | Dermal       | External       | Exposure     | Primary                          | Ingestion                             | Inhalation                             | Dermal | Exposure     |  |
|                |                                   |                      |                       |           |            |              | (Radiation)    | Routes Total | Target Organ(s)                  |                                       |                                        |        | Routes Total |  |
| Groundwater    | Groundwater                       | Site 23              | Naphthalene           | -         |            | -            | - 1            | ••           |                                  |                                       |                                        |        |              |  |
|                |                                   |                      | Aluminum              |           |            |              | -              | • •          | :                                |                                       |                                        |        |              |  |
|                |                                   |                      | Arsenic               |           |            | -            | · -            |              |                                  |                                       |                                        |        |              |  |
|                |                                   |                      | Iron                  |           |            | -            |                |              |                                  |                                       |                                        |        |              |  |
|                |                                   |                      | Manganese             |           | ••         | · =          | -              |              |                                  |                                       |                                        |        |              |  |
|                | *                                 |                      | Vanadium              | -         |            | -            | -              |              |                                  |                                       |                                        |        |              |  |
|                |                                   |                      | Chemical Total        |           | 7E-06      | -            | - 1            | 7E-06        | 1                                |                                       |                                        |        |              |  |
|                |                                   | Exposure Point Total |                       |           |            |              |                | 7E-06        |                                  | · · · · · · · · · · · · · · · · · · · | ······································ |        |              |  |
|                | Exposure Medium Total             |                      |                       |           |            |              |                | 7E-06        |                                  |                                       |                                        |        |              |  |
| Medium Total   |                                   |                      |                       |           |            |              |                | 6E-04        |                                  |                                       |                                        |        |              |  |
| Receptor Total |                                   |                      |                       | ·         |            | Recep        | tor Risk Total | 6E-04        |                                  |                                       |                                        |        |              |  |

Note:

Inhalation exposures are assumed to be equal to the exposures from ingestion of groundwater.

### **APPENDIX E**

**VAPOR INTRUSION EVALUATION FOR GROUNDWATER MEMORANDUM** 

From: Bob Jupin, Tetra Tech Risk Assessment Specialist

To: Corey Rich, Tetra Tech Project Manager

Date: May 30, 2008

Regarding: Vapor Intrusion Evaluation for Groundwater at Operable Unit (OU) 9

Groundwater data from Sites 2, 3, 7, 14, 15, 18, 20, and 23 which are within OU 9 were evaluated to determine if there were unacceptable risks associated with vapor intrusion into buildings. The most recent groundwater data that was available for each site was used in the evaluation. Concentrations of volatile organic compounds (VOCs) in groundwater were compared to screening criteria for vapor intrusion. Screening criteria were obtained from USEPA's OSWER Draft Guidance for Evaluating the Vapor Intrusion into Indoor Air from Groundwater and Soils (Subsurface Vapor Intrusion Guidance), November 2002, CTDEP's Proposed Revisions - Connecticut's Remediation Standard Regulations Volatilization Criteria, March 2003, and USEPA Region I (April 24, 2008). The screening criteria are for residential exposures and are based on an incremental lifetime cancer risk (ILCR) of 1 x 10<sup>-6</sup> or a hazard index (HI) of 1. If the risk-based screening criterion is less than the maximum contaminant level (MCL) the 2002 USEPA guidance recommends using the MCL as the screening level. However, USEPA Region I guidance does not allow for MCLs to be used as screening criteria. USEPA Region I provided risk-based screening levels for those cases where the USEPA draft guidance recommended MCLs as screening levels. If chemicals were detected at concentrations exceeding either screening criteria, then the chemicals were further evaluated using USEPA's Johnson and Ettinger Vapor Intrusion Model (USEPA, February 2004): The results of the screening and modeling evaluations are presented below.

### COMPARISON TO SCREENING CRITERIA FOR VAPOR INTRUSION

### Site 2

Groundwater data presented in the Year 3 Annual Groundwater Monitoring Report for Area A Landfill (Tetra Tech, 2003) was used to evaluate the potential for vapor intrusion at Site 2. This was the last year that VOCs were analyzed for in groundwater samples collected at Site 2. VOCs were eliminated as a concern at Site 2 after eleven rounds of groundwater monitoring. A comparison of the detected concentrations of VOCs in groundwater samples from upgradient wells, downgradient wells in Area A Downstream, and downgradient wells in the Area A Wetland to the screening criteria are presented in Tables 1 through 3, respectively. Concentrations of all chemicals were below the CTDEP RSRs for vapor intrusion. Concentrations of chloroform exceeded the USEPA screening criterion in samples from upgradient well 4MW01S. Concentrations of trichloroethene exceeded the USEPA screening criterion in samples from upgradient monitoring well 4MW01S; downstream monitoring well 3MW37S, and wetlands monitoring well 2WMW46DS. Concentrations of tetrachloroethene exceeded the USEPA screening

criterion in samples from wetlands monitoring well 2WMW39DS. Therefore, these chemicals were further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

### Site 3

Groundwater data presented in the Year 1 Annual Groundwater Monitoring Report for Sites 3 and 7 (Tetra Tech, 2007) was used to evaluate the potential for vapor intrusion at Site 3. A comparison of the detected concentrations of VOCs in groundwater samples to the screening criteria is presented in Table 4. Concentrations of chloroform exceeded the USEPA screening criterion in samples from monitoring wells 3MW15S, 3MW15D, 2MW16S, and 3MW16D. Concentrations of trichloroethene exceeded USEPA screening criterion in all four samples collected from monitoring well 2DMW16D. Concentrations of vinyl chloride in monitoring well 2DMW29S exceeded the USEPA screening criterion and CTDEP RSRs in groundwater samples collected during the 1<sup>st</sup>, 2<sup>nd</sup>, and 4<sup>th</sup> quarters. Therefore, chloroform, trichloroethene, and vinyl chloride were further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

### Site 7

Groundwater data presented in the Year 1 Annual Groundwater Monitoring Report for Sites 3 and 7 (Tetra Tech, 2007) was used to evaluate the potential for vapor intrusion at Site 7. A comparison of the detected concentrations of VOCs in groundwater samples to the screening criterion is presented in Table 5. Concentrations of trichloroethene exceeded the USEPA screening criterion in all four samples collected from monitoring wells 7MW05D and 7MW12I. Therefore, trichloroethene was further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

### Site 14

No VOCs were detected in groundwater samples collected at Site 14 during the Basewide Groundwater Operable Unit Remedial Investigation (BGOURI) (Tetra Tech, 2002) indicating that vapor intrusion is not a concern at Site 14.

### Site 15

Groundwater data presented in the Basewide Groundwater Operable Unit Remedial Investigation Update/Feasibility Study Report (Tetra Tech, 2004) was used to evaluate the potential for vapor intrusion at Site 15. A comparison of the detected concentrations of VOCs in groundwater samples to the screening criteria is presented in Table 6. Chloroform was the only VOC detected in groundwater samples collected at Site 15. Chloroform is a common laboratory contaminant and is frequently detected in potable water samples. Chloroform was only detected in one sample at one temporary monitoring well (15TW03) and the detected concentration exceeded the USEPA screening criterion. Therefore, chloroform was further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

### Site 18

No VOCs were detected in groundwater samples collected at Site 18 during the BGOURI (Tetra Tech, 2002) indicating that vapor intrusion is not a concern at Site 18.

### Site 20

Groundwater data presented in the BGOURI (Tetra Tech, 2002) was used to evaluate the potential for vapor intrusion at Site 20. A comparison of the detected concentrations of VOCs in groundwater samples to the screening criteria is presented in Table 7. 4-Methyl-2-pentanone and trichloroethene were the only VOCs detected in groundwater samples collected at Site 20. Trichloroethene was detected in the groundwater sample from monitoring well 2WCMW2S at a concentration exceeding the USEPA screening criterion. Therefore, trichloroethene was further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

### Site 23

Groundwater data presented in Year 1 Annual Monitoring Report for Site 23 Underdrain Metering Pit (Tetra Tech, 2008) was used to evaluate the potential for vapor intrusion at Site 23. A comparison of the detected concentrations of VOCs in groundwater samples to the screening criteria are presented in Table 8. Concentrations of chloroform detected in one sample and trichloroethene detected in four samples exceeded the USEPA screening criterion. Therefore, chloroform and trichloroethene were further evaluated using the Johnson and Ettinger Vapor Intrusion Model.

### **VAPOR INTRUSION MODELING**

The following chemicals were detected at concentrations exceeding the screening criteria for vapor intrusion:

- Site 2 Upgradient chloroform and trichloroethene
- Site 2 Area A Downstream trichloroethene
- Site 2 Area A Wetlands tetrachloroethene and trichloroethene
- Site 3 chloroform, trichloroethene, and vinyl chloride
- Site 7 trichloroethene
- Site 15 chloroform
- Site 20 trichloroethene
- Site 23 chloroform and trichloroethene

These chemicals were further evaluated using USEPA's Johnson and Ettinger Vapor Intrusion Model. There are currently no buildings at any of the sites that are used for residential purposes, although there are some buildings that are used for industrial purposes. Therefore, the evaluation considered a hypothetical scenario where a residential building was constructed at the sites.

In accordance with USEPA Region I guidance (1999), there was not sufficient data available to calculate temporal averages at the monitoring wells; therefore, the maximum detected concentrations were used as the exposure point concentrations for the chemicals identified as exceeding the screening levels at each site. The boring logs for the monitoring wells where there were exceedances of the screening criteria were used to determine the Soil Conservation Services (SCS) soil type. Test results from the BGOURI were used to determine the bulk density and total porosity. The values used in the evaluation are presented in Table 9. Supporting information for Table 9 is included in Attachment A. Slab-on-grade construction was assumed for future residential construction due to the shallow groundwater depth at Site 3. At the Site 2 Wetlands the depth to groundwater was assumed to be 2 feet which represents the average depth to groundwater at monitoring wells 2WMW39DS and 2WMW46DS. At the other sites the shallowest depth to groundwater was used in the evaluation. Default parameters were used for the remaining model input parameters for the evaluation of residential exposures.

The USEPA vapor intrusion guidance does not provide any default parameters for evaluating industrial exposures. The USEPA default values of 250 days a year and 25 years were used for the exposure frequency and exposure duration, respectively (USEPA, December 2002) for industrial exposures. The CTDEP (March 2003) and ASTM (2004) default value of 0.83 hr<sup>-1</sup> was used as the air exchange rate and 300 cm was used as the building height. The same input parameters that were used to evaluate residential exposures were used for the remaining input parameters.

Toxicity criteria for trichloroethene are not currently published on the USEPA's IRIS database or in USEPA's Health Effects Assessment Summary Tables (HEAST). USEPA has published draft toxicity criteria for trichloroethene in the *External Review Draft for Trichloroethylene Health Risk Assessment: Synthesis and Characterization* (2001). The draft toxicity criteria are currently undergoing peer review. Alternatively, the California EPA (CA EPA) has developed toxicity criteria for trichloroethene (2002). Both sets of toxicity criteria were used to estimate risks for exposures to trichloroethene. The draft USEPA guidance recommends values of 1.1 x 10<sup>-4</sup> (ug/m<sup>3</sup>)<sup>-1</sup> for the unit risk factor and 0.04 mg/m<sup>3</sup> for the reference concentration. CA EPA recommends values of 2.0 x 10<sup>-6</sup> (ug/m<sup>3</sup>)<sup>-1</sup> for the unit risk factor and 0.6 mg/m<sup>3</sup> for the reference concentration. As recommended by USEPA Region I, the unit risk factor for adult exposures of 4.4 x 10<sup>-6</sup> (ug/m<sup>3</sup>)<sup>-1</sup> was used for vinyl chloride. The toxicity criteria used in the evaluation are presented in Tables 10 and 11.

The results of the vapor intrusion modeling are summarized in Table 12. Outputs for the Johnson and Ettinger Vapor Intrusion Model are presented in Attachment B.

HIs for residential and industrial exposures to all chemicals at all sites were less than unity (1), indicating that adverse non-carcinogenic effects are not anticipated for these receptors under the defined exposure conditions.

Overall the ILCRs for residential and industrial exposures at all sites were less than or within the USEPA target risk range of  $10^{-4}$  to  $10^{-6}$ . ILCRs for residential and industrial exposures were less than or equal to  $1 \times 10^{-6}$  at Site 2 indicating that there is no significant risk from vapor intrusion at this site.

At Site 3 the ILCR for trichloroethene of 3 x 10<sup>-5</sup> for residential exposures and 5 x 10<sup>-6</sup> for industrial exposures based on the draft USEPA toxicity criteria exceeds the CTDEP acceptable level for cumulative exposures and the ILCRs of 7 x 10<sup>-6</sup> for chloroform and 8 x 10<sup>-6</sup> for vinyl chloride exceed the CTDEP acceptable level of 1 x 10<sup>-6</sup> for individual chemicals. The ILCR for trichloroethene for residential exposures based on the Cal EPA toxicity and ILCRs for industrial exposures for trichloroethene, chloroform, and vinyl chloride are all less than or equal to 1 x 10<sup>-6</sup>. Vinyl chloride was only detected at monitoring well 2DMW29S and trichloroethene and chloroform were not detected in groundwater samples from this monitoring well. Chloroform was detected in groundwater samples from monitoring wells 3MW15I, 3MW15S, 3MW16D, and 3MW16S. The maximum detected concentration of chloroform occurred at monitoring well 3MW16S. Trichloroethene and vinyl chloride were not detected at this monitoring well. Trichloroethene was detected in groundwater samples from monitoring wells 3MW16D and 2MW16D. At monitoring well 3MW16D, the only monitoring well where trichloroethene and chloroform were both detected, the cumulative ILCR for residential exposures is 2 x 10<sup>-5</sup> based on the draft USEPA toxicity criteria, and 2 x 10<sup>-6</sup> based on the Cal EPA toxicity criteria.

At Site 7 the ILCR for trichloroethene of 2 x  $10^{-6}$  for residential exposures based on the draft USEPA toxicity criteria is less than the CTDEP acceptable level for cumulative exposures but exceeds the CTDEP acceptable level of 1 x  $10^{-6}$  for individual chemicals. The ILCR for trichloroethene of 3 x  $10^{-7}$  for industrial exposures based on draft USEPA toxicity criteria and ILCRs for of 2 x  $10^{-7}$  and 3 x  $10^{-8}$  for residential and industrial exposures, respectively, based on the Cal EPA toxicity criteria for trichloroethene are less than the CTDEP acceptable level for individual chemicals. Also the maximum detected concentration of trichloroethene in groundwater samples at Site 7 of 1  $\mu$ g/L is less than the residential CTDEP RSR of 27  $\mu$ g/L for vapor intrusion.

At Site 15 the ILCR of 4 x  $10^{-6}$  for residential exposures is less than the CTDEP acceptable level for cumulative exposures but exceeds the CTDEP acceptable level of 1 x  $10^{-6}$  for individual chemicals. The ILCR of 5 x  $10^{-7}$  for industrial exposures is less than the CTDEP acceptable level for individual chemicals.

Also the maximum detected concentration of chloroform in groundwater samples at Site 15 of 3  $\mu$ g/L is less than the residential CTDEP RSR of 26  $\mu$ g/L for vapor intrusion.

At Site 20 the ILCR for trichloroethene of 4 x  $10^{-6}$  for residential exposures based on the draft USEPA toxicity criteria is less than the CTDEP acceptable level for cumulative exposures but exceeds the CTDEP acceptable level of 1 x  $10^{-6}$  for individual chemicals. The ILCR for trichloroethene of 6 x  $10^{-7}$  for industrial exposures based on the draft USEPA toxicity criteria is less than the CTDEP acceptable level of 1 x  $10^{-6}$  for individual chemicals. ILCRs for of 7 x  $10^{-8}$  and 1 x  $10^{-8}$  for residential and industrial exposures, respectively, based on the Cal EPA toxicity criteria for trichloroethene are less than the CTDEP acceptable level for individual chemicals. Also the maximum detected concentration of trichloroethene in groundwater samples at Site 20 of 5.02  $\mu$ g/L is less than the residential CTDEP RSR of 27  $\mu$ g/L for vapor intrusion.

At Site 23 for residential exposures the ILCR for chloroform of 2 x  $10^{-6}$  and trichloroethene of 4 x  $10^{-6}$  based on the draft USEPA toxicity criteria are less than the CTDEP acceptable level for cumulative exposures but exceeds the CTDEP acceptable level of 1 x  $10^{-6}$  for individual chemicals. The ILCR for trichloroethene for residential exposures based on the Cal EPA toxicity and ILCRs for industrial exposures for trichloroethene and vinyl chloride are all less than 1 x  $10^{-6}$ . Also the maximum detected concentration of chloroform in groundwater samples at Site 23 of 3  $\mu$ g/L is less than the residential CTDEP RSR of 26  $\mu$ g/L for vapor intrusion.

### **Preliminary Remediation Goals**

The vapor intrusion model was also used to calculate site-specific, risk-based preliminary remediation goals (PRGs) for vapor intrusion at all the sites. The PRGs are presented in Table 13 and are based on a 1 x 10<sup>-6</sup> risk level or a hazard index of 1. The model outputs for the PRGs are included in Attachment B. As recommended by USEPA Region I (April 2008), the PRGs for trichloroethene are based on the Cal EPA toxicity criteria. Also included in Table 13 are USEPA maximum contaminant levels (MCLs) and CTDEP RSRs. These criteria would be considered applicable or relevant and appropriate requirements (ARARs).

The CTDEP RSRs for vapor intrusion were also derived using the Johnson and Ettinger model, although CTDEP uses different input parameters than those recommended by USEPA. The most notable difference is that the CTDEP RSRs for trichloroethene are not risk-based but based on a background air concentration of 1 ug/m<sup>3</sup>.

### **Uncertainty Analysis**

The results of the vapor intrusion modeling are subject to the following sources of uncertainty:

- The model assumes an infinite source. The sources of VOCs at the sites have been removed and VOCs are no longer being released to groundwater. In addition, concentrations of VOCs in groundwater are decreasing with time.
- The model assumes that the areal extent of contamination is greater than that of the building floor in contact with the soil and that the contamination is homogeneously distributed within the zone of contamination. The groundwater concentrations from a single well were used as the exposure point concentrations for the model. It is not known if the extent of the groundwater plume is larger or smaller than the assumed building foot print.
- The model assumes that the contaminant exposure point concentration is present in groundwater at the soil/groundwater interface. The model does not consider the case when contaminated groundwater is present at depth and a relatively clean layer of groundwater is present at the aquifer surface. In this case, the clean layer of surficial groundwater may slow or restrict the migration of VOC vapors to the unsaturated zone. Modeling was done for several contaminants that were only detected in deep monitoring wells. It was conservatively assumed that these contaminants were present at the same concentrations at the soil/groundwater interface.
- The model does not take into account transformation processes.
- The default building area of 10 meters (32.8 feet) by 10 meters for residential exposures is based on a Michigan study and corresponds to the 10<sup>th</sup> percentile floor space area for residential single family dwellings. The slab on grade scenario assumes a single floor dwelling 2.44 meters (8 feet) high for residential exposures and 3.0 meters (10 feet) for industrial exposures. The modeling results may be different for a building with different dimensions.
- As discussed above, at present there are no USEPA-approved toxicity criteria for trichloroethene. Risks were calculated in this evaluation using draft toxicity criteria published by USEPA (2001) and toxicity criteria developed by Cal EPA (2002). At the Association of State and Territorial Solid Waste Management Officials (ASTSWMO) meeting in San Diego, California on March 13, 2008, Mary T. Cooke of the USEPA's Federal Facilities Restoration and Reuse Office (FFRRO) announced USEPA provisional guidance for trichloroethene. The provisional guidance is based on the Cal EPA toxicity criteria. According to Cooke's presentation, USEPA is recommending that regulators manage risk within a range of 1 to 10 μg/m³. The provisional guidance has not yet

been officially published. USEPA Region I recommended using the Cal EPA toxicity criteria to develop the PRGs in this evaluation. Risks from trichloroethene that were estimated in this evaluation using the Cal EPA toxicity criteria were within USEPA and CTDEP acceptable levels for both residential and industrial exposures.

### **SUMMARY AND CONCLUSIONS**

### Site 2

Concentrations of chloroform, tetrachloroethene, and trichloroethene exceeded the USEPA screening criterion at Site 2. These chemicals were further evaluated using the Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks and hazard indices for residential and industrial scenarios were within USEPA and CTDEP acceptable levels at Site 2. Further evaluation against PRGs and ARARs showed that vapor intrusion is not an issue at Site 2. No further action is required for vapor intrusion issues.

### Site 3

Concentrations of chloroform, trichloroethene, and vinyl chloride exceeded USEPA screening criterion at Site 3. Concentrations of vinyl chloride also exceed the residential CTDEP RSR for vapor intrusion at Site 3. These chemicals were further evaluated using the Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks and hazard indices for residential and industrial scenarios were within USEPA acceptable levels. Cancer risks for chloroform and vinyl chloride for residential exposures exceeded the CTDEP acceptable risk levels. Cancer risks for trichloroethene based upon Cal EPA toxicity criteria were within CTDEP acceptable levels for residential and industrial scenarios but cancer risks based upon draft EPA toxicity criteria exceeded CTDEP acceptable levels.

The maximum detected concentration of chloroform exceeds the site-specific PRG for residential exposures but is less than the site-specific PRG for industrial exposures, USEPA MCL, and the CTDEP RSRs for vapor intrusion for chloroform. Because the modeling only showed potential cancer risks exceeding CTDEP acceptable levels and the maximum concentration did not exceed the CTDEP RSRs for vapor intrusion, it is concluded that there are no vapor intrusion issues associated with chloroform and no further action is required.

The maximum detected concentration of trichloroethene exceeds the USEPA MCL but is less than the site-specific PRGs and CTDEP RSRs for vapor intrusion. A groundwater monitoring program and land use controls are in place to address the exceedance of the USEPA MCL for trichloroethene. No further action is required for vapor intrusion issues.

The maximum detected concentration of vinyl chloride exceeds the USEPA MCL, site-specific PRGs, and residential CTDEP RSR for vapor intrusion. A groundwater monitoring program and land use controls are in place to address the exceedance of the USEPA MCL for vinyl chloride. Considering the CTDEP RSRs for vapor intrusion, the vinyl chloride concentration detected in groundwater at monitoring well 2DMW29S does not represent a vapor intrusion issue under the current industrial scenario, but may be an issue under a future residential scenario. A building could be constructed in the vicinity of monitoring well 2DMW29S for industrial purposes; however, there would be restrictions on construction of a building within 100 feet of the well for residential use unless steps were taken to mitigate the vapor intrusion issue. The current Site 3 land use control document should be amended to include controls to address vapor intrusion issues at well 2DMW29S until groundwater concentrations are reduced to levels where vapor intrusion is no longer deemed an issue.

### Site 7

Concentrations of trichloroethene exceeded the USEPA screening criterion at Site 7. Trichloroethene was further evaluated using the Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks and hazard indices for residential and industrial scenarios were within USEPA acceptable levels. Cancer risks based upon Cal EPA toxicity criteria were within CTDEP acceptable levels for residential but cancer risks based upon draft USEPA toxicity criteria exceeded CTDEP acceptable levels. Further evaluation against PRGs and ARARs showed that vapor intrusion is not an issue at Site 7. No further action is required for vapor intrusion issues.

### Site 15

Concentrations of chloroform in one sample exceeded the USEPA screening criterion at Site 15. Chloroform was further evaluated using the Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks under a residential scenario were within USEPA acceptable levels but exceeded CTDEP acceptable levels. Cancer risks for an industrial scenario were within USEPA and CTDEP acceptable levels. Further evaluation against ARARs showed that vapor intrusion is not an issue at Site 15. No further action is required for vapor intrusion issues.

### Site 20

Concentrations of trichloroethene exceeded the USEPA screening criterion at Site 20. Trichloroethene was further evaluated using the Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks based upon Cal EPA toxicity criteria were within USEPA and CTDEP acceptable levels for residential and industrial scenarios but cancer risks for a residential scenario based upon draft USEPA toxicity criteria exceeded CTDEP acceptable levels. Further evaluation against PRGs and ARARs showed that vapor intrusion is not an issue at Site 20. No further action is required for vapor intrusion issues.

### Site 23

Concentrations of chloroform and trichloroethene exceeded the USEPA screening criterion at Site 23. Chloroform and trichloroethene were further evaluated using the Johnson and Ettinger Vapor Intrusion Model. Modeling results showed that cancer risks for chloroform under a residential scenario were within USEPA acceptable levels but exceeded CTDEP acceptable levels. Cancer risks for trichloroethene based upon Cal EPA toxicity criteria were within USEPA and CTDEP acceptable levels for residential and industrial scenarios but cancer risks for a residential scenario based upon draft USEPA toxicity criteria exceeded CTDEP acceptable levels. Further evaluation against ARARs showed that vapor intrusion is not an issue at Site 23. No further action is required for vapor intrusion issues.

### References

ASTM (American Society for Testing and Materials), 2004. E 2081 Standard Guide for Risk-Based Corrective Action.

California Environmental Protection Agency (Cal EPA), 2002. Toxic Support Document for Describing Available Cancer Potency Factors. Air Toxics Hot Spots Program Risk Assessment Guidelines. Office of Environmental Health Hazard Assessment, December.

Connecticut Department of Environmental Protection (CTDEP), 2003. Proposed Revision, Connecticut's Remediation Standard Regulations, Volatilization Criteria. Bureau of Water Management, Permitting, Enforcement and Remediation Division, Hartford. Connecticut. March.

Tetra Tech (Tetra Tech NUS, Inc.), 2002. Basewide Groundwater Operable Unit Remedial Investigation, Naval Submarine Base - New London, Groton, Connecticut. King of Prussia, Pennsylvania, January.

Tetra Tech, 2003. Year 3 Annual Groundwater Monitoring Report for Area A Landfill, Naval Submarine Base - New London, Groton, Connecticut. King of Prussia, Pennsylvania. July.

Tetra Tech, 2004. Basewide Groundwater Operable Unit Remedial Investigation Report Update/Feasibility Study Report, Naval Submarine Base - New London, Groton, Connecticut. King of Prussia, Pennsylvania, July.

Tetra Tech, 2007. Year 1 Annual Groundwater Monitoring Report for Sites 3 and 7, Naval Submarine Base - New London, Groton, Connecticut. King of Prussia, Pennsylvania. September.

Tetra Tech, 2008. Letter Year 1 Annual Monitoring Report for Site 23 Underdrain Metering Pit, Naval Submarine Base New London, Groton, Connecticut. King of Prussia, Pennsylvania. May.

USEPA Region I, 1999. Risk Updates, Number 5. Waste Management Division, Boston, Massachusetts. September.

USEPA, 2002. Draft Guidance for Evaluating the Vapor Intrusion into Indoor Air. Office of Solid Waste and Emergency Response. EPA 530-F-02-052. November.

USEPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response, Washington, D.C., December.

USEPA, 2004. User's Guide for Evaluating Subsurface Vapor Intrusion Into Buildings. Office of Emergency and Remedial Response, Washington, DC, Revised February 22.

USEPA, 2008. EPA Comments on the Basewide Groundwater Vapor Intrusion Analyses. Email from Kymberlee Kecker of USEPA Region I to Corey Rich of Tetra Tech NUS, Inc. April 24.

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 2 - UPGRADIENT MONITORING WELLS VAPOR INTRUSION

NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point: Upgradient Monitoring Wells (Site 2)

|                      |                    | Minimum           | <u> </u>             |                                 |                      | т        |                                      | ,                      |         |                           |                      |                         |                         |      |                          |
|----------------------|--------------------|-------------------|----------------------|---------------------------------|----------------------|----------|--------------------------------------|------------------------|---------|---------------------------|----------------------|-------------------------|-------------------------|------|--------------------------|
| CAS Number           |                    | Concentration (1) | Minimum<br>Qualifier | Maximum<br>Concentration<br>(1) | Maximum<br>Qualifier | Units    | Location of Maximum<br>Concentration | Detection<br>Frequency |         | Concentration<br>Used for | Background           |                         |                         | COPC |                          |
| Volatile Organic Con | npounds            | L                 |                      |                                 | L                    | <u> </u> | <u> </u>                             | "                      |         | Screening <sup>(3)</sup>  | Value <sup>(4)</sup> | Volatilization          | Volatilization          | Flag | Deletion or              |
| 75-35-4              | 1,1-Dichloroethene | 1                 |                      |                                 |                      |          |                                      |                        | L       |                           |                      | Criteria <sup>(5)</sup> | Criteria <sup>(6)</sup> |      | Selection <sup>(7)</sup> |
|                      | Acetone            | 10                |                      | 1                               | J                    | ug/L     | 2LGW20S-03                           | 1/18                   | 1       |                           | NA I                 |                         |                         |      |                          |
|                      | Carbon Disulfide   | 0.9               |                      | 10                              | J                    | ug/L     | 4GW01S-10                            | 1/15                   | 5       | 10                        | NA NA                | 190 N                   | 190                     | No   | BSL                      |
|                      | Chloroform         | 1                 |                      | - 2                             |                      | ug/L     | 4GW01S-10                            | 1/18                   | 1-2     | 2                         | NA NA                | 220000 N                | 50000                   | No   | BSL                      |
| 74-87-3              | Chloromethane      | 0.6               |                      |                                 |                      | ug/L     | 4GW01S-02                            | 1/18                   | 1-3     | 1                         | NA NA                | 560 N                   | NA NA                   | No   | BSL                      |
| 127-18-4             | Tetrachloroethene  | 0.11              |                      | 0.6                             | J                    | ug/L     | 4GW01S-09                            | 1/18                   | 7       | 0.6                       | NA NA                | 0.71 C <sup>(8)</sup>   | 26                      | Yes  | ASL                      |
| 79-01-6              | Trichloroethene    | 0.9               |                      | 0.11                            | J                    | ug/L     | 4GW01S-05                            | 1/18                   | - i - l | 0.11                      | NA NA                | 6.7 C                   | 390                     | No   | BSL                      |
|                      |                    | 0.9               | <u> </u>             | 0.9                             | J                    | ug/L     | 4GW01S-08-D                          | 1/18                   | 1 1     | 0.9                       |                      | 0.55 C                  | 340                     | No   | BSL                      |
| Notes:               |                    |                   |                      |                                 |                      |          |                                      |                        | 1       | 0.9                       | NA                   | 0.05 C(8)               | 27                      | Vec  | ACI                      |

Notes:

Data is from the Year 3 Annual Groundwater Monitoring Report for Area A Landfill (Tetra Tech, 2003). 1 - Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.

2 - Values presented are sample-specific quantitation limits.

3 - The maximum detected concentration is used for screening purposes.

4 - No background data is available for VOCs.

- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, Residential, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).

8 - USEPA Region I target level.

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC.

### Associated Samples

| 2LGW20S-11  | 4GW01S-07-D                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------|
| 4GW01S-01   | 4GW01S-08                                                                                                |
| 4GW01S-01-D | 4GW01S-08-D                                                                                              |
| 4GW01S-02   | 4GW01S-09                                                                                                |
| 4GW01S-03   | 4GW01S-09-D                                                                                              |
| 4GW01S-04   | 4GW01S-10                                                                                                |
| 4GW01S-05   | 4GW01S-10-D                                                                                              |
| 4GW01S-06   | 4GW01S-11                                                                                                |
| 4GW01S-06-D | 4GW01S-11-D                                                                                              |
| 4GW01S-07   | -awo13-11-0                                                                                              |
|             | 4GW01S-01<br>4GW01S-01-D<br>4GW01S-02<br>4GW01S-03<br>4GW01S-04<br>4GW01S-05<br>4GW01S-06<br>4GW01S-06-D |

<u>Definitions:</u>
ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered. C = Carcinogen.
COPC = Chemical of Potential Concern.

J ≈ Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

### For Elimination as a COPC:

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 2 - DOWNGRADIENT MONITORING WELLS IN AREA A DOWNSTREAM VAPOR INTRUSION

### NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point: Downgradient Monitoring Wells In Area A Downstream (Site 2)

| CAS Number          | Chemical                 | Minimum<br>Concentration<br>(1) | Minimum<br>Qualifier | Maximum<br>Concentration | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency                           |             | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | USEPA<br>Groundwater<br>Volatilization<br>Criteria <sup>(6)</sup> |          |              | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(7)</sup> |
|---------------------|--------------------------|---------------------------------|----------------------|--------------------------|----------------------|-------|--------------------------------------|--------------------------------------------------|-------------|-------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|----------|--------------|-------------------------------------------------------------------------|
| Volatile Organic Co |                          |                                 |                      |                          |                      |       |                                      | <del>'                                    </del> |             |                                                       |                                    | Citteria                                                          | Criteria |              | Selection                                                               |
|                     | Carbon Disulfide         | 0.2                             | J                    | 2.2                      |                      | ug/L  | 3GW37S-08                            | 2/17                                             |             | 0.0                                                   |                                    |                                                                   |          | <del>,</del> |                                                                         |
| 156-59-2            | cis-1,2-Dichloroethene   | 0.14                            |                      | 0.4                      |                      |       |                                      |                                                  |             | 2.2                                                   | NA                                 | 560 N                                                             | NA NA    | No I         | BSL                                                                     |
|                     | Toluene                  | 0.1.                            |                      | 0.4                      |                      | ug/L  | 3GW37S-03                            | 5/17                                             | 1 .         | 0.4                                                   | NA NA                              | 210 N                                                             | 830      | No           | BSL                                                                     |
|                     |                          | 0.1                             |                      | U.1                      | J                    | ug/L  | 3GW37S-03                            | 1/17                                             | . 1         | 0.1                                                   | NA                                 | 1500 N                                                            | 7100     | No           | BSL                                                                     |
|                     | trans-1,2-Dichloroethene | 0.2                             | i                    | 0.2                      | J                    | na/F  | 3GW37S-03                            | 1/17                                             | 1           | 0.2                                                   | NA                                 | 180 N                                                             | 1000     | Nie          |                                                                         |
| 79-01-6             | Trichloroethene          | 0.58                            | J                    | 2                        |                      | ug/L  | 3GW37S-03                            | 9/17                                             | <del></del> | 7.5                                                   |                                    |                                                                   | 1000     | No           | BSL                                                                     |
|                     |                          |                                 |                      |                          |                      | 192   | 3443/3-03                            | 9/1/                                             | 1           | 1 2                                                   | NA NA                              | 0.05 C(8)                                                         | 27       | Yes          | ASL                                                                     |

Data is from the Year 3 Annual Groundwater Monitoring Report for Area A Landfill (Tetra Tech, 2003).

- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 No background data is available for VOCs.
- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, Residential, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).
- 8 USEPA Region I target level.

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC

### Associated Samples

| 3GW-12D-01    | 3GW-12S-01   | 3GW37S-02 | 3GW37S-08 |
|---------------|--------------|-----------|-----------|
| 3GW-12D-01-D  | 3GW-12S-02   | 3GW37S-03 | 3GW37S-09 |
| 3GW-12D-02    | 3GW-12S-02-D | 3GW37S-04 | 3GW37S-10 |
| 3GW-12D-03    | 3GW-12S-03   | 3GW37S-05 | 3GW37S-11 |
| 3GW-12D-03-3D | 3GW-12S-03-D | 3GW37S-06 | 3GW12D-11 |
| 3GW-12D-04    | 3GW37S-01    | 3GW37S-07 |           |
|               |              |           |           |

### Definitions:

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.
COPC = Chemical of Potential Concern.

J = Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

### For Elimination as a COPC:

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 2 - DOWNGRADIENT MONITORING WELLS IN AREA A WETLAND VAPOR INTRUSION

NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point: Downgradient Monitoring Wells In Area A Wetland (Site 2)

| CAS Number          | Chemical           | Minimum<br>Concentration | Minimum<br>Qualifler | Maximum<br>Concentration | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | USEPA Groundwater Volatilization Criteria(6) | CTDEP<br>Groundwater<br>Volatilization<br>Criteria <sup>(6)</sup> |      | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(7)</sup> |
|---------------------|--------------------|--------------------------|----------------------|--------------------------|----------------------|-------|--------------------------------------|------------------------|---------------------------------------|-------------------------------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------------------------------|------|-------------------------------------------------------------------------|
| olatile Organic Cor |                    |                          |                      |                          |                      |       |                                      |                        |                                       |                                                       |                                    |                                              | <u> </u>                                                          |      | Selection                                                               |
|                     | 2-Butanone         | 1                        | J                    | 26                       |                      | ug/L  | 2WGW39DS-04                          | 20/61                  | 1 - 25                                | 26                                                    | NA                                 | 440000 N                                     | NA NA                                                             | No I | BSL                                                                     |
|                     | Acetone            | 2                        | J                    | 120                      |                      | ug/L  | 2WGW39DS-04                          | 26/79                  | 5 - 31                                | 120                                                   | NA                                 | 220000 N                                     | 50000                                                             | No   | BSL                                                                     |
|                     | Benzene            | 0.2                      | J                    | 0.3                      | J                    | ug/L  | 2WGW42DS-10                          | 2/99                   | 1-5                                   | 0.3 .                                                 | NA.                                | 1.36 C                                       | 130                                                               | No   | BSL                                                                     |
|                     | Carbon Disulfide   | 0.2                      | J                    | 7.6                      |                      | ug/L  | 2WGW43DS-07                          | 58/99                  | 1 - 13                                | 7.6                                                   | NA NA                              | 560 N                                        | NA NA                                                             | No   | BSL                                                                     |
| 74-87-3             | Chloromethane      | 0.8                      | J                    | 0.8                      | J                    | ug/L  | 2WGW44DS-09                          | 1/99                   | 1-5                                   | 0.8                                                   | NA NA                              | 6.7 C                                        |                                                                   |      |                                                                         |
| 100-41-4            | Ethylbenzene       | 0.3                      | J                    | 0.3                      | i i                  | ug/L  | 2WGW39DS-04                          | 1/99                   | 1-5                                   | 0.3                                                   | NA NA                              |                                              | 390                                                               | No   | BSL                                                                     |
| 75-09-2             | Methylene Chloride | 0.5                      | J                    | 1.2                      | 1                    | ug/L  | 2WGW39DS-07                          | 6/99                   | 1-10                                  |                                                       |                                    | 6.91 N <sup>(8)</sup>                        | 2700                                                              | No   | BSL                                                                     |
| 127-18-4            | Tetrachloroethene  | 0.3                      |                      | 1 4                      | <del></del>          | ug/L  | 2WGW39DS-07                          | 2/99                   |                                       | 1.2                                                   | NA NA                              | 58 C                                         | 160                                                               | No   | BSL                                                                     |
|                     |                    |                          |                      |                          |                      | ugr   | 2WGW39DS-03.                         | 2/99                   | 1.5                                   | 1.4                                                   | NA .                               | 0.55 C <sup>(8)</sup>                        | 340                                                               | Yes  | ASL                                                                     |
|                     | Toluene            | 0.17                     | J.                   | 4                        |                      | ug/L  | 2WGW39DS-03,<br>2WGW39DS-09          | 17/99                  | 1 - 5                                 | 4                                                     | NA .                               | 1500 N                                       | 7100                                                              | No   | BSL                                                                     |
|                     | Total Xylenes      | 0.6                      | J                    | 0.6                      | J                    | ug/L  | 2WGW42DS-09                          | 1/89                   | 1 - 5                                 | 0.6                                                   | NA NA                              | 22000 N                                      | 8700                                                              | No   | BSL                                                                     |
| 79-01-6             | Trichloroethene    | 1.2                      |                      | 1.4                      |                      | ug/L  | 2WGW46DS-07                          | 2/99                   | 1-5                                   | 1.4                                                   | NA ·                               | 0.05 C <sup>(ii)</sup>                       | 27                                                                | Yes  | ASL                                                                     |

Notes:

Data is from the Year 3 Annual Groundwater Monitoring Report for Area A Landfill (Tetra Tech, 2003).

- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 No background data is available for VOCs.
- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, Residential, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).
- 8 USEPA Region I target level.

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC.

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.

COPC = Chemical of Potential Concern.

J = Estimated Value. N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

For Elimination as a COPC:

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 3 VAPOR INTRUSION NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater Exposure Point: Site 3

| CAS Number        | Chemical                  | Minimum<br>Concentration | Minimum<br>Qualifier | Maximum<br>Concentration | Maximum<br>Qualifier                  | Units                                   | Location of Maximum<br>Concentration              | Detection<br>Frequency | Range of<br>Nondetects <sup>(2)</sup> |      | Background<br>Value <sup>(4)</sup> | USEPA<br>Groundwater<br>Volatilization<br>Criteria <sup>(6)</sup> | CTDEP<br>Groundwater<br>Volatilization<br>Criteria <sup>(6)</sup> | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(7)</sup> |
|-------------------|---------------------------|--------------------------|----------------------|--------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------------|------------------------|---------------------------------------|------|------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|
| olatile Organic C |                           |                          |                      |                          |                                       | *************************************** |                                                   |                        |                                       |      |                                    | O) Itelia                                                         | Criteria                                                          |              | Selection                                                               |
| 79-34-5           | 1,1,2,2-Tetrachloroethane | 0.33                     | J                    | 0.33                     | J                                     | ug/L                                    | S3GW2DMW16D01                                     | 1/36                   | 0.5 - 1                               | 0.33 | NA                                 | 3 C                                                               | 1.8                                                               | No           | BSL                                                                     |
| 75-27-4           | Bromodichloromethane      | 0.5                      | J                    | 1.8                      |                                       | ug/L                                    | S3GW3MW16D01                                      | 4/36                   | 0.5 - 1                               | 1.8  | NA NA                              | 2.1 C                                                             | NA NA                                                             | No           | BSL                                                                     |
| 124-48-1          | Chlorodibromomethane      | 0.76                     |                      | 0.76                     | · · · · · · · · · · · · · · · · · · · | ug/L                                    | S3GW3MW16D01                                      | 1/36                   | 0.5 - 1                               | 0.76 | NA.                                | 3.2 C                                                             | NA NA                                                             | No           | BSL                                                                     |
| 67-66-3           | Chloroform                | 0.6                      |                      | 15                       |                                       | uo/L                                    | S3GW3MW16S01                                      | 11/36                  | 0.5 - 7.3                             | 15   | NA NA                              | 0.71 C <sup>(0)</sup>                                             | 26                                                                | Yes          | ASL                                                                     |
| 156-59-2          | cis-1,2-Dichloroethene    | 2                        |                      | 6                        |                                       | ug/L                                    | S3GW2DMW29S02,<br>S3GW2DMW29S02-D                 | 11/36                  | 0.5 - 1                               | 6    | NA NA                              | 210 N                                                             | 830                                                               | No           | BSL                                                                     |
| 127-18-4          | Tetrachloroethene         | 0.33                     | J                    | 0.33                     | J                                     | ug/L                                    | S3GW3MW16S01                                      | 1/36                   | 0.5 - 1                               | 0.33 | NA                                 | 0.55 C <sup>(8)</sup>                                             | 340                                                               | No           | BSL                                                                     |
| 108-88-3          | Toluene                   | 0.33                     | J                    | 51                       |                                       | ua/L                                    | S3GW2DMW28D02                                     | 4/36                   | 0.5 - 1                               | 51.  | NA NA                              | 1500 N                                                            | 7100                                                              | No           | BSL                                                                     |
| 1330-20-7         | Total Xylenes             | 0.6                      | J                    | 0.6                      | J                                     | ug/L                                    | S3GW2DMW28D02,<br>S3GW2DMW28D03                   | 2/36                   | 0.5 - 1                               | 0.6  | NA NA                              | 22000 N                                                           | 8700                                                              | No           | BSL                                                                     |
| 156-60-5          | trans-1,2-Dichloroethene  | 0.33                     | J                    | 0.5                      | J                                     | ug/L                                    | S3GW2DMW16S04                                     | 2/36                   | 0.5 - 1                               | 0.5  | NA NA                              | 180 N                                                             | 1000                                                              | No           | BŠL                                                                     |
| 79-01-6           | Trichloroethene           | 2                        |                      | 7                        |                                       | ug/L                                    | S3GW2DMW16D02,<br>S3GW2DMW16D03,<br>S3GW2DMW16S04 | 8/36                   | 0.5 - 1                               | 7    | NA NA                              | 0.05 C <sup>(8)</sup>                                             | 27                                                                | Yes          | ASL                                                                     |
| 75-01-4           | Vinyl Chloride            | 1.7                      |                      | 10                       |                                       | uo/L                                    | S3GW2DMW29S02-D                                   | 3/36                   | 0.5 - 1                               | 10   | NA .                               | 0.5 C <sup>(8)</sup>                                              | 1.6                                                               | Yes          | ASL                                                                     |

Data is from the Year 1 Annual Groundwater Monitoring Report for Sites 3 and 7 (Tetra Tech, 2007).

- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 · Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 No background data is available for VOCs.
- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, Residential, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).
- 8 USEPA Region I target level.
- A shaded value indicates that the concentration used for screening exceeds the criterion or background value.
- A shaded chemical name indicates that the chemical has been selected as a COPC.

| Associated Samples |               |
|--------------------|---------------|
| S3GW2DMW16D01      | S3GW2DMW29S03 |
| S3GW2DMW16D02      | S3GW2DMW29S04 |
| S3GW2DMW16D03      | S3GW3MW15I01  |
| S3GW2DMW16D04      | S3GW3MW15I02  |
| S3GW2DMW16S01      | S3GW3MW15I03  |
| S3GW2DMW16S02      | S3GW3MW15I04  |
| S3GW2DMW16S03      | S3GW3MW15S01  |
| S3GW2DMW16S04      | S3GW3MW15S02  |
| S3GW2DMW25S01      | S3GW3MW15S03  |
| S3GW2DMW25S02      | S3GW3MW15S04  |
| S36W2DMW25S03      | S3GW3MW16D01  |
| S3GW2DMW25504      | S3GW3MW16D02  |
| S3GW2MW28D01       | S3GW3MW16D03  |
| S3GW2DMW28D02      | S3GW3MW16D04  |
| S3GW2DMW28D03      | S3GW3MW16S01  |
| S3GW2DMW28D04      | S3GW3MW16S02  |
| S3GW2DMW29S01      | S3GW3MW16S03  |
| \$3GW2DMW29S02     | S3GW3MW16S04  |
|                    |               |

<u>Definitions:</u>
ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.
COPC = Chemical of Potential Concern.

J = Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

### For Elimination as a COPC:

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 7 VAPOR INTRUSION

### NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point: Site 7

| CAS Number | Chemical                       | Minimum<br>Concentration<br>(1) | Minimum<br>Qualifier | Maximum<br>Concentration<br>(1) | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration            | Detection<br>Frequency |             | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | USEPA<br>Groundwater<br>Volatilization<br>Criteria <sup>(5)</sup> | CTDEP<br>Groundwater<br>Volatilization<br>Criteria <sup>(6)</sup> |           | Deletion or              |
|------------|--------------------------------|---------------------------------|----------------------|---------------------------------|----------------------|-------|-------------------------------------------------|------------------------|-------------|-------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------|--------------------------|
|            |                                |                                 |                      |                                 |                      |       |                                                 |                        | <del></del> |                                                       |                                    | Cilteria                                                          | Criteria                                                          |           | Selection <sup>(7)</sup> |
|            | 1,1,2-Trichlorotrifluoroethane | 0.58                            | L                    | 0.58                            |                      | ug/L  | S7GW7MW12I01                                    | 1/7                    | 0.5         | 0.58                                                  | NA                                 | 1500 N                                                            |                                                                   |           |                          |
| 75-34-3    | 1,1-Dichloroethane             | 0.32                            | L L                  | 0.77                            |                      | ua/L  | \$7GW7MW12I01                                   | 5/28                   | 0.5 - 1     | 0.77                                                  | NA NA                              |                                                                   | NA NA                                                             | No        | BSL                      |
| 108-90-7   | Chlorobenzene                  | 1                               | J                    | 2                               |                      | ug/L  | S7GW7MW12S03,<br>S7GW7MW12S04                   | 4/28                   | 0.5 - 1     | 2                                                     | NA<br>NA                           | 2200 N<br>390 N                                                   | 3000<br>1800                                                      | No<br>No  | BSL<br>BSL               |
|            | cis-1,2-Dichloroethene         | 0.32                            | J                    | 0.6                             | J                    | ug/L  | \$7GW7MW12S03,<br>\$7GW7MW12I01                 | 3/28                   | 0.5 - 1     | 0.6                                                   | NA                                 | 210 N                                                             | - 830                                                             | No        | BSL                      |
| 156-60-5   | trans-1,2-Dichloroethene       | 1                               | J                    | 1                               | J                    | ug/L  | S7GW7MW12l03                                    | 1/28                   | 0.5 - 1     |                                                       |                                    |                                                                   |                                                                   |           |                          |
| 79-01-6    | Trichloroethene                | 0.7                             | J                    | 1                               |                      | ug/L  | \$7GW7MW5D02,<br>\$7GW7MW5D03,<br>\$7GW7MW12I03 | 8/28                   | 0.5 - 1     | 1                                                     | NA<br>NA                           | 0.05 C <sup>(8)</sup>                                             | 1000                                                              | No<br>Yes | BSL_<br>ASL              |

Data is from the Year 1 Annual Groundwater Monitoring Report for Sites 3 and 7 (Tetra Tech, 2007).

- Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.

4 - No background data is available for VOCs.

- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, Residential, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).

8 - USEPA Region I target level.

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC.

### Associated Samples

| Hosociated Sainble | 2            |
|--------------------|--------------|
| S7GW7MW1D01        | S7GW7MW5D03  |
| S7GW7MW1D02        | S7GW7MW5D04  |
| S7GW7MW1D03        | \$7GW7MW9S01 |
| S7GW7MW1D04        | S7GW7MW9S02  |
| S7GW7MW3i01        | S7GW7MW9S03  |
| S7GW7MW3I02        | S7GW7MW9S04  |
| S7GW7MW3I03        | S7GW7MW12I01 |
| S7GW7MW3104        | S7GW7MW12I02 |
| 57GW7MW3S01        | S7GW7MW12I03 |
| S76W7MW3502        | S7GW7MW12I04 |
| 57GW7MW3503        | S7GW7MW12S01 |
| S7GW7MW3S04        | S7GW7MW12S02 |
| S7GW7MW5D01        | S7GW7MW12S03 |
| S7GW7MW5D02        | S7GW7MW12S04 |
|                    |              |

<u>Definitions:</u>
ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.
COPC = Chemical of Potential Concern.

J = Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

### For Elimination as a COPC:

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 15

### VAPOR INTRUSION NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater Exposure Point: Site 15

| CAS Number                 | Chemical   | Minimum<br>Concentration | Minimum<br>Qualifier | Maximum<br>Concentration | Maximum<br>Qualifier | Units |              | Detection<br>Frequency | Range of Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | USEPA<br>Groundwater<br>Volatilization | CTDEP<br>Groundwater<br>Volatilization | COPC | Rationale for<br>Contaminant<br>Deletion or |
|----------------------------|------------|--------------------------|----------------------|--------------------------|----------------------|-------|--------------|------------------------|------------------------------------|-------------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|------|---------------------------------------------|
| Volatile Organi<br>67-66-3 | Chloroform |                          |                      |                          |                      |       |              | <u> </u>               | L                                  | - Condoming                                           |                                    | Criteria(5)                            | Criteria(6)                            |      | Selection <sup>(7)</sup>                    |
|                            | - Children | 3                        |                      | 3                        | L                    | UG/L  | S15GW15TW301 | 1/6                    | 1                                  | 3                                                     | N/A                                | 0.71 N <sup>(8)</sup>                  | 26                                     | Voc  | 461                                         |

- Data is from the Basewide Groundwater Operable Unit Remedial Investigation Report Update/Feasibility Study Report (Tetra Tech, 2004).
- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations. 2 - Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 No background data is available for VOCs.
- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).
- 8 USEPA Region I target level.
- A shaded value indicates that the concentration used for screening exceeds the criterion or background value.
- A shaded chemical name indicates that the chemical has been selected as a COPC .

### Associated Samples:

S15GW15MW1S02

S15GW15MW2S02

S15GW15MW2S02-D

S15GW15MW3S02

S15GW15TW101 S15GW15TW201

\$15GW15TW301

<u>Definitions:</u>
ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

COPC = Chemical of Potential Concern.

J = Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### **Rationale Codes:**

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

### For Elimination as a COPC:

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 20 VAPOR INTRUSION

### NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point: Area A Weapons Center (Site 20)

|                      |                      |                                 |                      |                          | -                    |       |                                      |                        |            |                                                       |                                    |                                                                   |                                                                   |              |                                                                         |
|----------------------|----------------------|---------------------------------|----------------------|--------------------------|----------------------|-------|--------------------------------------|------------------------|------------|-------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|
| CAS Number           | Chemical             | Minimum<br>Concentration<br>(1) | Minimum<br>Qualifier | Maximum<br>Concentration | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency | I Hange of | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup> | USEPA<br>Groundwater<br>Volatilization<br>Criteria <sup>(5)</sup> | CTDEP<br>Groundwater<br>Volatilization<br>Criteria <sup>(6)</sup> | COPC<br>Flag | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(7)</sup> |
| Volatile Organic Con |                      |                                 |                      |                          |                      |       |                                      |                        |            | **************************************                |                                    |                                                                   |                                                                   |              |                                                                         |
|                      | 4-Methyl-2-Pentanone | 1.29                            | J                    | 1.29                     | J                    | ug/L  | S202WCMW2S01                         | 1/4                    | 5          | 1.29                                                  | N/A                                | 14000 N                                                           | 13000                                                             | No           | NTX                                                                     |
| 79-01-6              | Trichloroethene      | 3.8                             | J                    | 5.02                     | J                    | ug/L  | S202WCMW2S01                         | 2/4                    | 1          | 5.02                                                  | N/A                                | 0.05 C <sup>(8)</sup>                                             | 27                                                                | Yes          | ASL                                                                     |

- Data is from the Basewide Groundwater Operable Unit Remedial Investigation Report (Tetra Tech, 2001).
- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 · Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 No background data is available for VOCs.
- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002, EPA530-F-02-052, Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0.001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, March 2003.
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAP/TBC(s).
- 8 USEPA Region I target level.

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC.

### Associated Samples:

S202WCMW1S01

S202WCMW2S01

S202WCMW3S01

S202WMW4D01

<u>Definitions:</u>
ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.

COPC = Chemical of Potential Concern.

J = Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

For Elimination as a COPC:

BSL = Below COPC Screening Level/ARAR/TBC.

NTX = No Toxicity Information.

### OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN AT SITE 23 - UNDERDRAIN METERING PIT VAPOR INTRUSION

### NSB-NLON, GROTON, CONNECTICUT

Scenario Timeframe: Future Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point: Underdrain Metering Pit (Site 23)

| CAS Number          | Chemical                | Minimum<br>Concentration<br>(1) | Minimum<br>Qualifier | Maximum<br>Concentration<br>(1) | Maximum<br>Qualifier | Units | Location of Maximum<br>Concentration | Detection<br>Frequency | Range of<br>Nondetects <sup>(2)</sup> | Concentration<br>Used for<br>Screening <sup>(3)</sup> | Background<br>Value <sup>(4)</sup>      | USEPA<br>Groundwater<br>Volatilization<br>Criteria <sup>(5)</sup> | CTDEP Groundwater Volatilization Criteria <sup>(6)</sup> |             | Rationale for<br>Contaminant<br>Deletion or<br>Selection <sup>(7)</sup> |
|---------------------|-------------------------|---------------------------------|----------------------|---------------------------------|----------------------|-------|--------------------------------------|------------------------|---------------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-------------|-------------------------------------------------------------------------|
| /olatile Organic Co |                         |                                 |                      |                                 |                      |       |                                      |                        |                                       |                                                       | *************************************** |                                                                   |                                                          | <del></del> |                                                                         |
| 71-43-2             | Benzene                 | 0.2                             | J                    | 0.2                             | J                    | ug/L  | S23GWMPM04                           | 1/4                    | 0.5                                   | 0.2                                                   | NA                                      | 1.4 C(8)                                                          | 130                                                      | No          | BSL                                                                     |
|                     | Bromodichloromethane    | 0.3                             | j                    | 0.3                             | J                    | ug/L  | S23GWMPM01                           | 1/4                    | 0.5                                   | 0.3                                                   | NA                                      | 2.1 C                                                             | 2.3                                                      | No          | BSL                                                                     |
| 110-82-7            | Cyclohexane             | 0.1                             | J                    | 0.1                             | J                    | ug/L  | S23GWMPM02                           | 1/4                    | 0.5                                   | 0.1                                                   | NA NA                                   | NA                                                                | NA NA                                                    | No          | NTX                                                                     |
| 67-66-3             | Chloroform              | 2                               | J                    | 3                               | J                    | ug/L  | S23GWMPM01                           | 1/4                    | 0.5                                   | 3 :                                                   | NA NA                                   | 0.71 C <sup>(8)</sup>                                             | 26                                                       | Yes         | ASL                                                                     |
| 156-59-2            | cis-1,2-Dichloroethene  | 0.2                             | J                    | 0.3                             | J                    | ug/L  | S23GWMPM01,<br>S23GWMPM02            | 4/4                    | 0.5                                   | 0.3                                                   | NA                                      | 210 N                                                             | 830                                                      | No          | BSL                                                                     |
| 98-82-8             | isopropyibenzene        | 0.09                            | J                    | 0.1                             | j                    | ug/L  | S23GWMPM01,<br>S23GWMPM02            | 2/4                    | 0.5                                   | 0.1                                                   | NA                                      | 8.4 N                                                             | NA                                                       | No          | BSL                                                                     |
| 1634-04-4           | Methyl Tert-Butyl Ether | 0.4                             | Ĵ                    | 1                               |                      | ug/L  | S23GWMPM01                           | 4/4                    |                                       | 1                                                     | NA NA                                   | 120000 N                                                          | 21000                                                    | No          | BSL                                                                     |
| 127-18-4            | Tetrachtoroethene       | 0.2                             | J                    | 0.4                             | j                    | ug/L  | S23GWMPM02                           | 4/4                    | -                                     | 0.4                                                   | NA NA                                   | 0.55 C <sup>(6)</sup>                                             | 340                                                      | No          | BSL                                                                     |
| 79-01-6             | Trichloroethene         | 0.3                             | J                    | 0.5                             | J                    | ug/L  | S23GWMPM02                           | 4/4                    |                                       | 0.5                                                   | NA                                      | 0.05 C(8)                                                         | 27                                                       | Yes         | ASL                                                                     |

Data is from the Year 1 Annual Monitoring Report for Site 23 Underdrain Metering Pit (Tetra Tech, 2008).

- 1 Sample and duplicate are counted as two separate samples when determining the minimum and maximum detected concentrations.
- 2 Values presented are sample-specific quantitation limits.
- 3 The maximum detected concentration is used for screening purposes.
- 4 No background data is available for VOCs.
- 5 Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils. November 2002. EPA530-F-02-052. Values are from Table 2c and correspond to a target cancer risk level of 1E-6 or HI =1 and an attenuation factor of 0,001.
- 6 Connecticut's Proposed Revisions Remediation Standard Regulations, Volatilization Criteria, Residential, March 2003,
- 7 The chemical is selected as a COPC if the maximum detected concentration exceeds the risk-based COPC screening level and/or an ARAR/TBC(s).
- 8 USEPA Region I target level.

A shaded value indicates that the concentration used for screening exceeds the criterion or background value.

A shaded chemical name indicates that the chemical has been selected as a COPC.

### Associated Samples

S23GWMPM01

S23GWMPM01-D

S23GWMPM02

S23GWMPM-03

S23GWMPM02-D

S23GWMPM04

<u>Definitions:</u>

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered.

C = Carcinogen.
COPC = Chemical of Potential Concern.

J = Estimated Value.

N = Noncarcinogen.

NA = Not Applicable.

MCL = Federal Maximum Contaminant Level

### Rationale Codes:

For Selection as a COPC:

ASL = Above COPC Screening Level/ARAR/TBC.

### For Elimination as a COPC:

BSL = Below COPC Screening Level/ARAR/TBC.

NTX = No toxicity criteria available.

# TABLE 9 INPUT PARAMETERS FOR THE VAPOR INTRUSION MODEL NSB-NLON, GROTON, CONNECTICUT

| Site and Well      | Depth to<br>Groundwater | Depth to<br>Groundwater | Soil Type                                   | Soil Type Used       | Dry Bulk<br>Density   | Total    | Screened Interval |                                                                        |
|--------------------|-------------------------|-------------------------|---------------------------------------------|----------------------|-----------------------|----------|-------------------|------------------------------------------------------------------------|
|                    | (feet bgs)              | Used in Model           |                                             | in Model             | (gm/cm <sup>3</sup> ) | Porosity | (feet bgs)        | Reference                                                              |
| 2                  |                         |                         |                                             | <del></del>          | (gill/cm)             | L        |                   |                                                                        |
| Upgradient         |                         |                         |                                             |                      |                       |          |                   |                                                                        |
| 4MW01S             | 6.3 to 9.9              | 6.3 feet (190 cm)       | Bedrock w/ gravel and silty sand above      | Sandy Loam (SL)      | 1.8                   | 0.33     | 8 to 18           | V                                                                      |
|                    |                         |                         |                                             | 1 - a.i.a) acam (CE) | 1.0                   | 0.55     | 1 01016           | Year 3 GMR for Area A Landfill, Rounds 9 through 11, 12/2002 to 9/2002 |
| Downstream         |                         |                         |                                             |                      |                       |          |                   |                                                                        |
| 3MW37S             | 3.61 to 3.79            | 3.6 feet (110 cm)       | Silty Sand w/ trace rock fragments          | Sandy Loam (SL)      | 1.8                   | 0.33     | 4.5 to 5.5        | Voor 2 CMD for Asso A Landill D                                        |
|                    |                         |                         |                                             | 1 ) (0-/             |                       | 0.00     | 4.5 (0 5.5        | Year 3 GMR for Area A Landfill, Rounds 9 through 11, 12/2002 to 9/2002 |
| Wetlands           |                         |                         |                                             |                      |                       |          |                   |                                                                        |
| 2WMW39DS           | 2.4 to 3.4              | 2.1 feet (65 cm)        | Org. Clayey Silt                            |                      | Default               | Default  | 4 to 14           | Voor 2 CMD for Arra A Landin D                                         |
| 2WMW46DS           | 1.55 to 2.28            | 2.11661 (00 011)        | Org. Clayey Silt                            | Clay Loam (CL)       | Default               | Default  | 4 to 14           | Year 3 GMR for Area A Landfill, Rounds 9 through 11, 12/2002 to 9/2002 |
|                    |                         |                         |                                             |                      | - Column              | Doradit  | 41014             | Year 3 GMR for Area A Landfill, Rounds 9 through 11, 12/2002 to 9/2002 |
| 3                  | ·                       |                         |                                             |                      |                       |          |                   |                                                                        |
| 3MW15I             | 30.9                    | _                       | Sand and Gravel                             |                      | 1.8                   | 0.33     | 55 to 65          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 3MW15S             | 29.4                    | 1                       | Sand and Gravel                             | 1                    | 1.8                   | 0.33     | 28 to 38          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 3MW16D             | 22.1                    | 3.6 feet (110 cm)       | Bedrock w/ sand and cobbles above           | 04(0)                | 1.8                   | 0.33     | 59 to 69          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 3MW16S             | 14.4                    | 1                       | Bedrock w/ sand and cobbles above           | Sand (S)             | 1.8                   | 0.33     | 17 to 27          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 2DMW16D            | 3.7                     | 4                       | Bedrock w/ sand, silt, and cobbles above    | 1 !                  | 1.8                   | 0.33     | 18 to 60          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 2DMW29S            | 8.6                     | <u> </u>                | Sand                                        | 1                    | 1.8                   | 0.33     | 6 to 16           | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| _                  |                         |                         |                                             |                      |                       |          | 0,0,0             | Trid 4, Tear 1 Givin for Sites 3 and 7                                 |
| 7                  |                         |                         |                                             |                      |                       |          |                   |                                                                        |
| 7MW05D             | 12.4                    | 5 feet (150 cm)         | Bedrock w/ silty sand w/ trace gravel above | Loamy Sand (LS)      | 1.6                   | 0.37     | 32 to 42          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 7MW12I             | 5                       |                         | Sandy silt                                  | Loamy Sand (LS)      | 1.6                   | 0.37     | 20 to 30          | Rnd 4, Year 1 GMR for Sites 3 and 7                                    |
| 4.0                |                         |                         |                                             |                      |                       |          | 33,10,00          | Tind 4, Teal 1 Givin for Siles 3 and 7                                 |
| 15<br>15TW03       |                         |                         |                                             |                      |                       |          |                   |                                                                        |
| 1514403            | 6.5                     | 6.5 feet (200 cm)       | Sandy silt                                  | Loamy Sand (LS)      | 1.5                   | 0.45     | 5 to 15           | BGOURI Update/FS                                                       |
| . 00               |                         |                         |                                             |                      |                       |          |                   | BOOOTH Opdate/13                                                       |
| 20<br>2WCMW2S      | 4.0                     |                         |                                             |                      |                       |          |                   |                                                                        |
| 2WCMW2S<br>2WCMW4D | 4.6                     | 4.6 feet (140 cm)       | Silty sand w/ granite fragments             | Sandy Loam (SL)      | 1.6                   | 0.37     | 4 to 14           | BGOURI Update/FS                                                       |
| 200010040          | 6.1                     | L                       | Bedrock                                     | Sandy Loam (SL)      | 1.6                   | 0.37     | 13 to 119         | BGOURI Update/FS                                                       |
| 23                 |                         |                         |                                             |                      |                       |          |                   | DOOTH OPARON O                                                         |
| 23MP01             | 7 to 9                  | 75                      |                                             |                      |                       |          |                   |                                                                        |
| ZOWFUI             | 7 10 9                  | 7 feet (210 cm)         | Silty sand                                  | Sandy Loam (SL)      | 1.5                   | 0.45     | HNUS 23 (7 to 17) | BGOURI                                                                 |
| Other Information  |                         |                         |                                             |                      |                       |          | <del></del>       | 3300.11                                                                |
|                    | Dulk Danais             | Bulle Danell            |                                             |                      |                       |          |                   |                                                                        |
| Site               | Bulk Density            | Bulk Density            | Porosity                                    | Reference            |                       |          |                   |                                                                        |
| <u>a</u>           | (lb/cf)                 | (g/cm³)                 |                                             |                      |                       |          |                   |                                                                        |
| 3 7                | 112.22                  | 1.8                     | 0.3306                                      | BGOURI               |                       |          |                   |                                                                        |
| 23                 | 98.77                   | 1.6                     | 0.374                                       | BGOURI               |                       |          |                   |                                                                        |
| 23                 | 90.8                    | 1.5                     | 0.445                                       | BGOURI               |                       |          |                   |                                                                        |
|                    |                         |                         |                                             |                      |                       |          |                   |                                                                        |

# TABLE 10 NON-CANCER TOXICITY DATA -- INHALATION NSB-NLON, GROTON, CONNECTICUT

| Chemical of Potential       | Chronic/<br>Subchronic | Inhala  | tion RfC | Extrapo | lated RfD <sup>(1)</sup> | Primary<br>Target | Combined Uncertainty/Modifying | RfC : Target Organ(s) |                         |  |
|-----------------------------|------------------------|---------|----------|---------|--------------------------|-------------------|--------------------------------|-----------------------|-------------------------|--|
| Concern                     |                        | Value   | Units    | Value   | Units                    | Organ(s)          | Factors                        | Source(s)             | Date(s)<br>(MM/DD/YYYY) |  |
| Volatile Organic Compounds  |                        |         |          |         |                          |                   |                                |                       |                         |  |
| Chloroform                  | Chronic                | 4.9E-02 | mg/m³    | 1.4E-02 | (mg/kg/day)              | Liver             | NA                             | USEPA III             | 10/11/2007              |  |
| Tetrachloroethene           | Chronic                | 2.8E-01 | mg/m³    | 8.0E-02 | (mg/kg/day)              | Liver             | NA NA                          | USÉPA III             | 10/11/2007              |  |
| Trichloroethene - Draft EPA | Chronic                | 3.5E-02 | mg/m³    | 1.0E-02 | (mg/kg/day)              | Liver, CNS        | NA NA                          | USEPA(1)              | 8/2001                  |  |
| Trichloroethene - Cal EPA   | Chronic                | 6.0E-01 | mg/m3    | 1.7E-01 | (mg/kg/day)              | Liver, CNS        | NA NA                          | CA EPA                | 12/2002                 |  |
| Vinyl Chloride              | Chronic                | 1.0E-01 | mg/m³    | 2.9E-02 | (mg/kg/day)              | Liver             | 30/1                           | IRIS                  | 5/02/2008               |  |

Notes:

1 - Extrapolated RfD = RfC \*20m3/day / 70 kg

Definitions:

CNS = Central Nervous System

EPA III = U.S. EPA Region 3 RBC Table, October 11, 2007.

IRIS = Integrated Risk Information System

NA = Not available.

USEPA(1) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

Cal EPA = California EPA, Technical Support Document for Describing Available Cancer Potency Factors, December 2002.

# TABLE 11 CANCER TOXICITY DATA -- INHALATION NSB-NLON, GROTON, CONNECTICUT

| Chemical<br>of Potential    | Uni     | t Risk                             | 1       | on Cancer<br>Factor <sup>(1)</sup> | Weight of Evidence/<br>Cancer Guideline | Unit Risk : Inhalation CSF |                         |  |  |
|-----------------------------|---------|------------------------------------|---------|------------------------------------|-----------------------------------------|----------------------------|-------------------------|--|--|
| Concern                     | Value   | Units                              | Value   | Units                              | Description                             | Source(s)                  | Date(s)<br>(MM/DD/YYYY) |  |  |
| Volatile Organic Compounds  |         |                                    |         |                                    |                                         |                            |                         |  |  |
| Chloroform                  | 2.3E-05 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 8.1E-02 | (mg/kg/day) <sup>-1</sup>          | B2                                      | IRIS                       | 5/02/2008               |  |  |
| Tetrachloroethene           | 5.9E-06 | (ug/m <sup>3</sup> ) <sup>1</sup>  | 2.1E-02 | (mg/kg/day) <sup>-1</sup>          | NA                                      | USEPA(1)                   | 6/12/2003               |  |  |
| Trichloroethene - Draft EPA | 1.1E-04 | (ug/m <sup>3</sup> ) <sup>-1</sup> | 4.0E-01 | (mg/kg/day) <sup>-1</sup>          | С                                       | USEPA(2)                   | 8/2001                  |  |  |
| Trichloroethene - Cal EPA   | 2.0E-06 | (ug/m3)-1                          | 7.0E-03 | (mg/kg/day)-1                      | С                                       | CA EPA                     | 12/2002                 |  |  |
| Vinyl Chloride (adult)      | 4.4E-06 | (ug/m³) <sup>-1</sup>              | 1.5E-02 | (mg/kg/day) <sup>-1</sup>          | A                                       | IRIS                       | 5/02/2008               |  |  |

Notes:

1 - Inhalation CSF = Unit Risk \* 70 kg / 20m3/day.

Definitions:

IRIS = Integrated Risk Information System.

NA = Not Available.

USEPA(1) = OSWER Directive No.9285.7-75.

USEPA(2) = Draft Trichloroethylene Health Risk Assessment: Synthesis and Characterization, August 2001.

EPA Group:

A - Human carcinogen.

B2 - Probable human carcinogen - indicates sufficient evidence in animals and inadequate or no evidence in humans .

C - Possible human carcinogen.

### TABLE 12 SUMMARY OF VAPOR INTRUSION MODELING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 12 OF 15

|                                             | Site 2 -    | Area A - Up | gradient | Site 2 - /  | Area A - Dov | vnstream | Site 2 - Area A - Wetlands |             |        |  |
|---------------------------------------------|-------------|-------------|----------|-------------|--------------|----------|----------------------------|-------------|--------|--|
| Chemical                                    | EPC         | Cancer      | Hazard   | EPC         | Cancer       | Hazard   | EPC                        | Cancer      | Hazard |  |
|                                             | (ug/L)      | Risk        | Index    | (ug/L)      | Risk         | Index    | (ug/L)                     | Risk        | Index  |  |
|                                             | Residential |             |          | Residential |              |          |                            | Residential |        |  |
| Chloroform                                  | 1           | 5E-08       | 1E-04    | NA          | NA           | NA       | NA                         | NA          | NA     |  |
| Tetrachloroethene                           | NA          | NA          | NA       | NA          | NA           | NA       | 1.4                        | 8E-08       | 1E-04  |  |
| Trichloroethene - EPA Toxicity Criteria     | 0.9         | 2E-07       | 1E-04    | 2           | 4E-07        | 3E-04    | 1.4                        | 1E-06       | 6E-04  |  |
| Trichloroethene - Cal EPA Toxicity Criteria | 0.9         | 3E-09       | 7E-06    | 2           | 8E-09        | 2E-05    | 1.4                        | 2E-08       | 4E-05  |  |
| Vinyl Chloride                              | NA          | NA          | NA       | NA          | NA           | NA       | NA                         | NA          | NA     |  |
|                                             |             | Industrial  |          | Industrial  |              |          | Industrial                 |             |        |  |
| Chloroform                                  | 1           | 7E-09       | 2E-05    | NA          | NA           | NA       | NA                         | NA          | NA     |  |
| Tetrachloroethene                           | NA          | NA          | NA       | NA          | NA           | NA       | 1.4                        | 1E-08       | 2E-05  |  |
| Trichloroethene - EPA Toxicity Criteria     | 0.9         | 2E-08       | 1E-05    | 2           | 6E-08        | 5E-05    | 1.4                        | 2E-07       | 1E-04  |  |
| Trichloroethene - Cal EPA Toxicity Criteria | 0.9         | 5E-10       | 1E-06    | 2           | 1E-09        | 3E-06    | 1.4                        | 3E-09       | 6E-06  |  |
| Vinyl Chloride                              | NA          | NA          | NA       | NA          | NA           | NA       | NA                         | NA          | NA     |  |

### Notes:

NA - Not a COPC at this site.

EPC = Exposure point concentration, maximum detected concentration of a chemical at a site.

Shading indicates an exceedance of USEPA and/or CTDEP acceptable risk levels.

### TABLE 12 SUMMARY OF VAPOR INTRUSION MODELING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 13 OF 15

|                                             |             | Site 3     |        |             | Site 7 |        | Site 15    |             |        |  |
|---------------------------------------------|-------------|------------|--------|-------------|--------|--------|------------|-------------|--------|--|
| Chemical                                    | EPC         | Cancer     | Hazard | EPC         | Cancer | Hazard | EPC        | Cancer      | Hazard |  |
|                                             | (ug/L)      | Risk       | Index  | (ug/L)      | Risk   | Index  | (ug/L)     | Risk        | Index  |  |
|                                             | Residential |            |        | Residential |        |        |            | Residential |        |  |
| Chloroform                                  | 15          | 7E-06      | 1E-02  | NA          | NA     | NA     | 3          | -4E-06      | 7E-03  |  |
| Tetrachloroethene                           | NA          | NA         | NA     | NA          | NA     | NA     | NA         | NA          | NA     |  |
| Trichloroethene - EPA Toxicity Criteria     | 7           | 3E-05%     | 2E-02  | 1           | 2E-06  | 1E-03  | NA         | NA          | NA     |  |
| Trichloroethene - Cal EPA Toxicity Criteria | 7           | 6E-07      | 1E-03  | 1           | 4E-08  | 8E-05  | NA         | NA          | NA     |  |
| Vinyl Chloride                              | 10          | ##8E-06    | 4E-02  | NA          | NA     | NA     | NA         | NA          | NA     |  |
|                                             |             | Industrial |        | Industrial  |        |        | Industrial |             |        |  |
| Chloroform                                  | 15          | 1E-06      | 3E-03  | NA          | NA     | NA     | 3          | 5E-07       | 1E-03  |  |
| Tetrachloroethene                           | NA.         | NA         | NA     | NA          | NA     | NA     | NA         | NA          | NA     |  |
| Trichloroethene - EPA Toxicity Criteria     | 7           | : SE-06    | 3E-03  | 1           | 3E-07  | 2E-04  | NA         | NA          | NA     |  |
| Trichloroethene - Cal EPA Toxicity Criteria | - 7         | 8E-08      | 2E-04  | 1           | 6E-09  | 1E-05  | NA         | NA          | NA     |  |
| Vinyl Chloride                              | 10          | 1E-06      | 7E-03  | NA          | NA     | NA     | NA         | NA          | NA     |  |

### Notes:

NA - Not a COPC at this site.

EPC = Exposure point concentration, maximum detected concentration of a chemical at a site.

Shading indicates an exceedance of USEPA and/or CTDEP acceptable risk levels.

### TABLE 12 SUMMARY OF VAPOR INTRUSION MODELING RESULTS NSB-NLON, GROTON, CONNECTICUT PAGE 14 OF 15

|                                             |        | Site 20     |        | •      | Site 23     |        |  |
|---------------------------------------------|--------|-------------|--------|--------|-------------|--------|--|
| Chemical                                    | EPC    | Cancer      | Hazard | EPC    | Cancer      | Hazard |  |
|                                             | (ug/L) | Risk        | Index  | (ug/L) | Risk        | Index  |  |
|                                             |        | Residential |        |        | Residential |        |  |
| Chloroform                                  | NA     | NA          | NA     | 3      | \$4,2E±06   | 5E-03  |  |
| Tetrachloroethene                           | NA     | NA          | NA     | NA     | NA          | NA     |  |
| Trichloroethene - EPA Toxicity Criteria     | 5.02   | 4E-06       | 2E-03  | 0.5    | _24E≥0j6    | 2E-03  |  |
| Trichloroethene - Cal EPA Toxicity Criteria | 5.02   | 7E-08       | 1E-04  | 0.5    | 7E-08       | 1E-04  |  |
| Vinyl Chloride                              | NA     | NA          | NA     | NA     | NA          | NA     |  |
|                                             |        | Industrial  |        |        | Industrial  |        |  |
| Chloroform                                  | NA     | NA          | NA     | 3      | 3E-07       | 8E-04  |  |
| Tetrachloroethene                           | NA     | NA          | NA     | NA     | NA          | NA     |  |
| Trichloroethene - EPA Toxicity Criteria     | 5.02   | 6E-07       | 4E-04  | 0.5    | 5E-07       | 4E-04  |  |
| Trichloroethene - Cal EPA Toxicity Criteria | 5.02   | 1E-08       | 3E-05  | 0.5    | 1E-08       | 2E-05  |  |
| Vinyl Chloride                              | NA     | NA          | NA     | NA     | NA          | NA     |  |

### Notes:

NA - Not a COPC at this site.

EPC = Exposure point concentration, maximum detected concentration of a chemical at a site.

Shading indicates an exceedance of USEPA and/or CTDEP acceptable risk levels.

TABLE 13
PRELIMINARY REMEDIATION GOALS AND OTHER ARARS FOR VAPOR INTRUSION NSB-NLON, GROTON, CONNECTICUT

| Chemical                       | EPC <sup>(1)</sup> | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G <sup>(2)</sup> | USEPA              | CTDEP RSR <sup>(4)</sup>                                          |           |  |
|--------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-------------------------------------------------------------------|-----------|--|
| Onemical                       | (ug/L)             | Residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Industrial       | MCL <sup>(3)</sup> | Residential                                                       | Industria |  |
| Site 2 - Area A - Upgradient   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                                                   |           |  |
| Chloroform                     | 1                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144              | 80 <sup>(5)</sup>  | 26                                                                | 62        |  |
| Trichloroethene <sup>(6)</sup> | 0.9                | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1769             | 5                  | 27                                                                | 67        |  |
| Site 2 - Area A - Downgradient |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | ·                  | <u></u>                                                           |           |  |
| Trichloroethene                | 2                  | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1760             | 5                  | 27                                                                | 67        |  |
| Site 2 - Area A - Wetlands     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    | <del>-l</del>                                                     |           |  |
| Tetrachloroethene              | 1.4                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122              | 5                  | 340                                                               | 810       |  |
| Trichloroethene <sup>(6)</sup> | 1.4                | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 508              | . 5                | 27                                                                | 67        |  |
| Site 3                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                    |                                                                   |           |  |
| Chloroform                     | 15                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15               | 80 <sup>(3)</sup>  | 26                                                                | 62        |  |
| Trichloroethene <sup>(6)</sup> | 7                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85               | 28 2454 a s        | 27                                                                | 67        |  |
| Vinyl Chloride                 | 10                 | - 1 (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8/6              | 2 3 3              | 1.67                                                              | 52        |  |
| Site 7                         |                    | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                  |                    | as removed a service and dear definition of a latter constituting |           |  |
| Trichloroethene <sup>(6)</sup> | 1                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 163              | 5                  | 27                                                                | 67        |  |
| Site 15                        |                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                    |                                                                   | <u> </u>  |  |
| Chloroform                     | 3                  | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9              | 80 <sup>(3)</sup>  | 26                                                                | 62        |  |
| Site 20                        |                    | A Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Comm |                  | - 00               | <u> </u>                                                          | - 02      |  |
| Frichloroethene <sup>(6)</sup> | 5.02               | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 467              | 5                  | 27                                                                | 67        |  |
| Site 23                        |                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                    | <u> </u>                                                          | <u> </u>  |  |
| Chloroform                     | 3                  | 3.10.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.1              | 80 <sup>(3)</sup>  | 26                                                                | 62        |  |
| Trichloroethene <sup>(6)</sup> | 0.5                | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52               | 5                  | 27                                                                | 67        |  |

### Acronyms:

ARARs = Applicable or Relevant and Appropriate Regulations

EPC = Exposure Point Concentration.

MCL = Maximum contaminant level.

PRG = Preliminary Remediation Goal

RSR = Remediation Standard Regulations.

### Notes:

All concentrations are in ug/L.

- 1 EPC is the maximum detected concentration at a site.
- 2 PRGs are based on a cancer risk of 1 x 10<sup>-6</sup> or an hazard index of 1.
- 3 USEPA Drinking Water Standards and Health Advisories, August 2006.
- 4 Proposed Revisions Connecticut's Remediation Standard Regulations, Volatilization Criteria, March 2003.
- 5 Value is for total trihalomethanes.
- 6 PRG for trichloroethene is calculated using the Cal EPA toxicity criteria.

Shading indicates an exceedance of a PRG or ARAR.

ATTACHMENT A
BORING LOGS AND
DEPTH TO GROUNDWATER INFORMATION

| (Date                                | , Time                    | & Cond                     | litions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                                     |                |                                              | Rose              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|---------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|----------------|----------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE<br>MO.<br>8 TYPE<br>OR<br>ROD | OITH<br>FUN<br>FUN<br>NO. | 6. 04<br>800<br>800<br>800 | CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRAL CENTRA | (Drewn's)              | SQL<br>Dewley<br>CONSISTENCY<br>Of BOCK<br>MARDWESS | COLOR          | ERIAL DESCRIPTION*  MATERIAL  CLASSIFICATION | Sec<br>ex<br>vici |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M38                                  | 0.0<br>2.0                | 12<br>12                   | 1.5/2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Druse                                               | Bleck          | Gravel w/Tr Sand                             | GP                | Sand - M to CC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1425                                 | Y                         | 15<br>22<br>61             | F1\1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 <u>ENE</u><br>863.5 | V-Oruce                                             | Tan            | Chiley Sand with Ga                          |                   | said - hito ( Gr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 311/54                               | (C)                       | 65%                        | 4.5/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~~~                    | Hard                                                | Gray<br>to     | Sily Sind, with Convel<br>Greeks             | BR                | Grave 1 - Give 135 Mark<br>Earl to income<br>Council - Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.0                                  | +                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                     | Dink           | W/ Sand grams in the                         | 3' 65'            | SS Refutal. More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 75/1.5<br>8.5                        | <u>(</u>                  |                            | 11/1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | Hard                                                | C-Gar          | Chess w/saw stang                            | TAXA .            | HIZ JANE 7.5', 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      |                           | 4                          | <i>2</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]                      | e Costolero je<br>Živo je                           | energy and a   |                                              |                   | to 4 frac @ 12.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4950                                 | (3)                       | 70%                        | 5.0/5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                      | Hand                                                | GTY.           | CHESS                                        | 18r               | 5.6' 5.75 9 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13.5                                 | T                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                     | PMK            |                                              |                   | Pure His out to 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                     | <b>2</b> 10 10 |                                              | M.?               | Hoo level @ 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.1/5.                               | <u>(D)</u>                | 76%                        | دى\4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | Hard                                                | Gray<br>Durk   | Cheiss                                       | Br                | 15.1'   15.1'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2'   15.2' |
| 18.5                                 |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                     |                |                                              |                   | HIX JUT @ 15.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b> 30            |                                                     |                | Total Depth 185                              | <b>'-</b>         | Core Enrice 1 Browles<br>17.4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                     |                | Jarean 85'-185"                              |                   | → 2"PVC -OiOlo Sto 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      |                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                     |                | Sand 6'-18.5"                                |                   | - 100th on sore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | $\neg$                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł                      |                                                     |                | Pellete 3'- 6'                               |                   | -SV# 800 BENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|   | J          | t          | Tetr         | a Ted                           | h NUS                 | 5, Inc.          |                     | BORING LOG                            |                                         |                |                                    | F      | Page of       |             |            |            |                |
|---|------------|------------|--------------|---------------------------------|-----------------------|------------------|---------------------|---------------------------------------|-----------------------------------------|----------------|------------------------------------|--------|---------------|-------------|------------|------------|----------------|
|   |            |            | NAMI         |                                 |                       | NLON             |                     | ·                                     |                                         | BORING N       | IUMBE                              | ER:    | 3MW           | 37          | \$         |            |                |
|   |            |            | OMI          |                                 | 5082<br>EDI, I        |                  | DATE:<br>GEOLOGIST: |                                       |                                         |                | ER: 3Mw37\$<br>5-19-99<br>T. Evans |        |               |             |            |            |                |
|   |            |            | RIG:         | 7441.                           | <del></del>           | ipod             | DRILLER:            |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            | . , ,,,      |                                 |                       |                  | ATE                 | TERIAL DESCRIPTION                    |                                         |                | A. Orlicky  [EDF10 Reading (p)     |        |               |             | ==         |            |                |
|   | Sample     | Depth      | Blows/       | Sample                          | Lithology             | 141              |                     | NIAL DE                               | SUNIFI                                  | ION            | U                                  |        |               | 9           | FIO Re     | eding (p   | )<br>(mqc      |
|   | No.<br>and | (Ft.)      | 6° or<br>RQD | Recovery<br>/                   | Change<br>(Depth/Ft.) | Soil Density/    |                     |                                       |                                         |                | S                                  |        |               |             | ~          |            | . ]            |
|   | Type or    | Run<br>No. | (%)          | Sample<br>Length                | or<br>Screened        | Consistency      | Color               | Mate                                  | rial Classi                             | fication       | C<br>S                             | Rei    | narks         | Sample      | er B       | • olo      | 28             |
|   |            |            | 1            |                                 | Interval              | Rock<br>Hardness |                     |                                       | - 1111                                  |                | •                                  | -      |               | San         | Sampler BZ | Borehole** | Oriller 82"    |
|   |            | 0.0        |              |                                 |                       | THAI GIVES       |                     | •                                     |                                         |                |                                    | Time   |               |             | S          | ш.         |                |
|   | 5-1        |            | 3/2          | 6.7/2.0                         |                       |                  | DK<br>BTh           | Hun                                   | u <u>C</u>                              |                | P+                                 | 1330   | wet           | 0           | 0          |            | ð              |
|   |            | გ.ბ        | 5/           |                                 | ~20                   |                  |                     |                                       |                                         |                |                                    |        |               |             | Ť          |            |                |
| 4 |            |            | 15           | 1.3/2.0                         |                       | V Dense          | Tan                 | Silty                                 | F SA                                    | NO             | SP                                 | 1352   |               | 0           | 0          |            | 0              |
|   |            | 4,0        | 3746         |                                 |                       |                  |                     | Tr                                    | Part                                    | France         |                                    | afre   | 104'-<br>BR & |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       | 1-002                                   | · · · · · Js   | 6                                  | terys. | BRE           | 7           |            |            |                |
|   |            | 6.0        |              |                                 | 5.5                   |                  |                     |                                       |                                         |                |                                    | 5/20 @ | 1210          |             |            |            |                |
|   |            |            |              |                                 | 2.7                   |                  |                     |                                       |                                         |                |                                    |        | t" temp       |             |            |            |                |
|   |            |            |              |                                 |                       |                  | ·                   |                                       |                                         |                |                                    |        | to 5 @        | lo          | a          | ダ          |                |
|   |            |            |              |                                 |                       |                  |                     | set                                   | 1'scr                                   | en (o          | (ot)                               | 4.5-   | 5.5           | ~           | 2          | 12         | E              |
|   |            |            |              |                                 |                       |                  |                     |                                       | Ikely                                   | #1 San         | 2                                  | 3.5-   |               |             |            |            | Ĭ              |
|   |            |            |              |                                 | .*                    |                  |                     |                                       | Ben                                     | tonik          |                                    | 2.5-   | - 3.5         |             |            |            |                |
| - |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       | *************************************** | <del>-i.</del> |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     | · · · · · · · · · · · · · · · · · · · |                                         | <del></del> -  |                                    |        |               | -           |            |            |                |
|   |            |            |              |                                 |                       |                  |                     | ····                                  |                                         |                |                                    |        | <del></del>   | -           | -          |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               | <u> </u>    |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    | -      |               |             |            |            |                |
|   |            |            |              |                                 | ,                     |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        | _             |             |            |            |                |
|   |            |            |              | ·                               |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       | <del></del>                             |                |                                    |        |               |             |            |            |                |
|   |            |            |              |                                 |                       |                  |                     |                                       |                                         |                |                                    |        |               |             |            |            |                |
|   |            |            | ring, ente   |                                 |                       |                  | ·                   |                                       |                                         |                | a1                                 |        |               | <del></del> |            | <u></u>    |                |
|   | " includ   |            | tor reading  | g in 6 foot<br><sup>1</sup> 5 S | intervals @           | borehole. In     |                     | reading freq<br>ひらよく                  |                                         | valed reponse  | read.                              |        |               | ling /      |            |            | <del>/</del> - |
|   | i icilià   | ai Nõ.     | <u>}</u>     | Sam                             | rie_                  | <del></del>      |                     | vyds.                                 | west                                    | 7              | nep                                |        | Backgrour     | ıa (bi      | pm):       | <u> </u>   | 2              |
|   | Conv       | erted      | to We        | it:                             | Yes                   | V                |                     | No                                    |                                         | Well           | ).D. #:                            |        | 37            | MW          | 37         | <b>₹</b>   |                |

|   |     | $\neg$ |
|---|-----|--------|
| - |     | L      |
| 1 | 17  | C١     |
| 1 | = ( | زحا    |

## Tetra Tech NUS, Inc.

## **BORING LOG**

| Page | 1  | of |  |
|------|----|----|--|
| ~~~  | ١. | 91 |  |

|   |                                        |                                   | NAMI<br>NUM                   |                                             | NSB<br>5082                                                     | 3905                                                   |        |                                         |                                                |                                       |                  |            |            |              |
|---|----------------------------------------|-----------------------------------|-------------------------------|---------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|--------|-----------------------------------------|------------------------------------------------|---------------------------------------|------------------|------------|------------|--------------|
|   |                                        | -                                 |                               | PANY:                                       |                                                                 |                                                        |        | DATE:                                   | ST.                                            | <u> </u>                              | <u>۶</u>         |            |            |              |
|   |                                        |                                   | RIG:                          |                                             |                                                                 | ipod                                                   | انیا   | Catheal DRILLER:                        | 01.                                            | A - Orl                               | ick              |            |            |              |
|   |                                        |                                   |                               |                                             |                                                                 | М                                                      | ATE    | RIAL DESCRIPTION                        |                                                |                                       |                  | ID Res     | ding (     | (200m)       |
|   | Sample<br>No.<br>and<br>Type or<br>ROO | Depth<br>(PL)<br>or<br>Run<br>No. | Blows/<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/FL)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness |        | Material Classification                 | <b>5</b> 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | Remarks                               | Sample           | Sampler 82 | Borehole** | Driller BZ** |
|   |                                        | <u>ც.</u> 0                       | 2                             |                                             | _0. 1_                                                          |                                                        |        | Silt for 5 Sund                         | ML                                             | The                                   |                  |            |            |              |
| 3 | 5-1                                    | 2.0                               | 23                            | 15,0                                        | <u></u>                                                         | Loose                                                  | Bm     | Silt Some F Jard<br>M-C Sand            | s P                                            | 1342 Photo#<br>Saturated              | 0                | 0          |            | 0            |
|   | 5-2                                    | 2.0                               | 4                             | 0.5/2                                       |                                                                 | 1 21                                                   | 200    | F-C Sand                                | sw                                             |                                       | D                |            |            |              |
|   |                                        | 4,0                               | 3/2                           | الدو                                        | ٠.                                                              | LOOK                                                   | Dom    | F-C Sand                                | 5₩                                             | 1345                                  | 0                | 0          |            | 0            |
|   | 5-3                                    | 72-                               | 3                             | 0.0/                                        | È                                                               |                                                        | -      | No Recover                              | ·                                              | 1348                                  |                  | 0          |            |              |
|   |                                        | 6.3                               |                               | - 67                                        |                                                                 |                                                        |        |                                         |                                                | (3(1                                  | 0                | U          |            | 0            |
|   | 54                                     |                                   | 74                            | ومراه                                       |                                                                 | FiRM                                                   |        | poor peconey                            |                                                | 12/20                                 | -                |            |            |              |
|   |                                        | 8.2                               | 3/3                           | **************************************      |                                                                 |                                                        | 91m    | closey sitt in stoc                     | 0 H                                            |                                       |                  |            |            |              |
|   | 5-5                                    |                                   | 3                             | 1./20                                       | <u>H</u>                                                        | M SHIT                                                 | oline  | Clayer Silt                             | 0 H-                                           | 1445                                  | 37.8             |            |            |              |
|   |                                        | 0.0                               | 1/2                           |                                             |                                                                 | 6.1                                                    |        | TV Shell                                |                                                |                                       |                  |            |            |              |
|   | 5-6                                    |                                   | 2                             | 13.5                                        |                                                                 | suft_                                                  | 1      |                                         |                                                | 1505 722                              | 7-4<br>(E)       | 0          |            | ઢ            |
|   | S-7                                    | ودا                               | 4                             | 2.0/2.0                                     |                                                                 | C 1                                                    | - -    |                                         | -                                              |                                       |                  |            |            | . Pi         |
|   | 7- 1                                   | 14.5                              | 3/                            | 2.3                                         |                                                                 | Soft                                                   | H      |                                         |                                                | 1513                                  | 101              | 0          | Ĭ          | δ            |
|   | 5-8                                    |                                   | 5/6                           | 2 <i>%</i> ,5                               | 1-1                                                             | MStiff                                                 |        |                                         |                                                | 1230                                  | 25 (             |            |            |              |
|   |                                        | 6.0                               | 43                            |                                             |                                                                 |                                                        | V      | <b>**</b>                               | $\forall$                                      | 1300                                  | 29.9             |            |            |              |
|   |                                        |                                   |                               |                                             | BOB IL                                                          |                                                        |        |                                         |                                                | Orive 4"                              |                  |            |            |              |
| ١ |                                        |                                   |                               |                                             |                                                                 |                                                        |        |                                         |                                                | temp casing                           |                  |            |            |              |
| I |                                        |                                   |                               |                                             |                                                                 |                                                        |        |                                         |                                                | to 15'                                |                  |            |            |              |
| ŀ |                                        |                                   |                               |                                             |                                                                 |                                                        | -      |                                         |                                                |                                       |                  |            |            |              |
| 1 |                                        |                                   |                               |                                             |                                                                 |                                                        | ,      | 2"PVC 4-14                              |                                                | 1607                                  |                  |            |            |              |
| ł |                                        |                                   |                               |                                             |                                                                 |                                                        |        | #U Jan 3-15                             |                                                | Let wal                               |                  |            |            |              |
| ł |                                        |                                   |                               |                                             | •                                                               |                                                        |        | Bentante 2-3                            |                                                |                                       |                  |            |            |              |
| ŀ |                                        | $\neg$ f                          |                               |                                             |                                                                 |                                                        |        |                                         |                                                |                                       |                  |            |            |              |
|   |                                        |                                   |                               | r rock bro                                  |                                                                 |                                                        | L      |                                         |                                                |                                       | Lj               | لــــا     |            |              |
|   | * Includ<br>Rema                       |                                   | lor reading                   | 55                                          |                                                                 | _                                                      | crease | reading frequency if elevated reponse i | ead.                                           | Drill<br>Backgroun                    | ling A<br>Id (pr |            | 1          | 0            |
|   |                                        | -                                 | *                             |                                             | mple                                                            | 2w-                                                    |        |                                         | 9                                              | · · · · · · · · · · · · · · · · · · · | \0- F            | 7-1        |            | <u>-</u>     |
| ( | Conv                                   | erted                             | to We                         | H:                                          | Yes                                                             |                                                        |        | No Well I                               | .D. #:                                         |                                       |                  |            |            |              |

|    |      | _   |
|----|------|-----|
| ı. |      | . 1 |
| Г  |      | -1  |
| ı  | -8-8 |     |
| l  |      | -,  |

## Tetra Tech NUS, Inc.

## **BORING LOG**

Page \_\_\_\_ of \_\_\_

| DRILLING COMPANY: EDI, Inc.  DRILLING COMPANY: EDI, Inc.  DRILLING RIG:  To poly Cat head DRILLER:  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill Ky.  A Drill K |               |            | NAM           |                         | NSB-<br>5082                           | NLON                      | BORING NUMBER: 2 WMW46 DS |                                         |         |                    |             |             |           |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|---------------|-------------------------|----------------------------------------|---------------------------|---------------------------|-----------------------------------------|---------|--------------------|-------------|-------------|-----------|-------------|--|
| DRILLING RIG:  TY DOD W COT THESE DRILLER:  A. O'TICKY  MATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL DESCRIPTION  WATERIAL D |               |            |               |                         |                                        |                           |                           |                                         | OT.     |                    | 9           |             |           |             |  |
| MATERIAL DESCRIPTION   University   September   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   Description   University   University   University   Description   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   University   |               |            |               | . ,                     |                                        | <                         | <u>/</u>                  |                                         |         |                    | <del></del> |             |           |             |  |
| Second   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Companies   Compani   |               | 7          |               | <del></del> -           |                                        |                           |                           |                                         |         | A-0411             | <u> </u>    | 1           |           |             |  |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Semple        | Depth      | Blows/        | Sample                  | Litholom                               | M                         | AIE                       | RIAL DESCRIPTION                        | 1       |                    | 790         | FID Re      | ading (   | ppm)        |  |
| Co   3   5   5   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and<br>Type o | or<br>Run  | ROD           | Recovery<br>/<br>Sample | Change<br>(Depth/FL)<br>or<br>Screened | Consistency<br>or<br>Rock | Colo                      | Material Classification                 | S<br>C  | Remarks            | Sample      | ampier 82   | orehole** | riller BZ** |  |
| 20 66  5.2 470%  4.0 63  14.0 63  15.0 4 120  15.1 4 120  15.1 4 1020  15.1 4 1020  15.1 4 1020  15.1 4 1020  15.1 4 1020  15.1 4 1020  15.1 4 1020  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 5.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  15.1 4 1030  16.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17.1 1030  17. | -             | 0.0        |               | 0.9/                    |                                        |                           |                           |                                         |         | Time               |             | e e         |           | a a         |  |
| 20   6   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000    | 2-1           |            | 8             | 30                      |                                        |                           | Bin                       | Koot matter                             | PT      | 0949               | b.5         |             |           | 0.3         |  |
| 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -             | ဥ္သ        |               | 2.0                     |                                        |                           |                           |                                         |         | wet                |             |             |           |             |  |
| 5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5           |            | 7             | 2.0                     |                                        |                           |                           | No Recovery                             | _       | 1000               | -           |             |           | ·           |  |
| Sylvania (large off (030) 123 02 1  Sylvania (large off (030) 123 02 1  Sylvania (large off (030) 123 02 1  Sylvania (large off (030) 123 02 1  Sylvania (large off (100) 123 02 1  Sylvania (large off (100) 123 02 02 02 02 02 02 02 02 02 02 02 02 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5           | 4.0        | 9/3           |                         |                                        |                           |                           | <i>)</i>                                |         |                    |             |             |           |             |  |
| MShiff om Organic Clayer OH 1030 123 00 1.0  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  | <b></b>       | . 5        | 7/2<br>1      | 30                      |                                        | V SOLT                    | ben-                      | Organic Clayer                          | oH      | 1020               | B.3         | 0-0         |           | د.ه         |  |
| Myshit from Creanic Clayer OH (030) 123 0.0 1.3  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si Lt  Si |               | 10.0       |               | 2 50 -                  |                                        |                           | ,                         | Silt                                    |         |                    |             |             |           |             |  |
| Soft of Organic Clayes OU 10to H25 over 3350  To Root & Remark Drive 4 temp Cosins  No. Stell clay Over Clayer OU 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2  Silt Over 1000 H25 over 984000 0-2 | 54            | · .        | <del>2/</del> | 4.0                     |                                        | MSfiff                    | 500                       | <del></del>                             | OH      | (03()              | 123         | 0.0         |           | 1           |  |
| Tr Roots (Remnant) Orine 4" fem Cosing  No SHER Com Original Clayer OU 1100 Hz Sodor 99.400 0-2  Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt of Silt  |               | 80         | <u> </u>      | 100                     |                                        |                           |                           | Si U                                    |         |                    |             |             |           | L           |  |
| Note that the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se | 3-5           | 1 . 0      | 12            | 120                     |                                        | Sof +                     | 94                        | Organic Clayes                          | ou      | 1040 HzSadur       | 33-5        |             |           |             |  |
| Sith Sith Sith Sith Sith Sith Sith Sith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | (0.0       | $ZV_{\mu}$    |                         |                                        |                           |                           | Tr Roots ( remnant                      |         | Drive 4"temp Cosin |             |             |           |             |  |
| Myhild olim Organic Clargey of 1125 1246.2 02  Soft   1/30 1320.2 0.2  Soft   1/30 1320.2 0.2  Soft   1/30 1320.2 0.2  Soft   1/30 1320.2 0.2  Soft   1/30 1320.2 0.2  Soft   1/30 1320.2 0.2  Typic Casing to 15'  Restante 2-3  Protestive Casing 2.5' Strong  Protestive Casing 2.5' Strong  When rock coring, enter rock brokeness.  Include monitor reading in 6 tool intervals @ borehole. Increase reading trequency if elevated reponse read.  Remarks: 1'55  **Sample 2w-Su-4605-64-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-6           |            |               | 2.0                     |                                        | No SHEF                   | dw<br>w                   | Organic Clayer                          | ou      |                    |             | oro         |           | 0-0         |  |
| When rock coring, enter rock brokeness.  When rock coring, enter rock brokeness.  Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:  Sample 2n-5u-46D5-64-55    1/30   1320.3   0.0     4"Teng Carsing   1320.3   0.0     4"Teng Carsing   1320.3   0.0     4"Teng Carsing   151   151     4 Valve #v Sand 3'-15'     4 Restants 2-3   2.5' Strung   1240 2010     5 Strung   1240 2010   1240 2010     5 Drilling Area Background (ppm): 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 120        | / 7           |                         |                                        |                           |                           | S: It 0                                 |         |                    |             |             |           |             |  |
| SE 53230  Soft   1/30   132000 0.00    God   1/30   132000 0.00    There casing to 15'   Valve #0 Sand 3'-15'   Restante 2-3   Protective Casing 2.5' Strength    When rock coring, enter rock brokeness.   Include monitor reading in 6 tool intervals @ borehole. Increase reading frequency it elevated reponse read.   Remarks:   1/55   Protective 2 w- Su - 46 DS- & 4-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | 43            | 730                     |                                        | mstiff                    | 9W                        |                                         | 014     | 1125               | 124         | <b>6.</b> 3 |           | 03          |  |
| When rock coring, enter rock brokeness.  "Include monitor reading in 6 tool intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks: ) (55  **Sample 2 - 5u - 46 D5 - 64 - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>   | t          | 1             |                         |                                        |                           |                           | Sift Tr-shell                           |         |                    |             |             |           |             |  |
| They Casing  2"pu (G-Slot 4-14'  Valve #v Sand 3'-15'  Bestante 2-3  Protective Casing 2.5' Strely  Protective Casing 2.5' Strely  1240 Dends  Drilling Area  Background (ppm): 0.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            |               | 420                     |                                        | 2014                      |                           |                                         |         | 1130               | 132         | ۵.۶         |           | 0.0         |  |
| *When rock coring, enter rock brokeness.  *Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  *Remarks: 3'55  **Sample 2w-5u-46D5-64-55  **Background (ppm): 0.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 6.0        |               |                         |                                        |                           | 1                         | V                                       | 4       |                    |             |             |           |             |  |
| "When rock coring, enter rock brokeness. "Include monitor reading in 6 boot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:  1 55  Sample 2w-5u-46 D5-64-55  Prof. of 4-14'  Valve #v 5ad 3'-15'  Review 5ad 3'-15'  Review 5ad 3'-15'  Buttonute 2-3  Prof. of Strong  Drilling Area  Background (ppm): 0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |            |               |                         |                                        |                           |                           |                                         |         |                    |             | -           |           |             |  |
| When rock coring, enter rock brokeness.  "Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:   "SS  ** Sample 2 w- Su - 46 DS - & 4 - 55  ** Sample 2 w- Su - 46 DS - & 4 - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |            |               |                         |                                        |                           | -                         |                                         |         | to 151             |             |             |           |             |  |
| When rock coring, enter rock brokeness.  "Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:   "SS  ** Sample 2 w- Su - 46 DS - & 4 - 55  ** Sample 2 w- Su - 46 DS - & 4 - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |            |               |                         | ]                                      |                           |                           |                                         |         | ·                  |             |             |           |             |  |
| Protective Curry 2.5' Strely  *When rock coring, enter rock brokeness.  *Include monitor reading in 6 foot intervals & borehole. Increase reading frequency if elevated reponse read.  *Remarks:   **Sample 2w-Su-46DS-84-99  **Background (ppm): 0.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | _          |               |                         | }                                      |                           |                           |                                         |         |                    |             |             |           |             |  |
| Protective Custing 2.5 (Strely)  *When rock coring, enter rock brokeness.  *Include monitor reading in 6 foot intervals & borehole. Increase reading frequency if elevated reponse read.  Remarks:   **Sample 2w-Su-46DS-64-99  Background (ppm): 0.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |            |               |                         | ļ                                      | -                         |                           | . Α                                     |         | 15                 |             |             |           |             |  |
| *When rock coring, enter rock brokeness.  "Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:   **Sample 2 w - Su - 46 DS - 64 - 55  **Sample 2 w - Su - 46 DS - 64 - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | -+         |               |                         |                                        |                           |                           |                                         |         |                    |             |             |           |             |  |
| *When rock coring, enter rock brokeness.  "Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:   **Sample 2 w - Su - 46 DS - & 4 - SS  Background (ppm): 0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            |               |                         | 1                                      |                           | $\Box$                    | Protective ass                          | in      | 2.5 Strehy         | p           |             |           |             |  |
| *When rock coring, enter rock brokeness.  "Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:   **Sample 2 w - Su - 46 DS - & 4 - SS  Background (ppm): 0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | _          |               |                         | I                                      |                           |                           |                                         | <u></u> | U                  |             |             |           |             |  |
| "Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks:     1   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14/2          | (OC)       | ing acti      | tock been               |                                        |                           |                           |                                         |         | 1240 Dends         |             |             |           |             |  |
| Remarks: 3" 55  # Sample 2 w - 5u - 46 D5 - 64 - 99 4 - 99  Background (ppm): 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ** Includ     | e monit    | or reading    | in 6 foot               |                                        | borehole, inc             | crease                    | reading frequency if elevated reponse r | read.   | Drill              | ina A       | vea.        |           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rema          | ırks:_     |               | ` 55                    |                                        |                           |                           |                                         |         |                    |             |             | 0         | 5]          |  |
| Converted to Well: Yes / No Woll D #: 16:11 44 (1// 5 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | -<br>- : : |               |                         | <u> </u>                               | - 2 w -                   |                           |                                         |         |                    |             |             |           |             |  |

Converted to Well:

Yes

No

Well I.D. #:

3MW 751

|                                        |            |                                | 100111                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | Pag          | ge _ <b>_</b>                               | 0                                     | I _          | <u>2</u>                              |                    |         |                   |                    |              |
|----------------------------------------|------------|--------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|---------------------------------------------|---------------------------------------|--------------|---------------------------------------|--------------------|---------|-------------------|--------------------|--------------|
|                                        |            | NAM                            |                                             | NSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 New L                                                | ondo         | n, CT Site 3                                | BORING N                              | lo.:         |                                       | 3MW1               | 51      |                   |                    |              |
|                                        | -          | NUM                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTO 0                                                  | 38, G        | 00083                                       | DATE:                                 |              | 4                                     | 127/0              |         |                   |                    |              |
|                                        |            |                                | PANY:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              | g Contractors                               | _GEOLOGI:                             | ST:          |                                       | Colin Do           |         |                   |                    |              |
| DRIL                                   | LING       | RIG:                           |                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | obile                                                  | <u>B59</u>   | Drill                                       | DRILLER:                              |              | 5                                     | Ramso              |         |                   | _                  |              |
|                                        |            |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                      | IATE         | RIAL DESCRIP                                | TION                                  |              |                                       |                    | PID/FIC | ) Readi           | ng (ı              | (mag         |
| Sample<br>No.<br>and<br>Type or<br>RQD | (FL)<br>or | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil Density/<br>Consistency<br>of<br>Rock<br>Hardness | Color        | : Material Clas                             | sification                            | U S C S .    | Rem                                   |                    | Sample  | Sampler BZ        | 7                  | Driller BZ** |
| ८ -।<br>७९०५                           |            | 2/3                            | 1/2                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | loose                                                  | brown        | Organic Si                                  | It and                                | SM           | 12 6                                  | A-n                | P.      | dispail (i        |                    | 89 W         |
| 0,0,                                   | え          | 6/7                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 2                                                  |              |                                             |                                       | <b>├</b> ──  | 2 ft.                                 | 3.11               | 0       | $\vdash$          | $\dashv$           | $\dashv$     |
|                                        |            |                                | <u> </u>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              | fine cand<br>med.sand<br>(fill)             |                                       | SM           |                                       |                    | 0       | $\vdash$          | 4                  | _            |
|                                        |            |                                | <u> </u>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       | <del></del>        |         | $\vdash \vdash$   | 4                  | _[           |
|                                        | 5          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              | -                                     |                    |         | $\vdash$          | 4                  | _            |
| <u>ζ-λ</u>                             |            | 26/                            | .5_                                         | 0 8 00<br>0 8 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | tom          |                                             |                                       |              | ran.cl                                | in Danie           |         | $\sqcup$          | 4                  | _            |
| 0920                                   |            | 83                             | 12                                          | & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | luose                                                  | to           | rock frage<br>gravel, pebbl                 | rents,                                | GP           | refusal<br>1st foot                   | of fee             | 0       | ot                |                    |              |
|                                        | 7          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | acey         | 3,000E( , 156 000                           | es' copples                           |              |                                       |                    |         |                   |                    |              |
|                                        |            | /_                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                      |              |                                             | · · · · · · · · · · · · · · · · · · · |              | damp to                               | dry                |         |                   |                    |              |
|                                        |            | /                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       |                    |         |                   | T                  |              |
|                                        | 10         | /_                             |                                             | - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |              |                                             |                                       |              |                                       |                    |         | П                 | 7                  | 7            |
| 5-3<br>5944                            |            | 41 63                          | 1                                           | 6.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>1 | louse                                                  | prame        | cobbles, pebb                               | les, aravel                           | GP           | damp                                  |                    | 0       | П                 | 7                  | 一            |
|                                        | 12         | 2364                           |                                             | Q-5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | and          | cobbles, pebb<br>and coarse so<br>some fine | and in with                           | GP           |                                       |                    | 0       | П                 | 7                  | 一            |
|                                        |            |                                |                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | Orey         |                                             |                                       |              |                                       |                    | 1       |                   | 7                  |              |
|                                        |            |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       | •                  |         |                   | 7                  |              |
|                                        | 15         |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       | <del> </del>       |         |                   | 7                  | 一            |
| 5-4-<br>1000                           |            | 15/12                          | 1/5                                         | . 9 g ' 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | loose                                                  | tan          | gravel and                                  |                                       | 6P           |                                       |                    | ~       |                   | +                  | ᅱ            |
|                                        | 17         | 22                             |                                             | 80,90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | to<br>Nant   | 0000                                        |                                       | GP           | moist                                 | <del> </del>       | O.      |                   | ᅥ                  |              |
|                                        |            |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | brown        |                                             |                                       | <del>"</del> | · · · · · · · · · · · · · · · · · · · | <del>.,</del>      | 9       |                   | +                  | $\dashv$     |
|                                        |            |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             | ·                                     |              |                                       |                    |         | - 1               | +                  | $\dashv$     |
|                                        | ۶6         |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              | <del></del>                           |                    |         | - 1               | +                  | -            |
| 5-5<br>015                             |            | 8                              | 1.3/                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | light        |                                             |                                       |              |                                       |                    |         | -1                | 4                  | _            |
| 015                                    |            | 9 11                           | 2                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10056                                                  | brown        | sand, well<br>med. sav                      |                                       | Sti          | v. moi                                | of t2              | 0       | _#                | 4                  | 4            |
|                                        | १२         | / 9                            |                                             | (\$ \$ \bar{g})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              | 14.4. (80                                   | <u> </u>                              | ςĦ           | wet                                   |                    | 0       | $\perp \parallel$ | 1                  | _            |
|                                        |            | $\langle \cdot \rangle$        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       |                    |         |                   | $oldsymbol{\perp}$ |              |
|                                        |            |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       |                    |         |                   |                    |              |
|                                        | <u>λ5</u>  |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |              |                                             |                                       |              |                                       |                    |         | Charles           | T                  |              |
|                                        |            |                                | r rock brol                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hasab -t                                               |              |                                             |                                       |              |                                       |                    |         |                   |                    |              |
| Rema                                   | arks:      | 414                            | JII O 1001                                  | D aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | crease<br>2' | reading frequency if el                     |                                       | ad.          | Bad                                   | Drillin<br>kground |         |                   | <u></u>            | $\neg$       |



|                                      |                           | T NAM<br>T NUM                 |                                             | NS                                                               | B New        | Lond         | on, CT Site 3            | No.:                |           |                          |          |                 |          |              |  |
|--------------------------------------|---------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------|--------------|--------------------------|---------------------|-----------|--------------------------|----------|-----------------|----------|--------------|--|
|                                      |                           |                                | PANY:                                       | New                                                              | Fnolan       | d Bori       | G00083<br>ng Contractors | DATE:               | ·<br>MOT: | 4/27/06-                 | - 5      | <u> </u>        | 10       | 6            |  |
|                                      |                           | RIG:                           |                                             |                                                                  | bile         | R 59         | Drill                    | _geolog<br>Driller: |           | Colin Do                 |          | n               |          | _            |  |
|                                      | T                         |                                | T                                           |                                                                  |              |              |                          | <del></del>         | · '       | S. Rams                  | رد!!     | <u> </u>        | <u></u>  |              |  |
| Sampi<br>No.<br>and<br>Type o<br>RQD | (Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Densil  | cy<br>Colo   | ERIAL DESCRIP            |                     | n & c & . | Remarks                  | PID/F    | O Res           | ding (   | Deliler BZ** |  |
| 5-6<br>1025                          | 25                        | 5/7                            | 35                                          | No Co                                                            | 1.000        | ligh         | med son                  | À                   | -         |                          |          |                 |          |              |  |
| 1023                                 | 27                        | 9                              | 2                                           |                                                                  | loose        | brov.        | med. san                 | led                 | SM        |                          | 0        |                 |          |              |  |
| <u> </u>                             | 10/                       | 13                             | <b> </b>                                    | بالمراجع وح                                                      |              |              |                          |                     | SM        |                          | Ó        |                 |          | ŀ            |  |
| <u> </u>                             |                           | /_                             |                                             |                                                                  |              |              |                          |                     |           |                          |          |                 |          |              |  |
|                                      |                           |                                |                                             |                                                                  |              |              |                          |                     | 1         |                          | $\vdash$ | H               | $\dashv$ | _            |  |
|                                      | 30                        |                                |                                             |                                                                  |              | 1            |                          |                     | ╁         |                          | ┝        | $\vdash$        |          |              |  |
| 5-7                                  |                           | 43                             | 3/2                                         | 30.5                                                             | 1            | 1            |                          | - 18                | <u> </u>  |                          | <u> </u> | $\sqcup$        | _        | _            |  |
| 1035                                 |                           | 7/                             | 77                                          | F16.5                                                            | 3200.1       | brow         | coarse can               | d sorted            | SM        | saturated                | 0        |                 |          |              |  |
|                                      | 32                        | /9                             |                                             | (                                                                | wer your     | y.           | fine sound               | to silt             | SM        |                          | 0        | П               |          |              |  |
|                                      |                           |                                |                                             |                                                                  |              |              |                          |                     |           | water table: 30.5        |          |                 |          | <del></del>  |  |
| :                                    |                           |                                |                                             |                                                                  |              |              |                          |                     |           | WW.CO (RIE - 201)        | -        | $\vdash \vdash$ | $\dashv$ |              |  |
|                                      | 35                        |                                |                                             |                                                                  |              |              |                          |                     | -         |                          |          |                 | $\dashv$ | ٠.           |  |
| 5-8                                  |                           | 60                             | 2/                                          | i i i i i i i i i i i i i i i i i i i                            | lance        | <del> </del> |                          |                     |           |                          |          |                 |          |              |  |
| 1100                                 | 27                        | 12                             | /2                                          |                                                                  | ned gence    | prose        | very fine                | sand                | SM        | saturated                | O        |                 |          |              |  |
|                                      | 37                        | 12                             |                                             |                                                                  |              | 1            |                          |                     | 142       | V                        | 0        |                 | $\Box$   |              |  |
|                                      |                           |                                |                                             | · [                                                              |              |              | •                        |                     |           |                          |          | ÷.              | 7        |              |  |
|                                      |                           |                                |                                             |                                                                  | • .          |              |                          |                     |           |                          |          | $\dashv$        | 十        | _            |  |
|                                      | 40                        |                                |                                             |                                                                  | 12           |              |                          | •                   |           |                          |          | -               | -        | _            |  |
| 5-9                                  |                           | 49                             | 2                                           |                                                                  | med          | prown        | -                        |                     | -         |                          |          | _               | -        |              |  |
|                                      | 42                        | 12 /                           | $\langle a \rangle$                         |                                                                  | dense        | -,           | fine to v.               |                     |           |                          | 0        | $\perp$         | ┙        |              |  |
|                                      | TA                        | 16                             |                                             |                                                                  |              | V            | WAR SIT                  |                     | 5M        |                          | 0        |                 |          |              |  |
|                                      |                           |                                |                                             |                                                                  |              |              |                          |                     |           |                          |          | 十               |          |              |  |
|                                      |                           |                                |                                             |                                                                  |              |              |                          |                     |           |                          | $\dashv$ | 十               | +        | $\neg$       |  |
|                                      | 45                        |                                |                                             | ſ                                                                |              |              |                          |                     | -         |                          | $\dashv$ | +               | +        | 긕            |  |
| 5-10<br>130                          |                           | 29                             | 2/3);                                       | · • •                                                            | ned<br>dense | 1            |                          |                     | -         |                          | $\dashv$ | _               | +        | 4            |  |
|                                      | 47                        | 2                              | $\stackrel{\leftarrow}{\rightarrow}$        |                                                                  | aense        | Utom         | some cilt                |                     | M2        |                          | 0        | L               | $\perp$  |              |  |
|                                      |                           | 17                             |                                             | 1                                                                |              | -            | 2005 2114                |                     | S-M       |                          | 0        |                 |          |              |  |
|                                      |                           | $\langle \; \rangle$           |                                             | . [                                                              |              |              | <u> </u>                 |                     | - 1       |                          |          | $\top$          | 十        | ٦            |  |
|                                      |                           |                                |                                             | 1                                                                |              |              |                          |                     |           |                          | 十        | 十               | +        | $\dashv$     |  |
| C                                    | 50                        |                                |                                             |                                                                  |              |              |                          |                     | $\dashv$  |                          | -        | -               | +        | -            |  |
| When r                               | ock cori                  | ng, enter                      | rock broke                                  | ness.                                                            |              |              |                          |                     |           | 1                        | $\bot$   | 丄               | 丄        | ┚            |  |
| Include<br>Rema                      | e monito                  | r reading                      | in 6 foot in                                | lervals @ I                                                      | borehole. Ir | icrease i    | eading frequency if elev | ated reponse rea    | ad.       | Drilling<br>Background ( |          |                 |          | 7            |  |
|                                      |                           | <del></del>                    |                                             |                                                                  |              |              |                          |                     |           | Dackground (             | <br>     | <i>I</i> -L     | 0        |              |  |
| onve                                 | rted to                   | o Well:                        | . Y                                         | es                                                               | X            | 1            | No                       | Wall D              | 4.        | 01.014.5                 |          |                 |          | _            |  |

|    | )                    |  |
|----|----------------------|--|
| It | Tetra Tech NUS, Inc. |  |

Page 3 of 3

|         |                |           | T NAM                   |                   | NS          | SB New I      | Londo                                            | on, CT Site      |                        | No.:     | 3MW                                              | /151                                           |                    |          |                |
|---------|----------------|-----------|-------------------------|-------------------|-------------|---------------|--------------------------------------------------|------------------|------------------------|----------|--------------------------------------------------|------------------------------------------------|--------------------|----------|----------------|
|         |                |           | G COM                   |                   | . No        | CIO           | 038, 0                                           | G00083           | DATE:                  |          | 4/27/0                                           | 6 -                                            | 5/2                | 210      | <del>_</del> _ |
|         |                |           | G BIG:                  | II WINT           |             |               | Bou                                              | ng Contracto     |                        |          | Colin D                                          | oola                                           | n.                 | -10      | <del>}=</del>  |
|         |                | 1         | 1                       |                   |             | Mobile        |                                                  |                  | DRILLER                | l:       | - S Rams                                         | de                                             | 11                 | ī,       |                |
| •       | Sampi          | e Depti   | Blows /                 |                   |             |               | MATE                                             | RIAL DESC        | RIPTION                | $\top$   |                                                  |                                                | FID Read           | ding (   | (mp)           |
|         | No.            | (FL)      | 6" or                   | Sample<br>Recover |             |               |                                                  |                  |                        | Jυ       |                                                  |                                                |                    |          | 7,000          |
|         | and<br>Type o  | or<br>Run | ROD                     | 1.                | (Depth/Ft   | ) Sŏil Densit |                                                  |                  |                        | s        | 1                                                |                                                |                    |          |                |
|         | ROD            |           | (%)                     | Sample<br>Length  |             | Consistenc    | Colo                                             | Matarial         | Classification         | C        | Remarks                                          | 8                                              | 12                 | 2        | ž              |
|         |                |           | 1                       | - 1               | Interval    | Rock          |                                                  | , indicinal      | Ciassincation          | S        |                                                  | Sam                                            | emple              | - E      | Driller BZ     |
|         | 1              | 50        | ľ                       |                   | 1           | Hardness      |                                                  |                  |                        |          |                                                  | S                                              | 1 8                | ĝ,       | 3              |
| .•      | 5-11           |           | -                       | <del> </del>      |             | San Time      |                                                  |                  | and the same           |          |                                                  |                                                |                    |          | 7              |
|         | 1159           |           | 89                      | 1.5               | 1:          | dence         | brown                                            | Fine s           | and                    | SM       |                                                  | 1                                              |                    |          | . +:X          |
|         |                | 52        | 12/3                    | r                 | 1 13 : 1    | :.            | +-                                               | well 5           |                        | _        | <del>                                     </del> | 0                                              | 11                 |          |                |
|         |                | 137       | 14                      | ļ                 | 1.4.3       | `             |                                                  |                  |                        | 154      |                                                  | 0                                              | 1 1                | .        | - 1            |
|         |                |           |                         | ]                 | .1          | 1             | 1 .                                              |                  |                        | 1        | . 1                                              | +                                              | 1-1                | $\dashv$ | $\dashv$       |
|         |                |           |                         |                   | 1           |               | +-                                               | <del> </del>     |                        | ╁        |                                                  |                                                | $\perp \perp$      |          | $\Box$         |
|         | -              | ┼──       |                         | <u> </u>          | -           |               | 1                                                |                  |                        |          |                                                  | 1                                              |                    | 1        | ı              |
|         |                | 55        |                         |                   | 1           |               |                                                  |                  |                        | T        |                                                  | 1                                              | <del>     </del>   | -        | $\dashv$       |
|         | 5-12           |           | 7/                      | 1.5               | 133.33      | med           | brown                                            | time to          | V 22 2 1               | -        |                                                  | ╀                                              | $\perp \downarrow$ |          | _]             |
|         | 18/0           |           | to                      | <u> </u>          | 1:::/       | med           | DIOWI                                            | w/Som            | v. fine sand           | Sh       |                                                  | 0                                              |                    |          | ŀ              |
| 1/27/06 |                | 57        | 10/11                   |                   | 1           | 1             |                                                  |                  |                        | SM       |                                                  | 10                                             | 1                  | -        | $\dashv$       |
| 5/2/06  | 1 -            |           |                         |                   |             |               | $\vdash$                                         | <u> </u>         |                        | 1311     |                                                  | 10                                             | $\perp \downarrow$ | $\bot$   |                |
| .,,-0   | <del>  -</del> |           |                         |                   | -           |               |                                                  |                  |                        |          |                                                  |                                                |                    |          |                |
| •       |                |           |                         |                   |             |               |                                                  |                  | •                      | T        |                                                  | 1                                              | 1 1                | +        | $\dashv$       |
|         |                | 8         |                         |                   | 1           |               | <del>                                     </del> | <del></del>      |                        | ┼        |                                                  | ╀                                              | $\perp \perp$      |          | _              |
| •       | 5-13           | 60        | $\langle \cdot \rangle$ | 1 =               |             |               |                                                  |                  |                        |          |                                                  | 1                                              | H                  |          |                |
|         | e              |           | 29                      | 1-5/2             | į           | DENSE         | BRN                                              | SILTY F          | SA                     | SM       |                                                  | 1                                              |                    | 十        | ᅱ.             |
|         | 1030           | 62        | 31                      |                   | 61-5        |               |                                                  |                  |                        | 1311     | WET                                              | 10                                             | $\vdash$           |          | _ 8            |
|         |                | ٥٢        | <b>237</b>              |                   |             | Υ             |                                                  | FINE IME         | -duaz a                | SW       | WET-SUB ANG                                      | 0                                              |                    |          | Ŧ.             |
|         |                | 3 .       |                         |                   |             | DENSE         | BRN                                              | SOME             | GRAVEL                 |          | GRAVEL 3/10                                      |                                                |                    |          | 1              |
|         |                | •         |                         |                   |             |               |                                                  | •                |                        | 1-       | MAX SIZE                                         | 1                                              | <del>   </del>     |          | 4              |
|         |                |           |                         |                   |             |               |                                                  |                  | · .                    | 1        |                                                  |                                                |                    |          |                |
|         | 5-14           |           |                         |                   |             |               |                                                  |                  |                        |          |                                                  |                                                |                    | 1        |                |
|         | 1125           | 4         | 24/00                   | .8/               |             | V<br>Dense    | P <sub>D</sub>                                   | 4                |                        | $\vdash$ |                                                  | ₩                                              |                    | _        | _              |
|         | "ယ             | <u> </u>  | <u> </u>                |                   |             | DENSE         | Pen                                              | SILTY FINE       | IMED SAND              | SW       | WET-COULD                                        | 0                                              |                    | 1        |                |
|         |                |           |                         |                   | BOTH        |               |                                                  |                  | k frags                |          | BE T.O.R.                                        |                                                |                    |          | 7              |
|         | .              |           |                         |                   | 66          |               |                                                  | <u>·</u> _       |                        |          | AUGER REFUSA                                     | 0                                              |                    |          | 4              |
|         |                |           |                         |                   | -6          |               |                                                  |                  |                        |          | @ 66'±                                           |                                                |                    |          | 1              |
|         |                |           | $\leq$                  |                   |             |               |                                                  |                  |                        | 1 1      |                                                  |                                                |                    |          | 7              |
|         |                | 1         |                         | l                 |             |               |                                                  |                  |                        |          |                                                  |                                                |                    | - -      | -[             |
|         |                |           |                         |                   |             |               |                                                  | ·                |                        |          |                                                  |                                                |                    |          |                |
|         |                |           |                         |                   | į           | ·             |                                                  | SCREEN           | 55.5-65.5              |          |                                                  | П                                              |                    | $\top$   | 7              |
|         |                |           |                         |                   | I           |               |                                                  |                  |                        |          |                                                  | $\vdash$                                       |                    |          | -              |
|         |                |           |                         |                   | ŀ           |               |                                                  | SAND             | 54-66                  |          | 4 BAG SAND                                       |                                                |                    |          |                |
| 1       |                |           |                         |                   |             |               |                                                  | CHIPS            | 52-54                  |          | 1/2 BAG CHIPS                                    |                                                |                    | T        | 7              |
| į       | •              |           |                         | .                 | F           |               |                                                  |                  |                        | 1        |                                                  | -                                              | -                  | —        | -              |
| İ       |                |           | $\rightarrow$           |                   |             |               |                                                  |                  |                        |          | G BAGS TOTAL                                     |                                                |                    | 1        |                |
| Ł       |                |           | $\leq \bot$             |                   |             |               | 1                                                |                  |                        |          |                                                  | T                                              |                    | T        | 7              |
| •       | When           | rock cor  | ing, enter              | rock brok         | eness.      |               |                                                  |                  |                        | <b></b>  |                                                  |                                                |                    |          | L              |
|         | includ         | e monito  | or reading              | in 6 foot i       | intervals @ | borehole. In  | crease r                                         | eading frequency | if elevated reponse re | ead:     | Drillin                                          | a Air                                          | ea                 |          |                |
|         | Rema           | ıks:_     | <u>Us</u>               | ED                | <u>BAE</u>  | 142 ec        | ac                                               |                  |                        |          | Background.                                      |                                                |                    | <u>~</u> | 7              |
|         |                | -         |                         | ED                |             | CEA           | VEV.                                             | Γ                |                        |          |                                                  | (Ppii                                          | "· L               | <u> </u> | ٠,             |
|         | Conve          | erted t   | o Well:                 | ,                 | Yes         | Х             |                                                  | No.              | 74/-11/12              | ш.       |                                                  |                                                |                    |          | <u>-</u>       |
|         |                | •         |                         |                   | _           |               | '                                                |                  | Well I.D               | ·#:_     | 3MW15                                            | <u>il                                     </u> |                    |          |                |

| Tetra Tech NUS, Inc. |
|----------------------|
|----------------------|

| PRO<br>PRO                             | JEC.        | T NAM<br>T NUM                 | E:<br>BFR                                   | NS                                                              | B New L   | ondo     | n, CT Site 3<br>00083                     | lo.:                  |       |                                       |                     |               |                    |        |  |  |
|----------------------------------------|-------------|--------------------------------|---------------------------------------------|-----------------------------------------------------------------|-----------|----------|-------------------------------------------|-----------------------|-------|---------------------------------------|---------------------|---------------|--------------------|--------|--|--|
|                                        |             |                                | PANY:                                       | New                                                             | England   | Borir    | g Contractors                             | _DATE:<br>_GEOLOGI:   | CT.   | 4/a                                   | 7/06                | <u></u>       |                    |        |  |  |
|                                        |             | RIG:                           |                                             |                                                                 | bile      | 859      | Orill                                     | _d20l0di.<br>DRILLER: | S1.   |                                       | Doolan              |               | <u> </u>           |        |  |  |
|                                        |             |                                | T                                           |                                                                 |           |          | RIAL DESCRIP                              |                       | 1     |                                       | nsde                |               | =                  |        |  |  |
| Sample<br>No.<br>and<br>Type or<br>RQD | (Ft.)<br>or | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft)<br>or<br>Screened<br>Interval | As        | Color    | Material Clas                             |                       | 3000. | Remarks                               | PID/FII             |               | Berehole**         |        |  |  |
|                                        | Ť           |                                |                                             |                                                                 | 新 香花 有成立。 | 10 V - + |                                           |                       |       |                                       |                     |               |                    |        |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     |               |                    |        |  |  |
| -                                      |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     |               |                    |        |  |  |
| -                                      |             | /_                             |                                             |                                                                 |           |          | See bo                                    | ring                  |       |                                       |                     |               |                    |        |  |  |
|                                        |             | /_                             |                                             |                                                                 |           |          | tog 3Mi                                   | ISIN                  | ŀ     |                                       |                     |               | П                  |        |  |  |
|                                        | S           | /_,                            |                                             |                                                                 |           |          | for litho                                 | logy                  |       |                                       |                     |               | П                  | -      |  |  |
|                                        |             | $\angle$                       |                                             |                                                                 |           |          | See be<br>log 3Mi<br>for litho<br>descrip | 1Jon                  |       |                                       |                     |               |                    |        |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     |               | H                  |        |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     |               | H                  |        |  |  |
|                                        |             |                                | -                                           |                                                                 |           |          | ,                                         |                       |       |                                       | 1-                  | H             | H                  |        |  |  |
|                                        | 10          |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     | $\vdash$      | H                  |        |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       | $\dashv$            | 1             | H                  | _      |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     | Ž.            | H                  | _      |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       | +                   | Tarest Contr. | Н                  | -      |  |  |
|                                        |             |                                |                                             | :                                                               |           |          |                                           |                       |       | <del></del>                           | _ _                 |               | H                  | -      |  |  |
|                                        | 15          |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     |               | H                  |        |  |  |
|                                        | 7           |                                |                                             | -                                                               |           |          |                                           |                       | -     |                                       | _                   |               | Н                  | _      |  |  |
|                                        |             |                                |                                             | }                                                               |           |          | -                                         |                       |       | · · · · · · · · · · · · · · · · · · · |                     |               | 4                  |        |  |  |
|                                        |             | $\leftarrow$                   |                                             | 1                                                               |           |          |                                           |                       | _     |                                       |                     |               |                    |        |  |  |
| $\vdash$                               |             |                                |                                             |                                                                 |           |          | <del></del>                               | ·                     |       | · · · · · · · · · · · · · · · · · · · |                     |               | $oldsymbol{\perp}$ |        |  |  |
|                                        |             |                                |                                             | }                                                               |           |          | -                                         |                       |       |                                       |                     |               |                    |        |  |  |
|                                        | 30          |                                |                                             | - [                                                             |           |          |                                           |                       |       |                                       |                     |               |                    | $\neg$ |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       | -                                     |                     | -             | T                  | $\neg$ |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     | <del>-</del>  | 7                  | 丁      |  |  |
|                                        |             | /                              |                                             |                                                                 |           |          |                                           |                       |       |                                       |                     |               | 1                  |        |  |  |
|                                        |             |                                |                                             |                                                                 |           |          |                                           |                       | 寸     | · · · · · · · · · · · · · · · · · · · |                     | 1             | +                  | 1      |  |  |
|                                        | 25          |                                |                                             |                                                                 |           |          |                                           |                       | 十     |                                       | <del>       </del>  | 十             | 十                  | 4      |  |  |
| * When                                 | ock co      | ring, enter                    | rock brok                                   | eness.                                                          | <u>-</u>  |          |                                           | L                     |       |                                       |                     |               |                    | لب     |  |  |
| нета                                   | rks: _<br>- | 4 1                            | <u>+ -</u>                                  | IV a                                                            | ugers     |          | reading frequency if ele                  | vated reponse rea     | ad.   | Dri<br>Backgrour                      | lling An<br>nd (ppn |               | 0                  |        |  |  |
| CONVE                                  | erted       | to Wel                         | I: `                                        | Yes                                                             | X         |          | Vo                                        | Wall D                | 44.   | 28.814                                | 250                 |               |                    |        |  |  |

| PRO                                    | JECT                      | NAM                            | E:<br>RED:                                  | NS                                                               | B New L      | ondo         | n, CT Site 3             | o.:                |           |              |                        |            |           |              |  |  |
|----------------------------------------|---------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------|--------------|--------------------------|--------------------|-----------|--------------|------------------------|------------|-----------|--------------|--|--|
|                                        |                           |                                | PANY:                                       | Now                                                              | England      | Dorie        | 00083                    | DATE:              | · ·       | 4/a          | 7/06                   |            |           |              |  |  |
|                                        |                           | RIG:                           | LVIAL"                                      |                                                                  | England      |              | g Contractors            | GEOLOGIS           | ST:       |              | n Doolan               |            |           |              |  |  |
|                                        | -1.1140                   | mu.                            | <del></del>                                 | 1 \ 0,                                                           | bile         | 855          |                          | DRILLER:           |           | s. R         | amsde                  | ell        |           |              |  |  |
| Sample<br>No.<br>and<br>Type or<br>RQD | (Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval |              | ATE<br>Color | RIAL DESCRIP             |                    | U % C % • | Remarks      | PID/FI                 | D Read     |           | Driller 82** |  |  |
| <u> </u>                               | 92                        |                                |                                             |                                                                  |              |              |                          |                    |           |              | 6.76<br>67.76<br>87.77 | S          |           | O.           |  |  |
| <b> </b>                               |                           |                                |                                             |                                                                  |              | -            | e a a h                  |                    |           |              |                        | $\sqcup$   |           |              |  |  |
|                                        |                           | $\overline{Z}$                 |                                             |                                                                  |              |              | see bo                   | ring               |           |              |                        | H          | $\dashv$  | -            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              | 3MW1                     |                    |           |              |                        | H          | $\dashv$  | -            |  |  |
|                                        | 30                        |                                |                                             |                                                                  |              |              | for Li<br>descr          | thology            |           |              |                        | 口          |           |              |  |  |
|                                        |                           |                                |                                             | H                                                                |              |              | descu                    | ription            | -         |              |                        | Ц          | $\rfloor$ |              |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              |                          |                    |           |              |                        | $\square$  | 4         | _            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              |                          |                    | 1         |              |                        | H          | +         | _            |  |  |
|                                        | 35                        |                                |                                             |                                                                  |              |              |                          |                    |           |              |                        | H          | $\dagger$ | 1            |  |  |
| -                                      |                           |                                |                                             |                                                                  |              |              |                          |                    |           |              |                        |            | 1         | 1            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              |                          |                    |           |              |                        | Ц          |           | $\rfloor$    |  |  |
|                                        | 39                        |                                |                                             | 9                                                                |              |              | 4.4.1                    | - 14               | $\dashv$  |              |                        | H          | 1         | _            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              | total d                  | epin .             | 1         |              |                        | H          | +         | -            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              |                          |                    | $\dashv$  |              |                        |            | $\dagger$ | $\dashv$     |  |  |
|                                        |                           |                                |                                             |                                                                  |              | · .          | sand: 26                 |                    |           |              |                        |            | †         | 7            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              | Screen: 28               | <u>- 38′</u>       | $\bot$    | -            |                        |            | I         |              |  |  |
|                                        | $\dashv$                  |                                |                                             | ŀ                                                                |              |              |                          |                    | $\dashv$  |              |                        |            | +         | 4            |  |  |
|                                        |                           |                                |                                             | ŀ                                                                | · ·          |              |                          |                    | $\dashv$  |              |                        |            | +         | 4            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              |                          |                    | $\top$    |              |                        |            | +         | 1            |  |  |
|                                        |                           |                                |                                             |                                                                  |              |              |                          |                    | 丁         |              |                        |            | +         | 1            |  |  |
| $\dashv$                               | }                         |                                |                                             | }                                                                |              |              |                          |                    | $\bot$    |              |                        |            | I         |              |  |  |
| When                                   | rock cor                  | ing, enter                     | rock brok                                   | eness                                                            |              |              |                          |                    |           |              |                        |            |           |              |  |  |
| * Includ<br>Rema                       | e monit                   | or reading                     | in 6 foot i                                 | intervals @                                                      | borehole. In | crease       | reading frequency if ele | evaled reponse rea | ad.       | D<br>Backgro | rilling Ar<br>und:(ppn | ea<br>n):[ | 0         | _<br>]       |  |  |
| Conve                                  | erted                     | o Well                         | : \                                         | Yes                                                              | X            | <del>-</del> | No                       | Well I.D.          | #:_       | 3M'          | W15S                   |            |           | <u>-</u>     |  |  |

|   | 飞 | Tetra Tech NUS, Inc. |
|---|---|----------------------|
| • |   |                      |

|         | PRO                           | OJEC       | T NAM                   | ۱ <b>۲</b> -    | NIC                  | D NI.          |             |                                           | <del></del>           |        |                                     | .go           | <u> </u> | _ UI .   |            |
|---------|-------------------------------|------------|-------------------------|-----------------|----------------------|----------------|-------------|-------------------------------------------|-----------------------|--------|-------------------------------------|---------------|----------|----------|------------|
|         | PRO                           | DJEC       | T NUM                   | IRER:           | 145                  | DB MeM         | Long        | lon, CT Site 3                            | BORING                | No.:   | 3MW                                 | 160           |          |          |            |
|         | DRI                           | LLIN       | G COM                   | PANY:           | Nev                  | w Englan       | 038,        | G00083                                    | DATE:                 |        | 4/19/06-                            | 4.            |          | 6/       | <u> </u>   |
|         | DRI                           | LLIN       | G RIG:                  |                 |                      | Mobile         |             | ring Contractors                          | _GEOLOG               |        | Colin D                             | oola          | n ~      | 6/       | 0          |
| ,       |                               | 7          | 1                       | <del></del>     | <del></del>          |                |             | 59 Drill                                  | _DRILLER:             |        | S. Ramsd                            | ell           |          | -        |            |
|         | Sampl                         |            | 1                       | Sample          | Litholog             | , <del> </del> | MAI         | ERIAL DESCRIP                             | TION                  | T      |                                     | PID/F         | ID Re    | ading (  | <br>(nor   |
|         | No.<br>and                    | (FL)       | 6" or<br>RQD            | Recovery        | Change<br>(Depth/Ft  |                |             |                                           |                       | U      |                                     | 70            | 1        |          | Ë          |
|         | Type o                        | Run<br>No. | (%)                     | Sample          | Of                   | Consistenc     | су          |                                           |                       | S      |                                     |               | Z        | 1:       |            |
|         |                               | '          | }                       | Length          | Screened<br>Interval | Rock           | Cold        | Material Clas                             | sification            | s      | Remarks                             | Sample        | Sampler  | Boréhole | Driller 82 |
|         |                               | 0          |                         |                 |                      | Hardness       | :<br>1453   | 4.2.3.50                                  |                       |        |                                     | Say           | İŝ       | ore      | 1          |
| ••      | Sal                           |            | 4                       |                 | 1 · 1                |                | 617.0       |                                           |                       |        |                                     | ///<br>       | S        |          | •          |
|         | 1410                          |            | / 6                     | 12              | 1.10                 | loose          | 6001        | La TEMPTER IM                             | 11                    | CM     | 2 P. P.                             | 大             | 1,362    |          | -          |
|         |                               | 2          | 4/3                     |                 | 11.                  |                | 1           |                                           | layey Siti            |        | 2 ft. fill                          | 10            |          |          |            |
|         |                               |            |                         |                 | <b>*</b> }           |                | +           | Some sand                                 | 1 a few               | SM     | naterial                            | 0             |          |          | ŀ          |
|         | -                             | <u> </u>   |                         |                 | 41:                  |                |             | Cobbles<br>(Fill r                        | naterial)             |        |                                     |               | $\Box$   |          |            |
| ٠.      |                               |            |                         |                 |                      |                | 1           |                                           |                       |        |                                     | ╁             | -        |          |            |
|         |                               | 5          |                         |                 |                      |                |             |                                           |                       | _      | Lella I                             | <u> </u>      |          |          |            |
|         | 5-2<br>1430                   |            | 3430                    | 1/              | 200                  | dense          | ENLA        | <del> </del>                              |                       |        | driller noticed grinding augers     |               |          |          |            |
|         | 100                           | 7          | W                       | 12              | 10 to                | dense          | light       |                                           | L feldspar<br>Debites |        | at 4.                               | 0             | П        |          |            |
|         |                               |            | 248                     |                 |                      |                | to          | and cobbl                                 | ves w/san)            |        | weathered granite                   |               | H        | $\dashv$ |            |
|         |                               |            |                         | 2               | 3680                 |                | T           |                                           |                       |        | ·                                   |               |          | _        |            |
|         |                               |            |                         |                 |                      |                | -           | Cefical                                   | - 0 c/                | _      | used solid augers<br>to 10 to avoid |               |          |          |            |
| 119/06  |                               |            |                         |                 | 1881                 |                |             | refusal a                                 |                       | .      | danmaging august                    |               |          | $\neg$   | -          |
|         | ╂──╁                          | 10         | $\langle \cdot \rangle$ |                 | 111                  | •              |             | Competent                                 | bedruck               |        | J. y Auges                          |               | -        | +        | $\dashv$   |
| 1/21/06 |                               |            |                         | - 1             | 1 × 1                |                |             |                                           |                       |        |                                     |               | 4        | _        | _          |
|         |                               | T          |                         |                 | ]                    |                |             | Coarse Q                                  | rained                |        | casing                              |               | _1       |          |            |
|         |                               | -+         |                         |                 | 9 1 1                |                |             | gramitic.                                 | aneiss                |        | to 14'                              |               |          | $\top$   |            |
|         | F                             |            | $\leftarrow \downarrow$ |                 |                      |                |             |                                           | <i>u</i>              |        |                                     | 十             | 十        | +        | ٦          |
| F/21/06 |                               |            |                         | .   1           | *                    |                |             | 1000                                      |                       | +      |                                     | $\dashv$      | $\dashv$ |          | 4          |
| -/24/06 |                               | 5          |                         |                 | $\mathcal{O}_{X}$    |                |             |                                           |                       | -      |                                     | $\bot$        |          | 1        |            |
|         | Core                          |            |                         |                 | × t                  |                |             |                                           |                       |        |                                     |               |          |          | ٦          |
|         | 1300                          | -+         |                         |                 | ´                    |                | Pink        | Coarse gra                                | Louis                 |        |                                     | 丁             | 7        | 十        | 7          |
|         |                               | _          | $\leq 1$                | x               | . X                  |                | to<br>grey  | gramitie gr                               | 0.00                  | 1      | (76)                                | $\dashv$      | -        |          | $\dashv$   |
|         |                               |            |                         |                 |                      |                | and         | some bands                                |                       | -      | Solrd                               |               | 4        |          | _          |
|         |                               |            |                         |                 | <b>X</b>             | <del> </del>   | plack       |                                           |                       |        | few fractures                       |               |          |          |            |
|         |                               | -          | -                       | :               | X  -                 |                | 1           | five grains                               | ۸ .                   | -   '  | , ,                                 | $\top$        | 十        | 1        | 1          |
|         |                               | 0          |                         |                 | X                    | _              |             | a few mm                                  | or fractures          | 1      |                                     | 十             | +        | ╬        | -          |
|         | Cone                          |            |                         |                 | хΓ                   |                | $\top \top$ |                                           |                       | +      |                                     | 4             | _        | 4        | 4          |
|         | 1345                          |            |                         | X               | <b>-</b>             |                | ╂           | Course gra                                | ined                  | $\bot$ |                                     | - 1           |          |          | ı          |
|         |                               | +          | -                       | '`              | ×                    |                | 44          | granitiz g                                | neiss                 | 1      | $\sqrt{}$                           | $\top$        | T        | T        | 1          |
| ŀ       |                               | _/_        |                         |                 | ۶L                   |                | ]; [        |                                           |                       | 1      |                                     | +             | +        | +        | +          |
|         |                               |            |                         | .   '           |                      |                | <b>V</b>    | some band                                 | is of                 | - -    |                                     | 4             | $\bot$   |          | 1          |
| ſ       | à                             | د آ        | $\nearrow$              | $\neg \mid_{x}$ | ×                    |                |             | five grain                                | edo                   | 1      |                                     |               |          |          | ŀ          |
| Į.      |                               |            | n enter-                | ck brokene      | ı                    |                | $\bot$      |                                           |                       |        |                                     | T             | T        | T        | 1          |
|         | <ul> <li>Include r</li> </ul> | nonitor    | readino in              | 6 foot into     | ess.<br>nvote A ⊢    | orabele" :     |             |                                           | <u> </u>              |        |                                     | <u></u>       |          | Т.       | J          |
| . 1     | Remark                        | s: 4       | -4"                     | ID a            | ivais & bi           | orehole. Inci  | rease re    | eading frequency if eleval<br>いけ くoca h く | led reponse read.     |        | Drilling                            | Area          | а        |          |            |
|         |                               |            | contru                  | y bel           | ow (                 | 2.51           |             | olit Spooks                               |                       |        | Background (p                       |               |          | δ        | 1          |
|         | Convert                       | ed to      | Well                    | Ye              |                      | ~              |             |                                           |                       |        |                                     |               |          |          | -          |
|         |                               |            |                         | 163             |                      | X              | N           | 0                                         | Well ID #             | -      | 00.000/                             | <del></del> , |          |          | _          |

Page 2 of 3

|      | PRC                         | JECT                               | F NAMI<br>F NUM<br>G COM       | BER:                                        | CTO 038, G00083 DATE: 4/19/06                                   |                                                       |             |                          |                    |              |                         |               | N16D<br>- 4/28/06 |           |              |  |  |
|------|-----------------------------|------------------------------------|--------------------------------|---------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|-------------|--------------------------|--------------------|--------------|-------------------------|---------------|-------------------|-----------|--------------|--|--|
|      |                             |                                    | RIG:                           | PAINY:                                      | a_a_a_a_a_a_a_a_a_a_a_a_a_a_a_a_a                               |                                                       |             |                          |                    |              | Colin Doolan            |               |                   |           |              |  |  |
|      | <u> </u>                    | T                                  | i iid.                         |                                             |                                                                 | obile                                                 |             | Drill                    | _DRILLER:          |              | S Romsdell              |               |                   |           |              |  |  |
|      | No.<br>and<br>Type o<br>ROD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>ROD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/FL)<br>or<br>Screened<br>Interval | Soil Density<br>Consistency<br>or<br>Rock<br>Hardness |             | RIAL DESCRIP             |                    | U S C S .    | Remarks                 | Sample Sample |                   |           | Driller BZ** |  |  |
| ٠.,  | Core                        |                                    |                                |                                             |                                                                 |                                                       | PINE        | granitic qu              | eiss               |              | C . V .                 |               |                   |           | Ë            |  |  |
|      | 1430                        |                                    |                                |                                             |                                                                 |                                                       | grey<br>and | coarce to bunded         | Aire grained       |              | few fractures           |               |                   |           | -            |  |  |
|      | <u> </u>                    |                                    |                                |                                             |                                                                 |                                                       | black       |                          |                    |              |                         |               |                   |           | Γ            |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       |             |                          |                    |              |                         |               |                   |           |              |  |  |
|      |                             | 30                                 |                                |                                             |                                                                 |                                                       |             |                          |                    |              |                         |               | П                 |           | Г            |  |  |
|      | Core<br>4                   |                                    | /                              |                                             |                                                                 |                                                       | Pink        | (oarse grain             | ined               |              |                         |               |                   |           | _            |  |  |
|      | 1525                        |                                    |                                | -                                           |                                                                 |                                                       |             | Pilate grantition        | c gneiss           |              | few fractures           |               |                   |           | Γ            |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       | grey        |                          | l grey             |              |                         |               |                   |           |              |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       | and         | and bla                  | (K                 |              | From bore hole,         | 1 1           |                   |           | Γ            |  |  |
| 4/06 |                             | 35                                 |                                |                                             |                                                                 |                                                       | المراح      | granitic e               | gners              |              | recovered 1 A           |               |                   |           |              |  |  |
| 5/06 | 0936                        |                                    |                                |                                             |                                                                 | · .                                                   | grey        | light and                |                    |              | Static unter            |               |                   |           |              |  |  |
|      | 0776                        |                                    |                                |                                             |                                                                 |                                                       | black       | banded gro               | unific             |              | level at ~15°           |               |                   |           |              |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       |             | gneiss                   |                    |              |                         |               |                   |           | _            |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       |             |                          |                    |              | two minor               |               |                   |           |              |  |  |
|      | Corre                       | 40                                 |                                |                                             |                                                                 |                                                       |             |                          |                    |              | fractures               |               |                   |           | -            |  |  |
|      | 6                           |                                    |                                |                                             |                                                                 |                                                       | black       | light and                | dart               |              |                         |               | $\exists$         | コ         |              |  |  |
|      | 010                         |                                    |                                |                                             |                                                                 |                                                       | grey<br>and | light and banded c       | frantic            |              | multiple                |               |                   | 一         |              |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       | white       | gneiss                   |                    |              | fractures               |               | $\exists$         |           |              |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       |             |                          |                    |              |                         |               | 1                 | $\exists$ | -            |  |  |
|      |                             | 45                                 |                                |                                             |                                                                 |                                                       |             |                          |                    |              |                         | $\neg$        | 7                 | $\exists$ | <u> </u>     |  |  |
|      | core                        |                                    |                                |                                             |                                                                 |                                                       |             |                          |                    |              |                         | $\neg$        | 丁                 | $\neg$    | _            |  |  |
|      | 1100                        |                                    |                                |                                             |                                                                 |                                                       | A soit      | coarse to                | fine               |              | no flavoures            | 一             | 7                 | 7         |              |  |  |
|      |                             |                                    |                                |                                             |                                                                 |                                                       | to          | grained go               | office             |              | J 7 7 7 7               | $\neg$        | 7                 | 十         |              |  |  |
|      |                             |                                    |                                |                                             | · [                                                             |                                                       | grey        | gnetis                   |                    |              |                         | 寸             | 十                 | $\top$    | _            |  |  |
|      |                             | 50                                 |                                |                                             |                                                                 |                                                       |             |                          |                    | $\neg$       |                         | 一             | 十                 | 十         |              |  |  |
|      | When<br>Includ              | le monit                           | ing, enter<br>or reading       | rock brok<br>in 6 foot i                    | eness.<br>ntervals @                                            | borehole. In                                          | crease      | reading frequency if ele | evated reponse rea | L<br>nd.<br> | Drillin<br>Background ( |               |                   | 0         |              |  |  |
|      | Çonve                       | erted                              | to Well                        | : `                                         | es_                                                             | X                                                     |             | No                       | Well I.D.          | #:           | 3MW16                   |               |                   |           | _            |  |  |

Page <u>3</u> of <u>3</u>

| •        |               |               | T NAM                      |                          | NS                   | B New L                                 | ondo          | on, CT Site 3            | BORING N         | Vo. | 3MWi                                        | ED.         |              |             |  |  |
|----------|---------------|---------------|----------------------------|--------------------------|----------------------|-----------------------------------------|---------------|--------------------------|------------------|-----|---------------------------------------------|-------------|--------------|-------------|--|--|
|          |               |               | T NUM                      |                          |                      | CTO                                     | 038, 0        | G00083                   | DATE:            |     | 3MW16D<br>4/19/06 - 4/26/00<br>Colin Doolan |             |              |             |  |  |
|          |               |               | G COM                      | PANY:                    | New                  | England                                 | l Borir       | ng Contractors           | _GEOLOGI         | ST: |                                             |             |              |             |  |  |
|          | DHI           | LLING         | RIG:                       |                          |                      | Mobil                                   | <u>e B</u>    | 59 Drill                 | DRILLER:         |     | S. Ramso                                    |             |              | <del></del> |  |  |
|          |               |               |                            |                          | }                    | 1                                       | MATE          | RIAL DESCRIP             | TION             | Τ   | 1                                           |             |              |             |  |  |
|          | Sample<br>No. | Depth<br>(FL) | Blows /<br>6" or           | Sample<br>Recovery       | Lithology<br>Change  |                                         |               |                          |                  | U   |                                             | TIO/FID     | Readin       | g (pp       |  |  |
| •        | and<br>Type o | or<br>Run     | ROD                        |                          | (DeptivFt.)          |                                         |               |                          |                  | s   | \$                                          |             |              |             |  |  |
|          | RQD           | No.           | (%)                        | Sample<br>Length         | or<br>Screened       | Consistence<br>or                       | Color         | Material Clas            | sification       | C   | Remarks                                     | :           | 9            | Dalle 87**  |  |  |
|          |               |               |                            |                          | Interval             | Rock<br>Hardness                        |               |                          | Sincaport .      | S   |                                             | Sampl       | Sample       |             |  |  |
|          |               | 50            |                            | }                        |                      | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               |                          |                  |     |                                             |             | S a          | 1           |  |  |
|          | Core          |               |                            |                          |                      | -14                                     | Pink          |                          |                  | -   |                                             |             | J. 1         |             |  |  |
|          | 1346          |               |                            |                          |                      |                                         | ļi            |                          | coarse           |     | some                                        |             | ł            |             |  |  |
|          | 1,40          |               |                            |                          |                      |                                         | invote        | and fine 1               | rained           |     | fractures                                   |             |              | 1           |  |  |
|          |               |               |                            |                          |                      |                                         | grey          |                          |                  |     |                                             | ╁┼          | -            | +           |  |  |
|          |               |               |                            | -                        |                      |                                         | -             |                          |                  |     |                                             | $\sqcup$    |              | Ŀ           |  |  |
|          |               |               |                            |                          |                      |                                         |               |                          |                  |     |                                             |             |              |             |  |  |
| 4/25/06  |               | 55            |                            |                          |                      |                                         |               |                          | •                |     |                                             |             | +            | +           |  |  |
| Hac/06   | core<br>9     |               |                            |                          |                      |                                         | black         |                          |                  |     |                                             | ╌           |              | +           |  |  |
|          | ०४५०          |               |                            |                          | ı                    |                                         | gicy<br>white | Coarse gr<br>granitic o  | ained            |     |                                             |             |              |             |  |  |
|          |               |               |                            |                          |                      | <u> </u>                                | white         |                          |                  |     | fractured                                   |             |              |             |  |  |
|          |               |               |                            |                          |                      |                                         | يرسو<br>منعلا | dark five g              | rained           |     |                                             |             | $\top$       | +           |  |  |
|          |               |               |                            |                          | . [                  |                                         |               | banding                  |                  |     |                                             | ┝╌┼╴        |              | +-          |  |  |
|          |               | 60            |                            |                          | p                    |                                         |               | <u> </u>                 |                  |     |                                             |             |              | L           |  |  |
|          | Core          | 80            | $\leq$                     |                          |                      |                                         | -             |                          |                  |     |                                             |             | ı            |             |  |  |
|          | 10            |               |                            |                          |                      |                                         | giey<br>and   | COALCO OF                |                  |     |                                             |             | 1            | 1           |  |  |
|          | 0945          |               |                            |                          |                      |                                         | black         | granific                 | ansisi           |     | ^ ^                                         | -           | -            | ╀           |  |  |
|          |               |               |                            |                          | BF                   |                                         | some          |                          |                  |     | few fractures                               |             |              | _           |  |  |
|          |               |               |                            |                          |                      |                                         |               | Trace fiv                | a drained        | 1   |                                             |             | ı            | 1           |  |  |
|          |               | _             |                            |                          | la L                 |                                         |               |                          |                  | T   |                                             |             | $\top$       | 1           |  |  |
|          |               | 65            |                            | - 1                      | ИГ                   |                                         |               |                          |                  | -   |                                             |             |              | ╀-          |  |  |
| F        | Core          |               |                            |                          | · Ø F                |                                         | PINK          |                          |                  |     |                                             |             |              |             |  |  |
| ŀ        | 1040          |               | $\longrightarrow$          |                          | N F                  |                                         |               | (cause to                | Rive             |     |                                             |             |              |             |  |  |
|          |               | _             |                            |                          | ML                   |                                         | grey          | grained gro              | withing          |     | some Fracturer                              |             | 7            | Г           |  |  |
| 1        | 1             |               |                            | - 1                      | ИІ                   |                                         | black         | gneiss                   |                  | _   | TACIVIE                                     |             | +-           | $\vdash$    |  |  |
| F        |               | 69            |                            |                          | NF                   |                                         | $\neg +$      |                          |                  | -   |                                             |             | <del> </del> | <u> </u>    |  |  |
| ŀ        |               | <del>~</del>  |                            |                          | 4                    |                                         |               | total dept               | h: 69            |     |                                             | 1           |              |             |  |  |
| <u> </u> |               | _             |                            |                          | L                    |                                         | 1             | •                        | 1                |     |                                             |             |              |             |  |  |
|          |               |               |                            |                          | [                    |                                         | T             | sand: 57                 | 1'-10'           | _   |                                             |             | +            | ├           |  |  |
| [        |               |               |                            |                          |                      |                                         |               |                          |                  |     |                                             | _ _         |              | Ш           |  |  |
|          |               | -1            |                            |                          | <u> </u>             |                                         |               | Screen: 59               | - 69             |     |                                             |             |              |             |  |  |
|          |               | _             |                            |                          | L                    |                                         |               |                          |                  |     |                                             |             |              |             |  |  |
|          |               |               |                            | - 1                      |                      |                                         |               |                          |                  | -   | <del></del>                                 | $\dashv$    | -            |             |  |  |
|          |               | T             |                            | $\neg$                   | - F                  |                                         |               |                          | -                | 4   |                                             |             | 1            |             |  |  |
| L        | When          | ×             | ng, enter n                |                          |                      |                                         |               | ·                        |                  |     |                                             | 1           |              |             |  |  |
| ••       | Include       | monito:       | ry, enter n<br>r readino i | ock broke<br>n 6 foot in | ness.<br>tervals @ 5 | roreholo I                              | <b>****</b>   | eading frequency if elev |                  |     |                                             |             |              |             |  |  |
| . F      | lemar         | ks:           |                            |                          |                      | CONTRACT HIS                            | acase re      | auing frequency if elev  | ated reponse rea | d.  | Drilling                                    |             |              |             |  |  |
|          |               |               |                            |                          |                      |                                         | <del></del>   |                          |                  |     | Background (                                | opm):       | :[_0         | <u>」</u>    |  |  |
| ^        | nnvo:         | tod +-        | Well:                      | <del>- ,,</del>          |                      |                                         |               |                          |                  |     |                                             |             |              | <del></del> |  |  |
| ·        | V1146         | icu ((        | y vveit:                   | γ                        | es                   | Χ                                       | N             | lo                       | WellID           | #·  | 20404465                                    | <del></del> |              |             |  |  |

|         |                                      |                                                  | T NAM                          |                                             | _              | NS                                                        | B New                 | B New London, CT Site 3 BORING                 |                          |              |           | 3MW16S                                  |          |                 |                                  |  |  |
|---------|--------------------------------------|--------------------------------------------------|--------------------------------|---------------------------------------------|----------------|-----------------------------------------------------------|-----------------------|------------------------------------------------|--------------------------|--------------|-----------|-----------------------------------------|----------|-----------------|----------------------------------|--|--|
|         |                                      | PROJECT NUM<br>DRILLING COM                      |                                |                                             |                | NIO                                                       | CTO                   | CTO 038, G00083 [Fingland Boring Contractors ( |                          |              | •         | 4/21/06 - 4/26/0                        |          |                 |                                  |  |  |
|         |                                      |                                                  | G RIG:                         | FAINT.                                      | _              | Nev                                                       | v Engla               | ua Rou                                         | ng Contractors           | GEOLOG       |           | Colin Do                                | olar     | 1               | <u> </u>                         |  |  |
|         | <u> </u>                             | T                                                | 7 mg.                          | ,                                           | =              | 17                                                        | <u>obile</u>          |                                                |                          | DRILLER:     |           | S. Ramsdell                             |          |                 |                                  |  |  |
|         | Sampl<br>No.<br>and<br>Type o<br>RQD | (Ft.)<br>or<br>Run                               | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | (D<br>S        | ithology<br>Change<br>epth/Ft<br>or<br>creened<br>nterval | Soil Den:<br>Consiste | sity/<br>ncy<br>Coló                           | RIAL DESCRIF             | :            | U S C S · | Remarks                                 | PID/FI   |                 | Borehole** 55<br>Dfiller, 82** 3 |  |  |
|         |                                      | 1                                                |                                |                                             | 1,1            | -1:                                                       | 11                    | SW Dirk                                        |                          |              |           |                                         | (A)      |                 | 3 42                             |  |  |
|         | -                                    | ├                                                | <del>/ -</del>                 |                                             | 1.1            | $\cdot \mid \cdot$                                        | 1005                  | 6 prom                                         | organic clay             | ey Silt.     | SM        | 2 F4 P.11                               |          |                 |                                  |  |  |
|         | <u> </u>                             | <del> </del>                                     |                                |                                             | $ \cdot $      |                                                           |                       |                                                | Fill ma                  | terial       | SM        | material                                |          | П               |                                  |  |  |
|         |                                      |                                                  |                                |                                             |                | :: :                                                      |                       |                                                | A Const                  | rolbles      |           |                                         | +        | $\vdash \vdash$ | $\dashv$                         |  |  |
|         | 1                                    |                                                  |                                |                                             |                | ·/·                                                       |                       |                                                | Jew-                     | COLDIAN      | $\vdash$  |                                         | +        | $\vdash$        | $\dashv$                         |  |  |
|         |                                      | 5                                                |                                |                                             | 5              | 2,0                                                       |                       | +-                                             | <del> </del>             |              | -         |                                         | $\perp$  | 1               |                                  |  |  |
| •       | -                                    | <del>                                     </del> |                                |                                             | 0              | 38                                                        | <del> </del>          | li chi                                         |                          |              |           |                                         |          |                 |                                  |  |  |
|         |                                      | -                                                |                                |                                             | 3              |                                                           | dense                 | light<br>grey<br>to                            | guartz and               | pebbles      |           | weathered                               |          |                 |                                  |  |  |
|         | <u></u>                              |                                                  |                                |                                             | H              | Sp                                                        |                       | tan                                            | and cobbles              | w/ sand      |           | granite                                 | $\Box$   |                 | $\top \top$                      |  |  |
|         | L                                    |                                                  |                                |                                             | ਹ              | 86                                                        |                       |                                                |                          | :            |           |                                         | $\vdash$ |                 | +                                |  |  |
|         | 1                                    |                                                  |                                |                                             | 8              | 540                                                       |                       |                                                | refusal at               | 8.5          |           |                                         | $\vdash$ | _               | +                                |  |  |
|         |                                      |                                                  |                                |                                             | $ \mathbf{k} $ | $\downarrow$                                              |                       |                                                | competent                | bedrock.     |           |                                         | $\sqcup$ |                 | $\bot \bot$                      |  |  |
|         | <b> </b>                             | 10                                               |                                |                                             |                | 1                                                         |                       |                                                |                          | ·            |           | ·                                       |          |                 |                                  |  |  |
|         | <u> </u>                             |                                                  |                                | ·                                           |                | X                                                         |                       |                                                |                          |              |           | casina to                               |          |                 | T                                |  |  |
|         |                                      |                                                  |                                |                                             |                | ×                                                         |                       |                                                |                          |              |           | casing to                               |          |                 | 11                               |  |  |
| 4/21/06 | Ŀ                                    |                                                  |                                |                                             |                | ſ                                                         |                       |                                                |                          |              |           |                                         |          | -               | +                                |  |  |
| 4/26/06 |                                      | 14                                               |                                |                                             | χŧ             | <u>ر</u>                                                  |                       |                                                |                          |              | $\vdash$  |                                         | $\vdash$ | +               | 4-1                              |  |  |
|         | Core                                 | `                                                |                                |                                             |                | X                                                         | <u> </u>              | pink                                           | granitic q               | - 0:55       |           |                                         |          |                 | 1-1                              |  |  |
|         | 1330                                 |                                                  |                                |                                             | `              | X                                                         |                       | grey                                           | COURSE to                | fire grained |           |                                         |          | $\bot$          |                                  |  |  |
|         |                                      |                                                  |                                |                                             | ,              |                                                           |                       | black                                          |                          |              |           | large verticle                          |          | $\Box$          | $\Box$                           |  |  |
|         |                                      |                                                  |                                |                                             | \_             | À                                                         |                       |                                                | •                        |              |           | fracture w/                             |          | 一               | 力                                |  |  |
|         |                                      | -1                                               |                                |                                             | ×              | P                                                         |                       |                                                |                          |              |           | same condition                          | $\vdash$ |                 | +                                |  |  |
|         |                                      | 19                                               |                                |                                             |                | N I                                                       |                       | 1-                                             |                          |              | -         |                                         |          | <del> </del>    | +-1                              |  |  |
|         | Core                                 |                                                  |                                |                                             | ×              | И                                                         | · · · · ·             | black                                          | <u> </u>                 |              |           |                                         |          |                 |                                  |  |  |
|         | 2<br>1400                            |                                                  | $\langle \cdot \rangle$        |                                             |                |                                                           |                       | to                                             | fine grain               | red.         |           |                                         |          | ľ               |                                  |  |  |
|         | 1400                                 |                                                  |                                |                                             |                |                                                           |                       | grey                                           | Branitic                 | gneiss       |           | few Brachures                           | $\Box$   |                 | $\Box$                           |  |  |
|         |                                      |                                                  |                                | ·                                           | Х,             |                                                           | * -                   | some<br>Pink                                   |                          | se grained   |           | Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan | 1        | $\dashv$        | 11                               |  |  |
|         |                                      |                                                  |                                |                                             | •              | N I                                                       |                       | 14.00                                          | biolite rich             |              | $\dashv$  |                                         | $\dashv$ | - -             | +                                |  |  |
|         |                                      | 711                                              |                                | $\neg \neg$                                 |                | В×Н                                                       | <del>.</del> .        | 11                                             |                          |              | _         |                                         |          |                 | Ш                                |  |  |
|         |                                      | 24                                               |                                |                                             | X              | K l                                                       |                       |                                                | · ·                      |              |           |                                         |          |                 |                                  |  |  |
| · I     |                                      |                                                  | $\leq \perp$                   |                                             |                | 件                                                         |                       |                                                |                          |              |           |                                         | T        |                 |                                  |  |  |
| •       | when<br>"Includ                      | rock con                                         | ing, enter                     | rock broke<br>in 6 foot :                   | ene:           | SS.<br>vale 🖴                                             | horeh-1-              | lance                                          | reading frequency if ele | •            |           | <del></del>                             |          |                 | السيد                            |  |  |
|         | Rema                                 | ırks:                                            | 4 1/4                          | -                                           | D              | τ.αιο Ψ<br>(Λ)                                            | vaers                 | #icrease                                       |                          |              | ad.       | Drilling                                |          |                 |                                  |  |  |
|         |                                      |                                                  | Car                            | -i~q                                        |                | re/o                                                      |                       | ·5 ·                                           | (5A:)                    | spoors       |           | Background                              | ppm      | ): <u>L_</u> (  | 2                                |  |  |
|         | Conve                                | erted t                                          | lo Well:                       | <u> </u>                                    | /es            |                                                           | Χ.                    |                                                | No                       | \A/~#15      | и.        |                                         |          |                 |                                  |  |  |
|         |                                      |                                                  |                                | ·                                           |                | -                                                         |                       | - '                                            | ·                        | Well I.D.    | #:        | 3MW16                                   | <u> </u> | :               |                                  |  |  |

| TE | Tetra Tech NUS, Inc. |
|----|----------------------|
|    | ,                    |

Page 2 of 2

| PPC            | IEC        | T NAM          |                    |                     |                             | :             |                                         | _===             |          |                                       |                         | 90.          |            | . ••       | _            |
|----------------|------------|----------------|--------------------|---------------------|-----------------------------|---------------|-----------------------------------------|------------------|----------|---------------------------------------|-------------------------|--------------|------------|------------|--------------|
| PRC            | ソドし        | i nam<br>T num | it:<br>Inco.       | NS                  | B New L                     | ond           | on, CT Site 3                           | BORING I         | Vo.:     |                                       | 3 MW1                   | L C          |            |            |              |
| DRII           | LING       | I MON          | IBEH:<br>IPANY:    |                     | CIO                         | 038, (        | G00083                                  | DATE:            |          | 441                                   | 106 - 4                 | -7           | 57         | 7~         | <del>,</del> |
| DRII           | LING       | 3 RIG:         | . WIAT             |                     | v England                   | Bori          | ng Contractors                          | GEOLOGI          |          |                                       | Colin Do                | ola          | <u>, o</u> |            | -            |
|                |            | Tilla.         | <del></del>        | 170                 | bile B                      | 59            | Drill                                   | DRILLER:         |          | S                                     | . Rams                  | ام لم        | 11         |            | -            |
| Sample         | Depth      | Blows /        |                    |                     |                             | MATE          | RIAL DESCRIP                            | FION             | Т        |                                       |                         | -            |            |            | _            |
| No.            | (FL)       | 6" or          | Sample<br>Recovery | Lithology<br>Change |                             |               |                                         |                  | U        | ļ                                     | *                       | FIUIF        | ID Res     | ding       | (p           |
| and<br>ype or  | Run        | ROD<br>(%)     | /<br>Sample        | (Depth/Ft.          | Soil Density<br>Consistency |               |                                         |                  | s        |                                       |                         |              | 1.3        | ì          | 1            |
| ROD            | No.        | "              | Length             | Screened            | Of                          | Colo          | Material Clas                           | sification       | C        | R                                     | emarks                  | 9            | 6          | 1 🛓        | 1            |
|                |            |                |                    | Interval            | Rock .<br>Hardness          |               |                                         | ,                | S        | l                                     |                         | Sampl        | Sampler 82 | , š        | I            |
|                | <b>እ</b> ፟ |                | 1                  | 1                   |                             |               |                                         |                  | l        |                                       |                         |              | S          | Borehole** | k            |
| 3              |            |                |                    | И                   |                             | 2.7           | 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | State Alland     | _        |                                       | ٠                       |              |            |            | 1            |
| 520            |            |                |                    | Y                   |                             | <u> </u>      | A CONTE                                 | arained          |          | Few                                   | fractures               |              |            |            | T            |
|                |            | /_             | ·                  | X                   |                             |               | granitiz                                |                  |          | 1                                     | Juchman                 | <del> </del> |            | $\vdash$   | ł            |
|                |            |                |                    | * Bk                |                             |               |                                         |                  | <u> </u> | <b></b>                               | <del></del>             | <u> </u>     |            |            | L            |
|                | ٦8         |                |                    | ×                   | <del></del>                 | <del> </del>  | with som                                | حو               |          |                                       |                         |              |            |            | ı            |
|                | ^0         |                |                    |                     |                             |               | I'me grain                              | <b>4</b> م       |          |                                       |                         |              |            |            | r            |
| _              |            |                |                    |                     | ·                           | -             |                                         |                  |          | total                                 | depth: 28'              |              | $\vdash$   |            | ŀ            |
|                | - [        |                |                    |                     |                             |               |                                         | ,                | -        | (veat                                 | aepen . 40              | ·            |            |            | L            |
|                |            |                |                    |                     |                             |               |                                         |                  |          |                                       |                         |              |            |            | ĺ            |
| $\dashv$       |            | $\leq$         |                    |                     |                             |               | sand: 15                                | -281             |          |                                       |                         |              |            |            | Γ            |
|                |            |                |                    | I                   |                             | - 1           | Sand: 15<br>Screen: 17                  | 1-271            |          |                                       |                         | -            | -          |            | Ĺ            |
|                |            |                | 1                  |                     |                             |               | 20 (6.1)                                |                  |          |                                       |                         | _            | _          |            | -            |
|                | - 1        |                |                    | ł                   |                             |               |                                         |                  |          | -                                     |                         |              | - 1        |            |              |
| +              | -+         |                |                    |                     |                             |               |                                         |                  |          |                                       |                         |              | 1          |            | _            |
|                |            | $\leq$         |                    | · [                 |                             | - 1           |                                         |                  | 7        |                                       |                         | $\dashv$     | $\dashv$   | $\dashv$   | _            |
|                |            |                | . 1                |                     |                             |               |                                         |                  |          |                                       |                         | $\dashv$     | 4          |            |              |
|                |            |                |                    | 1                   |                             |               |                                         |                  |          |                                       |                         |              |            |            |              |
| $\top$         | $\top$     |                |                    |                     |                             |               |                                         |                  | $\bot$   |                                       |                         |              |            |            |              |
| -              |            |                |                    |                     |                             |               |                                         |                  |          |                                       |                         | $\neg$       | 7          | $\dashv$   | <del>-</del> |
| $\bot$         |            |                |                    | 1                   |                             | 1             |                                         |                  | 1        |                                       |                         | $\dashv$     | -          | -          | _            |
|                |            |                |                    |                     |                             |               |                                         |                  | +        | · · · · · · · · · · · · · · · · · · · |                         | 4            |            | $\bot$     |              |
| 十              | r          | $\rightarrow$  | _                  |                     |                             |               |                                         |                  |          |                                       | l                       |              | 1          | 1          |              |
| +-             |            | -              |                    | L                   |                             |               |                                         |                  |          |                                       |                         | $\neg$       | 7          | 十          | _            |
| $\bot$         |            | $\leq \perp$   |                    | -                   | - 1                         |               |                                         |                  | 十        | •                                     |                         | +            | +          | +          | _            |
| 1              | 1          |                | 7                  |                     |                             | $\neg \vdash$ |                                         |                  | +        |                                       |                         | 4            |            | 1          | _            |
| T              | 1          | $\nearrow$     |                    | ` <b>-</b>          |                             | $\dashv$      |                                         |                  | 1        |                                       |                         |              |            | ľ          |              |
| +              | $\dashv$   | -              |                    | <u> </u>            |                             |               |                                         |                  |          | _                                     |                         |              | T          | 7          | _            |
| -              | -          |                |                    |                     |                             | - 1           |                                         |                  | 1        |                                       |                         | +            | +          | +          | _            |
|                |            |                |                    |                     |                             | $\top$        |                                         |                  | +        | <del></del>                           |                         | _            | _          | 1          |              |
|                | 1          | $\nearrow$     |                    | -                   |                             | +             |                                         |                  | 1        | · · · · · · · · · · · · · · · · · · · |                         |              | -          |            |              |
| +              | +          | -              | —                  | -                   |                             | $\bot$        | <u> </u>                                |                  |          |                                       |                         | T            | T          | T          | _            |
| $\perp$        | $\bot$     |                |                    |                     |                             |               |                                         |                  | 十        |                                       |                         | +            | +-         | ╁          |              |
|                |            |                | 7                  |                     |                             | -             |                                         |                  | +        |                                       |                         | 4            | _          | $\bot$     |              |
| en roc         | k corinc   | , enter m      | ck broken          | ess                 |                             |               | ·                                       |                  |          |                                       |                         | 1            |            | 1          |              |
| lude m<br>nark | s:         | well:          | 6 foot inte        | ervals @ bo         | orehole. Incre              | ease rea      | ading frequency if elevat               | ed reponse read. | · .      | Ва                                    | Drilling<br>ckground (p | Area         | ·          | 0          | J            |

## BORING LOG 2D MW 16S

PROJECT: IR STUDY NSB - NLON PROJECT NO: 1256-10 \_DCATION: AREA A DOWNSTREAM DATE STARTED: 09/18/90 DATA COMPLETED: 09/19/90 DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC. DRILLER: JOE RAAB DRILLING METHOD: HOLLOW STEM AUGER SAMPLING METHOD: SPLIT SPOON

GROUND ELEVATION: 35.6 PROTECTIVE CASING ELEVATION: 38.08 WELL ELEVATION: 37.85 WATER LEVEL: 34.30 (03/21/91) DATUM: SUBASE WEATHER: 60°, CLEAR SKIES, VERY WINDY INSPECTOR: LYNN METCALF AND ERIK NESS CHECKED BY: ERIK NESS

WELL CONSTRUCTION (FT.) RECOVERY SOIL DESCRIPTION LITHOLOGY CONTAM. SPLIT SPOON I SAMPLE DEPTH DEPTH color, SOIL, admixture, moisture, other notes, ORIGIN HNU (pom) BLOWS PER 6° (11) 0.0 0-Dark brown, fine SAND and SILT. trace roots, moist, TOP SOIL 5 7 00 0.2 0 40 50 0-2 Brown, medium to coarse SAND and 0 GRAVEL, trace silt, moist BENTONITE -69 0 50 30 0.4 2-4 10 11 00 100/5 5-0 50 5 0.2 4-8 0.0 SLOTTED PVC 6.0 Grey, fine to very fine SAND and SILT, wet 26 30 50 50 0.2 6-8 13 7 8.0 Brown, tine to medium SAND and GRAVEL, trace sit, wet 00 6 20 o o 40 8-10 60 0.2 31 45 00 0 10 00 42 100 1 50 10-12 0.2 100/5 00 0 00 100/5 40 12-14 100 0.2 Ю 13.5 AUGER REFUSAL AT 13.5 feet 20 TLANTIC

Page 1 of 1

### BORING LOG 2D MW 16D

PROJECT: IR STUDY NSB - NLON
PROJECT NO: 1256-10
LOCATION: AREA A DOWNSTREAM
CATE STARTED: 09/13/90
DATA COMPLETED: 09/18/90
DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.
DRILLING METHOD: AIR ROTARY

DROUND ELEVATION: 35.9
PROTECTIVE CASING ELEVATION: 37.69
MELL ELEVATION: 37.69
MATER LEVEL: 3.74 (03/21/91)
DATUM: SUBASE
MEATHER: 50-60', CLEAR SKIES
INSPECTOR: AKHTER HOSSAIN AND LYNN METCALF
CHECKED BY: ERIK NESS



## BORING LOG 2D MW 16D

PROJECT: IR STUDY NSB - NLON
PROJECT NO: 1256-10
LOCATION: AREA A DOMNSTREAM
DATE STARTED: 09/13/90
DATA COMPLETED: 09/18/90
ORILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.
ORILLER: CRAIG CONNER
ORILLING METHOD: AIR ROTARY
SAMPLING METHOD:

GROUND ELEVATION: 35.9
PROTECTIVE CASING ELEVATION: 37.69
WELL ELEVATION: 37.69
WATER LEVEL: 3.74 (03/21/91)
DATUM: SUBASE
WEATHER: 50-60°, CLEAR SKIES
INSPECTOR: AKMTER HOSSAIN AND LYNN METCALF
CHECKED BY: ERIK NESS

| 1 |                                           | 1     |          |              |                                                       |       | VISIUAL<br>CONTAM | 100        |           | CONSTRUCTION                             |
|---|-------------------------------------------|-------|----------|--------------|-------------------------------------------------------|-------|-------------------|------------|-----------|------------------------------------------|
|   |                                           |       | KER      |              | SOIL DESCRIPTION                                      | E     | CONTAM            |            | 907       | <u>.</u>                                 |
|   | SPLIT<br>SPOON<br>SAMPLE<br>DEPTH<br>(11) | BLOWS | RECOVERY | HNU<br>(ppm) | color, SOIL, admixture, moisture, other notes, ORIGIN | ОЕРТН | SHEEN<br>HFAVY    | RAD. (CDB) | L11H0L0GY | H 1                                      |
|   |                                           |       | ·        | <br>         |                                                       |       |                   |            |           |                                          |
|   |                                           |       |          |              |                                                       | 217   |                   |            |           |                                          |
|   |                                           |       |          |              |                                                       |       |                   |            |           |                                          |
|   |                                           |       |          |              |                                                       | 26-   |                   |            |           | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX   |
|   |                                           |       | ·        |              |                                                       |       |                   |            |           | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 |
|   |                                           |       |          |              |                                                       | 31-   |                   |            |           | OPEN HOLE                                |
|   |                                           |       |          |              |                                                       |       |                   |            |           | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX   |
|   |                                           |       |          |              |                                                       |       |                   |            |           | XV STATES                                |
|   |                                           |       |          |              |                                                       | 36-   |                   | •          |           | XXXXXX                                   |
|   |                                           | ·     |          |              |                                                       |       |                   |            |           |                                          |
|   |                                           |       |          |              |                                                       | 41-   |                   |            |           | L KANAN                                  |
| L | ATL                                       | ANTI  | C        |              |                                                       |       |                   |            |           | Page 2 of 3                              |

### BORING LOG 2D MW 16D

PROJECT: IR STUDY NS8 - NLON 990JECT NO: 1256-10 LOCATION: AREA A DOWNSTREAM DATE STARTED: 09/13/90 DATA COMPLETED: 09/18/90 DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC. DRILLER: CRAIG CONNER PRILLING METHOD: AIR ROTARY SAMPLING METHOD:

GROUND ELEVATION: 35.9 PROTECTIVE CASING ELEVATION: 37.69 WELL ELEVATION: 37.69 MATER LEVEL: 3.74 (03/21/91) DATUM: SUBASE WEATHER: 50-60", CLEAR SKIES INSPECTOR: AKHTER HOSSAIN AND LYNN HETCALF

CHECKED BY: ERIK NESS



| 000           |                 | KIC                                    | R. KII   | 011            |                       |         |                            |                | ALLIBURTON NUS                          |
|---------------|-----------------|----------------------------------------|----------|----------------|-----------------------|---------|----------------------------|----------------|-----------------------------------------|
| PROJ          | ECT: _          | ) ·                                    | 8- NL    | <u> </u>       |                       |         | BORING                     | NO.            | - 7'MW55                                |
| בו ביי        | ELI NU<br>ATION | <u> </u>                               | 239      | T              |                       | DATE: . | 3-8-94 DRILLE              | <b>₹:_E</b>    | AST COAST THOMAS                        |
| CLLT          | ~               | • ——                                   | 'A :     |                | F                     | IELD G  | EOLOGIST: TIM Evans        |                | TIM Sabo                                |
|               |                 |                                        | ditions) | <del>~~</del>  |                       |         |                            |                |                                         |
|               |                 |                                        |          | 7              |                       |         |                            |                |                                         |
|               |                 | arows.                                 | SAMPLE   |                | ļ                     | MA      | TERIAL DESCRIPTION*        | 100            |                                         |
| SAMPLE<br>PO. | DEPTH           | 400<br>400                             | RECOVERY | CHANGE         | SOL DENSITY           |         |                            | -              |                                         |
| ATYPE<br>OR   | RUN             | (2)                                    | LENGTH   | [Dogan,ft.]    | CONSISTENC<br>OR ROCK | . co.os | MATERIAL<br>CLASSIFICATION | usc            | REMARKS                                 |
| ROD           | NO.             |                                        |          |                | MARDNESS              |         |                            |                | <b>a.</b>                               |
| 5-1           | 0.7             | 22                                     | 1.01     | ÷ 36           | Dense                 | Ten     | Silty Sand with Govern     | 1_             | Jab S.                                  |
|               | 1.5             | 18                                     | 0.5/0.5  | 6 Z.º          | V Dense               | 1       | wood word                  | 152            | AUger Refusal @ 1.75                    |
| 5-7<br>348    | 7.8             | 348                                    | 1.4/     | 9              |                       |         |                            | 1:             | More 21 cm                              |
| 7-2           | 3.5             | 11                                     | 1.4/2.0  | ₹.             | M. Druse              |         |                            | Ш              |                                         |
| <del></del>   | 4.0             |                                        |          |                |                       | *       | *                          | +              |                                         |
| 564           |                 | 5                                      | 1.7/2.0  |                | M.Dense               | Tan     | Silty Sand w/Tr Gravel     | ç.,            | 50-                                     |
| 425           | 6.0             | 13                                     |          |                |                       | 1       | I MARGET                   | <del> ``</del> | Fe-stain/Motherd                        |
| E S           | 4.0             |                                        | 1.0/     | : -            |                       |         |                            | 1              |                                         |
| 133           | <del></del> [   | 21                                     | 1.0/2.0  | · ·            | Donse                 |         |                            | Ш              |                                         |
|               | 6.0             |                                        | :        | - FL           |                       | 1       | <b>.</b>                   | I              |                                         |
| ی-            |                 | 35                                     | 6.7      | <u>: []</u>    | V. Denge              | D. Row  | Silly Sand & Gravel Cobble | Smy            |                                         |
| 41            | 0.0             | 14                                     |          | .e.            |                       |         | 1 Graves Carelle           |                | MOIST                                   |
| -7            | 7               |                                        | 9.6/10   | io Et          | <del></del>           |         |                            | -              |                                         |
| 00            | 1.0             | 100                                    | 11.0     | ·SP            | 1.Deuse               | U.Br.   | <b>.</b>                   | +              |                                         |
| <b>&gt;</b>   | 2.3             |                                        | 6.0      | : 51           |                       |         |                            |                | very michrous                           |
| 06            | <b>↓↓</b>       |                                        | =        | iné - ju       |                       |         |                            | VSF            | Auger Refused @ 12                      |
|               |                 |                                        | - li     | = -            |                       |         |                            | 1              | 0945 Rock blocked in                    |
| 1,5           | 0 6             | 200                                    | .5/5.0   | t   <b>[</b> . | tard (                |         |                            | 8-             | HI & FAL 12.25'                         |
| +             | ŤŁ              | $\exists$                              | - 2.0    | EJ F           |                       | 3004    | Gneiss                     | 4              | 194                                     |
| -             | $+\Gamma$       |                                        | +-       | EI I-          |                       |         |                            | Ш              | thor Recovery thiskly Fractively        |
| 0             | ム上              |                                        |          | EL             |                       |         |                            |                | Cave-In to 19.01                        |
|               | H               |                                        |          |                |                       |         | -Tall 7                    |                |                                         |
| T             | 下               | 二                                      |          | 一              |                       |         | - Total Depte 17' -        |                | 3/14 Spin Casing to 14.7                |
| -             |                 | 士                                      |          | <b>-</b>       | <del> </del> -        |         |                            | _              | HO level 9.3545                         |
|               | $-\Gamma$       | <del>]</del>                           |          | <u> </u>       |                       |         |                            |                | 3/15 @ 0822 12.1 GS<br>Rollerbit to 171 |
|               | 上               | 二                                      |          | L              |                       |         |                            |                | SAIN Cacing to 165                      |
|               | }-              | -                                      | 1        |                | T                     | T       | Screen 7'- 17'             |                | Schoolses                               |
| T             | T               | 丁                                      |          |                |                       |         |                            | 干              | 10'-> "PYC (Schoolers                   |
| _             |                 |                                        |          | -              |                       |         | Sand 6:17'                 | <b>=</b>       | 1 - 100 Bang Jame                       |
|               |                 | 7                                      |          |                |                       |         | Pelletz 2.5'- 6'           |                | 1-58 4 Ray                              |
|               | 上               | 丄                                      |          |                |                       |         |                            | T              | )                                       |
| AA PVE        | 5               | ــــــــــــــــــــــــــــــــــــــ | :        |                | 110                   | ^       |                            |                |                                         |
|               |                 | 11 v ·                                 | 1. "     | <u> </u>       | A2H                   | 15      | g (Bombadier Hount         | :d)            | 7 Muire                                 |
|               | <u>- ح</u>      | <del>, , ,</del>                       | <u> </u> | 1 20           | ( 30"                 | DUB     | 140# wy Cat Head)          | :              | BORING THWSS                            |
| er Lege       | na on B         | PCK .                                  | P K      | 00             | Auge                  | ~       |                            | •              | PAGEOF                                  |
|               | 4'              | Soir                                   | cusin    | ^4             |                       |         |                            |                |                                         |

| ATE      | R LEV                          | EL DAT                       | A:                                     |                                          |                                                       | ·             | OLOGIST: James R. FERGUSON  RAIH 45° 3-16-93 CLEI |                              |                        |
|----------|--------------------------------|------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------------|---------------|---------------------------------------------------|------------------------------|------------------------|
| 7 K.O    | oemi<br>eu<br>ex<br>Run<br>No. | 8LOWS<br>67 OR<br>800<br>(%) | ENMALH<br>STWOFF<br>PECONESA<br>STWOFF | LiftedLOGV<br>Change<br>Change<br>Change | SOIL<br>DEWSITY<br>CONSISTENCY<br>OR ROCK<br>HARDMESS |               | TERIAL DESCRIPTION*  MATERIAL CLASSIFICATION      | Place<br>BAR<br>GAR<br>VIICS |                        |
| 4        |                                |                              |                                        |                                          |                                                       |               | SEE BORING LOG THUSS                              |                              |                        |
| +        |                                |                              |                                        |                                          |                                                       |               | FOR LITHOLOGIC METAILS                            | -                            | SET L'HE B STEEL CON   |
| †        |                                |                              |                                        |                                          |                                                       |               | FROM 6.5 TO 15.0'                                 |                              | from 6.5. To 16.0'     |
| ,        | 1-15                           |                              |                                        |                                          |                                                       |               |                                                   |                              |                        |
| 1        | _                              |                              |                                        |                                          |                                                       | PINK.         | GRAMINE BIOTISE QUARTE AND                        |                              | well begon producing   |
| 4        |                                |                              |                                        |                                          |                                                       | ·             | 1. SPAR                                           | ·                            | A sign locant quantity |
| +        | [                              |                              |                                        |                                          |                                                       | <del>-</del>  |                                                   |                              | of water between Rim   |
| +        | 9-20                           | _                            |                                        |                                          |                                                       | RLL-60        |                                                   |                              | 25'                    |
| ť        | 700                            | _                            |                                        |                                          |                                                       | SCACE         | Keonile Biorist Overez and                        |                              |                        |
| I        |                                |                              |                                        |                                          |                                                       |               |                                                   |                              |                        |
|          |                                |                              |                                        |                                          |                                                       | •             |                                                   |                              |                        |
| $\vdash$ | _                              | _                            |                                        |                                          |                                                       | illi.         |                                                   |                              |                        |
| 25       | 1-25                           |                              |                                        |                                          |                                                       | BIRE          | GNE155                                            | _                            |                        |
| $\vdash$ |                                |                              | <u>I</u>                               |                                          |                                                       |               |                                                   |                              |                        |
|          | +                              | 十                            |                                        |                                          |                                                       |               |                                                   | $\dashv$                     |                        |
|          |                                |                              |                                        |                                          |                                                       |               | <b>1</b>                                          | 1                            |                        |
| ge.      | -30                            | $\exists$                    |                                        | 汇                                        | 6                                                     | ean-<br>sible | GAIR135                                           |                              |                        |
| <u> </u> |                                | #                            |                                        | <u></u>                                  |                                                       |               |                                                   | $\Box$                       |                        |
| -        | E                              | =                            |                                        |                                          |                                                       |               |                                                   | _                            |                        |
|          | F                              |                              |                                        |                                          |                                                       |               |                                                   | $\dashv$                     |                        |
| 20/      | 35                             | $\Rightarrow$                |                                        |                                          | 6                                                     | Sides         | 6N8155                                            | +                            | <del></del>            |

| BC                               | RING                              | LOG                           |                                        |                      |                                           |                 |                                       |                                          | ILLIBURTON NUS       |
|----------------------------------|-----------------------------------|-------------------------------|----------------------------------------|----------------------|-------------------------------------------|-----------------|---------------------------------------|------------------------------------------|----------------------|
| ROJ                              | ECT NO<br>ATION:                  | ).:                           |                                        | 4                    | D.                                        | ATE:<br>ELD GE( | 3-16-94<br>DLOGIST: <u>J.P. FERRU</u> | BORING NO.:<br>DRILLER: E                | AST COAST THOMAS     |
| VATI<br>Date                     | :R·LEV                            | & Cond                        | itions)                                | 3-19-9               | 5 Out                                     | RIPST           | Rain 450 3-16-9                       | 55 CLEAR                                 | 450                  |
|                                  |                                   |                               | T                                      |                      |                                           |                 | ERIAL DESCRIPTION*                    | Roci                                     | _ <del></del>        |
| AMPLE<br>NG<br>TYPE<br>OR<br>RQD | DEFTN<br>ITLI<br>OK<br>RUN<br>NO. | BLÖWS<br>6" OR<br>RGO<br>("S) | SAMPLE<br>RECOVERY<br>SAMPLE<br>LENGTH | CHANGE<br>(Deem.ft.) | SOL<br>DENSITY<br>CONSISTENCY<br>HARDNESS |                 | MATERIAL<br>CLASSIFICATION            | or or or or or or or or or or or or or o |                      |
|                                  |                                   |                               |                                        |                      |                                           |                 |                                       |                                          |                      |
|                                  |                                   |                               |                                        |                      |                                           |                 |                                       |                                          |                      |
|                                  |                                   |                               |                                        | Taller<br>Taller     |                                           |                 |                                       |                                          |                      |
|                                  |                                   |                               |                                        |                      | · · · · · · · · · · · · · · · · · · ·     |                 | - A                                   |                                          | Ab significant water |
|                                  | 59 - 119                          |                               |                                        |                      | · ·                                       | B. PLK          | GNE 133                               |                                          | bearing zone > were  |
|                                  | -                                 |                               |                                        |                      |                                           |                 |                                       |                                          | potent during delles |
|                                  | 41.42                             |                               |                                        |                      |                                           |                 | 4                                     |                                          | 17:00                |
|                                  |                                   |                               |                                        | HILLIE               |                                           |                 | SOMOW OF BURNHE                       | 47.0'                                    |                      |
|                                  |                                   |                               |                                        |                      |                                           |                 |                                       |                                          |                      |
|                                  |                                   |                               |                                        |                      |                                           |                 | INSTALLE Z" PYC                       | Montornes -                              | 3-16-95              |
|                                  |                                   |                               |                                        |                      |                                           |                 | well server 32'-                      |                                          |                      |
|                                  |                                   |                               |                                        |                      |                                           |                 | Spriouck 28.5-47.6                    |                                          |                      |
| 寸                                |                                   |                               |                                        |                      |                                           |                 | rellet soul 14.5 - 28.5               |                                          |                      |
|                                  |                                   |                               |                                        |                      |                                           |                 | 14.5- 25                              |                                          |                      |
| 7                                |                                   |                               |                                        | 1                    |                                           |                 |                                       |                                          |                      |
| 寸                                |                                   |                               |                                        | i i                  |                                           |                 |                                       |                                          |                      |
|                                  |                                   |                               | •                                      |                      |                                           |                 |                                       |                                          |                      |
| $\dashv$                         |                                   |                               |                                        |                      |                                           |                 |                                       |                                          |                      |
| $\dashv$                         |                                   |                               |                                        |                      |                                           |                 | ,                                     |                                          |                      |
| $\dashv$                         |                                   |                               |                                        | <del> </del>         |                                           |                 |                                       |                                          |                      |
| +                                |                                   |                               | •                                      |                      |                                           |                 |                                       |                                          |                      |
| <del> </del>                     |                                   |                               |                                        | }                    |                                           |                 |                                       | <del>  </del>                            |                      |
|                                  |                                   |                               |                                        |                      |                                           | -               |                                       |                                          |                      |
| _                                |                                   |                               |                                        |                      |                                           |                 |                                       |                                          |                      |
| $\bot$                           |                                   |                               |                                        |                      |                                           |                 |                                       |                                          |                      |
|                                  |                                   |                               |                                        | l Í                  |                                           |                 | · · · · · · · · · · · · · · · · · · · |                                          |                      |

| It | Tetra Tech NUS, | Inc. |
|----|-----------------|------|

Page 1 of 2

|                                        |                                   | F NAM                          |                                             | NS                                                               | B New L      | ondo                        | n, CT Site 7<br>00083                        | _BORING N<br>DATE: | o.:       | 7MW1                                    |            |          |          |              |
|----------------------------------------|-----------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------|-----------------------------|----------------------------------------------|--------------------|-----------|-----------------------------------------|------------|----------|----------|--------------|
|                                        |                                   |                                | PANY:                                       | New                                                              | England      | Borin                       | g Contractors                                | _DATE:<br>GEOLOGI  | эт. Т     | 5/17./                                  |            |          |          |              |
|                                        |                                   | RIG:                           |                                             |                                                                  |              |                             | 9 Drill                                      | DRILLER:           | 51:       | Colin Do                                |            |          | ·        |              |
|                                        |                                   |                                |                                             | T                                                                |              |                             |                                              | <u></u>            | ,         | S. Rams.                                | <u>del</u> | <u>r</u> |          |              |
| Sample<br>No.<br>and<br>Type or<br>ROD | Depth<br>(FL)<br>or<br>Run<br>No. | Blows /<br>6" or<br>ROD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval |              |                             | RIAL DESCRIP                                 |                    | ມ ທ c ທ · | Remarks                                 | Sample     |          |          | Driller BZ** |
|                                        | 0                                 |                                |                                             | ļ                                                                | 100          |                             |                                              |                    |           |                                         |            |          |          | 1.8          |
|                                        |                                   |                                |                                             |                                                                  | loose        | gik<br>prown                | organic top                                  | الم                | Or.       | fill material                           | 0          |          | 0        | П            |
|                                        |                                   |                                |                                             | 230                                                              | - ↓          | prom                        | Sandy CIH                                    | -                  | इस        | fill material v. wet                    | 0          |          | ·        | $\Box$       |
|                                        |                                   |                                |                                             | 3                                                                |              |                             |                                              |                    |           | water table                             | Ť          |          |          |              |
|                                        |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           | water table at 3'                       |            |          |          |              |
|                                        | 5                                 |                                |                                             |                                                                  |              |                             |                                              |                    |           |                                         |            |          |          |              |
| 5- J<br>0857                           |                                   | 2                              | 3/2                                         | 30533                                                            | loose        | grewde<br>Rande             | 0.5 pt coarce s<br>1.0 pt silt to<br>trace t | and race clay      | ٧N        | caturated (Jill)<br>V wet               | 0          |          |          |              |
|                                        |                                   | 3/16                           |                                             | 1 1 1                                                            | med dence    | grey                        | O.S. Ft silt                                 | oots               |           | noilt                                   | 0          |          |          |              |
|                                        |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           |                                         | Ť          |          |          |              |
|                                        |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           |                                         |            |          |          |              |
|                                        | 10                                |                                |                                             |                                                                  |              |                             |                                              |                    |           | 100000000000000000000000000000000000000 |            |          |          |              |
| 5-7<br>0880                            |                                   | //                             | 15/2                                        |                                                                  | med<br>deuse | 01 ande<br>958657<br>958657 | silt                                         |                    | Mz        | wet                                     | 0          |          | ·        | 一            |
|                                        |                                   | 9/11                           |                                             |                                                                  |              | blue                        |                                              |                    |           | moist                                   | 0          |          |          |              |
| -                                      |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           | 4 ·                                     |            |          |          |              |
|                                        |                                   |                                |                                             |                                                                  |              |                             | 4                                            |                    |           |                                         |            |          |          |              |
|                                        | 15                                |                                |                                             |                                                                  |              |                             | -                                            |                    |           |                                         |            |          |          | $\sqcap$     |
| 5-3<br>5915                            |                                   | <b>ノ</b> しなし                   | 3                                           |                                                                  | med densp    | blue<br>grey                | Ame sound w                                  | silt               | SM        | Caturated                               | Ø          |          | 0        | 0            |
|                                        |                                   | 31                             |                                             | ===                                                              | dense        | from                        | sandy cilt                                   |                    |           | to<br>wet                               | b          |          | Ť        |              |
|                                        |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           |                                         | Ť          |          |          |              |
|                                        |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           |                                         |            |          |          | 7            |
|                                        | 20                                |                                |                                             |                                                                  |              |                             |                                              |                    |           |                                         |            |          | $\neg$   | 一            |
| -4<br>)920                             |                                   | 3 14                           | 13/2                                        |                                                                  | dense        | provo                       | silt                                         |                    | SM        | saturated                               | 0          | 0        |          | 7            |
|                                        |                                   | 821                            |                                             |                                                                  |              | Brey                        | silt w/ trace                                | clay               |           |                                         | Ô          |          |          | ╛            |
|                                        |                                   |                                |                                             |                                                                  |              |                             |                                              |                    |           | ,                                       |            |          | 7        | 一            |
|                                        |                                   |                                |                                             | A                                                                |              |                             |                                              |                    | 7         |                                         |            |          | $\dashv$ | 1            |
|                                        | 25                                |                                |                                             | _14                                                              |              |                             |                                              |                    |           |                                         | $\neg$     |          | $\dashv$ | 1            |
| When r<br>Include<br>Rema              | monito                            | ing, enter<br>or reading<br>44 | rock brok<br>in 6 foot i                    | intervals @                                                      | borehole. In | crease                      | reading frequency if ele                     |                    | <br>àd.   | Drillin<br>Background                   |            |          | 0        |              |
| Conve                                  | erted 1                           | lo Well                        | : `                                         | Yes                                                              | X            |                             | No                                           | Well I D           | #.        | 7141417                                 |            |          |          |              |

Page 2 of 2

| PRO                                    | JEC.                              | T NAM<br>T NUM                 | BER:                                        |                                                                  | B New L       | _ondo    | on, CT Site 7<br>300083              | BORING              | No.:      | 7MV          |                | _          |             |
|----------------------------------------|-----------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|---------------|----------|--------------------------------------|---------------------|-----------|--------------|----------------|------------|-------------|
|                                        |                                   |                                | PANY:                                       | New                                                              | / England     | Bori     | ng Contractors                       | DATE:<br>GEOLOG     | ICT.      | 5/17         | 10.6           |            |             |
| DRIL                                   | LING                              | RIĢ:                           |                                             |                                                                  | Mobile        | BS       | 9 Drill                              | _OLOLOG<br>:DRILLER |           | Colin [      | <u> Doolar</u> | 1          |             |
|                                        | . •                               |                                | T                                           | T                                                                |               |          |                                      |                     |           | S. Rams      | del            |            |             |
| Sample<br>No.<br>and<br>Type or<br>RQD | Depth<br>(FL)<br>or<br>Run<br>No. | Blows /<br>6° or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval |               |          | RIAL DESCRIP                         |                     | U S C S · | Remarks      | PID/FI         | Sampler BZ | Boreholer   |
| S-5<br>0950                            |                                   | 7.17                           | 1.83                                        | = V                                                              | stiff         | grey     |                                      | Tarketen (2)        | 6         |              |                |            | 22.         |
|                                        |                                   | 14/                            | ~ ~                                         | = =                                                              |               | grey     |                                      | u/ clay             | SC        | damp         | 0              |            |             |
|                                        |                                   | <u> </u>                       |                                             | - 1                                                              | dense         | <u> </u> | 1 pt silt                            |                     | SW        | · ·          | 0              |            |             |
|                                        |                                   | 4                              |                                             |                                                                  |               |          |                                      |                     |           |              |                | 1          | <del></del> |
|                                        |                                   |                                |                                             |                                                                  |               |          |                                      |                     |           |              |                | $\dashv$   |             |
| .                                      | 30                                |                                |                                             | П                                                                |               |          |                                      |                     |           |              |                |            | · ·         |
| 30                                     |                                   | 00                             | 6.5                                         | ب.                                                               | dense         | per to   | \$11 <del>+</del>                    | -                   | SM        |              | $\perp$        |            |             |
| <del></del>                            |                                   |                                | /2                                          | ××                                                               |               |          |                                      |                     |           | bedrock      | 0              |            | •           |
|                                        |                                   |                                |                                             | ×                                                                | :             |          |                                      |                     |           | at 30.5°     |                |            | ÷           |
|                                        |                                   | $\leq$                         |                                             | XX                                                               |               |          |                                      |                     |           |              | 1-1            | 十          | _           |
|                                        |                                   |                                | - 1                                         | ×××                                                              |               |          | total laist                          | . 7.1               |           |              | +              | $\dashv$   |             |
|                                        |                                   |                                |                                             | İ                                                                |               |          | TOTAL DEATH                          | · 50                | $\dashv$  |              | 1_1            |            |             |
|                                        | _                                 |                                | $\dashv$                                    |                                                                  |               |          | total depth<br>sand: 18<br>screen: 2 | - 50.5              |           |              |                |            |             |
| +                                      |                                   |                                |                                             | -                                                                |               |          | screen: 2                            | 0 - 30'             |           |              | III            | T          |             |
|                                        | -                                 | $\leq$                         |                                             |                                                                  | - '           |          | <u> </u>                             |                     |           |              |                | 1          | <u>-</u>    |
|                                        | _                                 |                                |                                             | 1                                                                |               | - 1      |                                      |                     |           |              |                | - -        |             |
|                                        |                                   |                                |                                             |                                                                  |               |          |                                      |                     | -         |              | +              | +          | _           |
|                                        |                                   |                                |                                             | . F                                                              |               |          |                                      |                     | $\dashv$  |              | $\sqcup$       |            |             |
| +                                      | - /                               | $\rightarrow$                  | -                                           | - }                                                              |               |          |                                      |                     |           |              |                |            |             |
| - -                                    |                                   |                                |                                             | L                                                                |               |          |                                      |                     |           |              | Π              |            |             |
|                                        | +                                 |                                |                                             | L                                                                |               | _        |                                      |                     | T         |              |                | +          |             |
| _                                      |                                   |                                |                                             | 1                                                                |               |          |                                      |                     | 十         |              | ╂╌┼            | +          | $\dashv$    |
|                                        |                                   |                                |                                             |                                                                  |               | _        |                                      |                     |           |              | -              | 4          | 4           |
|                                        | 1                                 | $\nearrow$                     |                                             | -                                                                |               |          |                                      |                     | 4         |              |                |            |             |
| +                                      | +                                 | <del></del>                    |                                             | <b> </b> _                                                       |               |          | · · ·                                |                     |           |              | ·              | T          | 1           |
| -                                      | -                                 |                                |                                             |                                                                  |               |          |                                      |                     |           |              |                | 1          | 7           |
|                                        |                                   |                                |                                             |                                                                  |               |          |                                      |                     | +         |              |                | +          | +           |
| -                                      |                                   |                                |                                             |                                                                  |               | 1        |                                      |                     | +         |              |                | 1          | 4           |
|                                        |                                   | <b>/</b>                       |                                             | <u> </u>                                                         |               | -        |                                      |                     |           |              |                |            |             |
| +-                                     | +                                 | $\rightarrow$                  |                                             | -                                                                |               |          |                                      |                     |           |              |                |            | I           |
|                                        |                                   |                                | <u>l·</u>                                   |                                                                  |               | . 1      |                                      |                     | T         |              |                | 1          | t           |
| en roci<br>clude rr<br>nark            | nonitor                           | enter ro<br>reading in         | ock broken<br>6 foot inte<br>" I            | ervals @ bo                                                      | orehole. Incr | ease rea | ading frequency if eleva             | ited reponse reac   |           | Drilling     | ) Area         | <u> </u>   | _           |
| ivert                                  | ed to                             | Well:                          | Ye                                          |                                                                  | X             | N        |                                      | Well I D 4          | _         | Background ( | ppm)           |            | <u>&gt;</u> |



Page \_\_\_ of \_\_

|      | PRO                                    | JEC<br>JEC                        | T NAM<br>T NUM                 | IE:<br>IBER:                                | NSB          | -NLC        | N -                 | Da          | ta C      | Зар            |                                       |               | ВОП             | -<br>IING | NU            | MBI          | ER:          |          | 5-          | Tu                       | <b>ノ</b>  | 3        |                                              |                                                                                   |
|------|----------------------------------------|-----------------------------------|--------------------------------|---------------------------------------------|--------------|-------------|---------------------|-------------|-----------|----------------|---------------------------------------|---------------|-----------------|-----------|---------------|--------------|--------------|----------|-------------|--------------------------|-----------|----------|----------------------------------------------|-----------------------------------------------------------------------------------|
|      | DRII                                   | LINC                              | G COM                          | PANY:                                       | New          | Engla       | nd l                | 200<br>Bori | na        |                | <del></del> -                         |               | DAT             |           | VOT.          | . т          | -111         | .10      | 7           | $\overline{\mathcal{T}}$ | 02        |          |                                              |                                                                                   |
|      | DRIL                                   | LINC                              | RIG:                           |                                             |              | PT          |                     |             | 9         |                |                                       |               | GEO<br>DRIL     | LOC       | 1101<br>1     |              | JE F         |          |             |                          | /!        |          |                                              |                                                                                   |
|      |                                        | Γ                                 |                                |                                             |              | T           | ٨                   | /AT         | FRI       | ΔΙΓ            | ESCI                                  | 210           |                 |           | -             | <del>-</del> | <u> </u>     |          | <u></u>     | BAL                      |           | <u> </u> |                                              |                                                                                   |
|      | Sample<br>No.<br>and<br>Type or<br>RQD | Depth<br>(FL)<br>or<br>Run<br>Na. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length |              | Corner o    | xi<br>sity<br>stenc | Cok         | ŀ         |                |                                       |               | HON<br>Hacation | 18 (A.)   | 1 8 0 8 .     |              | ı            | Rem      | arks        | S                        | Sample    | 3        |                                              | Driller 87**                                                                      |
| 1100 |                                        | 1                                 |                                |                                             |              |             | en erenegarja       | ern         | P         | SIĘ            | PHA                                   | <b>1</b> 7    |                 |           |               | +            | ۸            | RY       | <del></del> |                          |           |          |                                              | 1                                                                                 |
|      |                                        | 2                                 |                                |                                             |              | ME          |                     |             |           | - <del>(</del> | RAU                                   | Ę١            |                 |           | 1             | $\perp$      |              | · /      |             |                          | 0         | 0        | 0                                            | 0                                                                                 |
|      |                                        | 3                                 |                                |                                             |              | 571         | FF                  | 1           | Γ.        | ·              | ND<br>9RA                             | <u>ڪيع</u> :  | <u> جر</u>      |           | Su            | 1_           |              | MO       | 157         |                          | 11        | 11       |                                              | 1                                                                                 |
| •    | $\vdash$                               |                                   |                                | 7                                           |              | Ш           |                     | 1           | _         |                |                                       | $\perp$       |                 |           |               |              |              |          |             |                          | $\prod$   | П        | П                                            | $\prod$                                                                           |
|      |                                        | 4                                 |                                | 74                                          |              |             | _:                  | 4           |           |                |                                       |               |                 |           | T             | T            |              | T        |             |                          | 17        | Ħ        | H                                            | $\dagger\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|      |                                        | 5                                 |                                |                                             |              |             |                     | 6-y.        | 6         | V<br>SA        | 40 Z                                  | Y             | ROU.F           | DAK       |               | G            | -RA)         | 伊        | OL          | DE                       | H         | H        | H                                            | HH                                                                                |
|      |                                        | 6                                 |                                |                                             | <b>- V</b> - | П           |                     | 1           | Ti        |                | 10 7                                  |               | <u> </u>        | 10.63     | SN            | 7            | WE           |          | 201         | LUK                      | H         | ╫        | H                                            | ₩┤                                                                                |
| •    |                                        | 7                                 |                                |                                             |              | - -         |                     | BAY         | 1         | 7              |                                       | _             | <del>-</del>    |           | 1             | #            |              |          | _1          | ,                        | H         | #        | H                                            | H - I                                                                             |
|      |                                        | 8                                 |                                | 4/4                                         |              | $\vdash$    | -                   | 1           | 100       | un.            | € 5                                   | 5 <u>A</u> ?  | NO              | <u> </u>  | #             | -            | 0            | <u> </u> | 101         | 1.4.7                    | Ш         | Щ        | Ц                                            | Ш                                                                                 |
|      |                                        | 9                                 |                                | 77                                          |              | V           | _                   | ╂-          | EL        | NE             | SAZ                                   | DY            | TR.             | تالک      | #             | _            | 15           | RN       | 197         | (MY                      | $\coprod$ |          |                                              |                                                                                   |
|      |                                        |                                   |                                |                                             |              | SOF         | -1                  | 1_          |           | _              | · .                                   |               |                 |           | Ш             |              |              | ١        |             |                          |           |          |                                              | $\prod$                                                                           |
|      | -                                      | 10                                |                                |                                             |              |             |                     |             |           |                |                                       | ı             |                 | •         | П             |              |              |          |             |                          |           | П        |                                              | Ш                                                                                 |
|      |                                        | 11                                |                                |                                             |              |             | 1                   |             |           |                |                                       | $\neg$        |                 |           | П             | Τ            |              |          |             |                          |           | H        | 1                                            | H                                                                                 |
|      |                                        | 12                                |                                |                                             |              |             |                     |             | 7         | -O             | Δ.                                    | · ·           | دی _            |           | ╁╌            | $\vdash$     |              |          | +           |                          | H         | H        | H                                            | HH                                                                                |
|      |                                        | 13                                |                                |                                             |              | 1           | 1                   |             |           |                |                                       |               |                 |           |               | ├-           |              |          | $\dashv$    |                          | +H        | ++       | 11                                           | Н                                                                                 |
|      |                                        | 14                                |                                |                                             |              | $\dashv$    | $\dashv$            |             | 1         | MO             | 1-16                                  | 117           | 97              | 711       | <u>u-</u>     | 00           |              |          | - -         |                          | +         | 44       | 44                                           | $\mathbf{H}$                                                                      |
|      |                                        | 15                                |                                |                                             | ŀ            | 1           | +                   | Н           | $\dashv$  |                | · · · · · · · · · · · · · · · · · · · | +             |                 |           | -             | <u> </u>     | _            |          |             |                          | 4         | 4        | Ц                                            | 11                                                                                |
| 1140 |                                        | 16                                | 1                              | <del> </del> -                              |              | V           | -                   | k           | 4         |                |                                       | *             |                 |           | V             | _            | <u></u>      |          | <u> </u>    |                          | V         | 业        | <u>                                     </u> | 7                                                                                 |
| . }  |                                        | 17                                | $\rightarrow$                  |                                             | +0           | <del></del> | -                   |             | <u>H</u>  | OLE            | CA                                    | UE:           | 0 6             | 2         |               |              |              |          | 1.          |                          |           |          | - 1                                          |                                                                                   |
| ŀ    |                                        |                                   | $\langle \cdot \rangle$        |                                             |              |             | $\perp$             |             | <u>_3</u> | <u>'-</u>      | OFF                                   | 56            | T               |           |               |              |              |          |             |                          |           | T        |                                              | $\neg$                                                                            |
| 1    |                                        | 18                                |                                |                                             |              |             |                     |             | ک         | <u>'</u> '     | NE                                    |               |                 |           |               |              |              |          |             |                          |           | 一        | 一                                            | コ                                                                                 |
|      |                                        | 19                                |                                |                                             |              |             | 1                   | - 1         |           |                | -                                     |               |                 |           |               |              |              |          |             | $\neg$                   | 1         | $\dashv$ | $\exists$                                    | 1                                                                                 |
| L    |                                        | 20                                |                                |                                             |              |             | T                   | $\neg$      |           |                |                                       |               |                 |           | $\dashv$      |              | ·            |          |             |                          | -         | +        | $\dashv$                                     | $\dashv$                                                                          |
| į.   |                                        |                                   | $\overline{}$                  |                                             |              |             | T                   |             | 10        | A              | ( 3                                   | 30            | ' oF            |           | $\frac{1}{1}$ |              |              |          |             | $\dashv$                 | $\dashv$  | $\dashv$ | +                                            | $\dashv$                                                                          |
|      |                                        |                                   |                                |                                             |              |             | +                   | 7           | <u> </u>  |                |                                       |               |                 | ע־        |               | <u></u>      |              |          |             |                          | -         | $\dashv$ | -                                            | 4                                                                                 |
| I    |                                        | 1                                 | $\nearrow$                     |                                             | <b> </b>     |             | ╁                   | 1           |           |                |                                       |               | 15'             | 丁         | 4             | <u> </u>     | <b>Y</b> \$7 | 14       | पा          | OM                       | $\perp$   | $\bot$   | $\bot$                                       | _                                                                                 |
|      |                                        | +                                 | 1                              |                                             | -            | ····        | +                   | -           | (D =      | 1              |                                       |               | ·               | _         | $\perp$       |              |              |          |             |                          |           | $\perp$  | $\perp$                                      |                                                                                   |
| F    |                                        | +                                 | -                              |                                             | -            |             | $\bot$              | $\perp$     |           |                |                                       |               |                 |           |               |              |              |          |             |                          |           | T        |                                              | 7                                                                                 |
| Ļ    |                                        |                                   |                                |                                             |              |             |                     |             |           |                |                                       |               |                 |           |               |              |              |          |             |                          | 十         | 7        | 十                                            | 7                                                                                 |
| ••   | include r                              | nonitor                           | reading in                     | ock broker<br>6 foot int<br>SPHA-C          | lervals @    | borehol     | e. In               | creas       | e reac    | ling fre       | quency                                | if elec<br>BC |                 | ponse     | read.         |              | 8            | Back     | Dr<br>grou  | rilling<br>ınd (p        | Are       | a<br>):[ |                                              |                                                                                   |
| C    | onvert                                 | ed to                             | Well:                          | Ye                                          | es _         |             | _                   | ٨           | lo _      |                |                                       |               | Well            | I.D.      | #:_           |              |              |          |             |                          |           |          |                                              | _                                                                                 |

| <u> </u>         |                | IG LO    |          |                      |                                              |                |                                             |        | HA                                     | LLIBURTON NUS.      |
|------------------|----------------|----------|----------|----------------------|----------------------------------------------|----------------|---------------------------------------------|--------|----------------------------------------|---------------------|
|                  |                |          | 58-N     | · · ·                |                                              |                |                                             | BORING | NO.:                                   | AWLMW25             |
|                  |                |          |          | 2 <del>.</del>       |                                              |                | 1-20-94<br>EOLOGIST: <u>J. R. Ferb</u> us   |        | :_ <u>E</u> /                          | AST COAST THOMAS    |
| WA               | TER LE         | VEL DA   | TA:      | _1-20                |                                              |                |                                             |        |                                        |                     |
| 100              | 1              | 7        | iordons, | 7-20                 | 777                                          |                |                                             |        | —————————————————————————————————————— |                     |
| LAMPL            | 1 OPPN         | e.ow     |          |                      | 100                                          | MA             | TERIAL DESCRIPTION                          |        | Floor                                  |                     |
| ATM<br>OR<br>RQD | RUN            | 400      |          | CHANGE<br>(Dogen.R.) | Density<br>CONSISTENC<br>OR HOCK<br>MARDMESS | COLOR          | MATERIAL<br>CLASSIFICATION                  |        | USC3                                   | REMARKS             |
|                  | 0-1            | Ė        | ]        | 23.53                |                                              |                | Aspelt and grand Sep.                       | bose   |                                        | ·                   |
| i - 1            | 2-4            | 12       | 1-0      |                      | M.Dinac                                      | BROWN          | SILTY. Fine to COREST                       | cand   | <b>3</b> V                             | HNU- O 15:2:        |
|                  |                |          | ع,د      |                      |                                              | 1              | SOME GRANTITIC ROLK FRA                     |        |                                        | MOIST 15:27         |
| <u>-9</u>        | 4-6            | 3        |          | "                    | Loos€                                        |                |                                             |        | 1 1                                    | HNU-0 15:39         |
|                  | <b> </b>       | 3        |          | 1.0                  | ▽                                            | Brown          |                                             |        | SW                                     | WET (DROWE 2 SPOOKS |
| -3               | 6-8            |          | 1.6      | 0 0                  | Y.1005€                                      |                |                                             |        | sw.                                    | HNU - () 15:52      |
| al ·             | 8-10           | 1 3      | 5        | 7 ° ° [              |                                              | BROWN          |                                             |        | 54                                     | Wes                 |
|                  | B. 10          | 3 4      | 3.0      | 1 1                  |                                              | Brown<br>Brown |                                             |        | 3W                                     | NW-C 16:00          |
| 5                | 10-12          |          | .5       | 7. °."Г              | M. Deage                                     |                |                                             |        | $\neg \neg$                            | Wes /4:20           |
| _                |                | 36<br>10 | 2.0      | 0.0                  |                                              | Brown          |                                             |        |                                        | <i>ખે</i> લ         |
| 6                | 12-14          | 3<br>4   | 1.0      |                      |                                              | BROWN          |                                             |        | 5w                                     | HNU-0 16:34         |
| _                | 14-16          | 7        | 1.6      | 0-0                  | - T                                          | BROWN-         |                                             |        | SW                                     |                     |
| +                | 116            | -5-      | 2.0      |                      | .005E                                        | BLNCK          | Ψ                                           |        |                                        | HNU-O 16:42         |
| 3                | 16-18          | w :      | 2.0      | ~~                   |                                              | GRAY           | DREAMIC CLAYER SIGT. T. material, wood etc. |        |                                        |                     |
|                  |                | R<br>1   | 2.0      | 2                    |                                              | REGUL-<br>GRAY | <u>↓</u>                                    | T      |                                        | MO1-0 16:56         |
| $\perp$          | _              |          |          |                      |                                              |                | BOTTOM OF BORING                            | 18.0   |                                        |                     |
| +                | _              |          |          | <u> </u>             |                                              |                |                                             |        |                                        |                     |
| $\dashv$         |                |          |          | -                    |                                              |                |                                             |        | 4                                      |                     |
| 1                | $\dashv$       |          |          | -                    |                                              | -              |                                             |        | +                                      |                     |
| +                | 1              | 〓        |          | <b> </b>             |                                              | -+             |                                             |        | +                                      |                     |
| I                | -              |          |          |                      |                                              | _              |                                             |        | $\dashv$                               |                     |
| IARI             | cs _ <i>Rz</i> | c Cm     | £ 75 -   | FLOYD [              | 12035                                        |                |                                             |        |                                        | BORING JWMW35       |

PROJECT: !P STUDY NSB - M.ON
PROJECT NO: 1258-10
LOCATION: AREA A METLAND
DATE STARTED: 09/19/80
OATA COMPLETED: 09/19/790
ORILLING CONTRACTOR: EMPIRE-SOILS INVESTIGATIONS, INC.
ORILLER: CRAIG CONNER
CRILLING METHOD: AIR ROTARY
SAMPLING METHOD:

GROUND ELEVATION: 93.07
PROTECTIVE CASING ELEVATION: 92.69
WELL ELEVATION: 92.69
WATER LEVEL: 7.43 103/21/911
DATUM: SUBASE
WEATHER: 65'. CLEAR. SUNNY
INSPECTOR: AKMTER HOSSAIN AND LYNN METCALF
CHECKED 8Y: ERIK NESS



PROJECT: IR STUDY NSB - NLON
PROJECT NO: 1256-10
LICATION: AREA A METLAND
DATE STARTED: 09/19/90
DATA COMPLETED: 09/27/90
CRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.
CRILLING METHOD: AIR ROTARY
LAMPLING METHOD:

GROUND ELEVATION: 93.07
PROTECTIVE CASING ELEVATION: 92.69
MATER LEVEL: 7.43 (03/21/91)
DATUM: SUBASE
MEATHER: 65'. CLEAR SUNNY
INSPECTOR: ARHTER HOSSAIN AND LYNN METCALF
CHECKED BY: ERIK NESS

|   | 11                                   |       | HECOVER.                                       |      | 5     | OIL DES     | CRIPTIO                    | N    | (FT.) | VISI  | UAL<br>IAM.       |     | 141.515         | J61      |             | CONSTRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TION |
|---|--------------------------------------|-------|------------------------------------------------|------|-------|-------------|----------------------------|------|-------|-------|-------------------|-----|-----------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | SPLIT<br>SPOON I<br>LAMPLEI<br>SEPTH | ELOWS | EC.                                            | UNH: | 50101 | . SOIL, adm | ixture, moist<br>s. URIGIN | ure. | DEPTH | STAIN | SHE EN<br>HE A VY |     | SAMPLE ANALISIS |          | DEPTH (FT.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                      |       |                                                | -    |       |             |                            |      |       |       |                   |     |                 |          |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|   |                                      | ļ     |                                                | İ    |       |             | ,                          | ,    | 217   |       |                   |     |                 | <u></u>  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •    |
|   | i<br>:                               |       |                                                |      |       |             |                            |      |       |       |                   |     |                 |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| ÷ |                                      |       |                                                |      |       |             |                            |      |       |       |                   |     |                 |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •    |
|   | ľ                                    |       |                                                |      |       |             |                            |      | 26-   |       |                   |     |                 |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                      |       | •                                              | :    |       | •           |                            |      |       |       |                   | . ! |                 |          |             | Charles and the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are the charles are th |      |
|   |                                      |       | . :                                            | į    |       |             |                            |      |       |       |                   |     |                 | <u> </u> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                      | .     |                                                | !    |       |             |                            |      | 31-   |       |                   |     |                 |          |             | OPEN HOLE —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|   | :                                    |       |                                                |      |       |             |                            |      |       |       |                   |     |                 |          |             | OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|   |                                      |       |                                                |      |       |             |                            |      |       |       |                   |     | \\<br>\\<br>\\  |          |             | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|   | :                                    |       |                                                |      |       |             |                            |      | 36-   |       |                   |     |                 |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                      |       |                                                |      |       |             |                            |      |       |       |                   |     |                 |          |             | A CANALONS AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A CANALON AND A |      |
|   |                                      |       |                                                |      |       |             |                            |      |       |       |                   |     | ( )             |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|   |                                      |       |                                                |      |       |             |                            |      |       |       |                   |     | 1               | ->       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Ļ | 71.4                                 | AZTE  | <u>.                                      </u> |      |       |             |                            |      |       |       |                   |     |                 |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| A | LA                                   | NTIC  |                                                |      |       |             |                            |      |       |       |                   |     | . •             |          |             | Page 2 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16   |

PROJECT: IR STUDY NSB - NLON
PROJECT NO: 1258-10
LOCATION: AREA A METLAND
DATE STARTED: 09/19/80
DATA COMPLETED: 09/27/90
DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.
ORILLER: CRAIG CONNER
DRILLING METHOD: AIR ROTARY
SAMPLING METHOD:

GROUND ELEVATION: 93.07
PROTECTIVE CASING ELEVATION: 92.69
WELL ELEVATION: 92.69
WATER LEVEL: 7.43 (03/21/91)
DATUM: SUBASE
WEATHER: 65°. CLEAR SUNNY
INSPECTOR: AKHTER HOSSAIN AND LYNN METCALF

INSPECTOR: AKHTER HOSSAIN AND LYNN NETCALI CHECKED BY: ERIK NESS

WELL CONSTRUCTION VISIUAL RECOVERY (F1.) (FT.) SOIL DESCRIPTION LITHOLOGY SPLIT I SPOON I SAMPLEI DEPTH I color, SOIL, admixture, moisture, other notes, URIGIN EER 6 HNRI (moo! 42-62 Page 3 of 6

PROJECT: IR STUDY NSB - NLON
PROJECT NO: 1256-10
LOCATION AREA A WETLAND
DATE STARTED: 09/19/90
DATA COMPLETED: 09/27/80
DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.
DRILLING METHOD: AIR ROTARY
SAMPLING METHOD:

GROUND ELEVATION: 93.07
PROTECTIVE CASING ELEVATION: 92.69
WELL ELEVATION: 92.69
WATER LEVEL: 7.43 (03/21/91)
DATUM: SUBASE
MEATHER: .85°. CLEAR. SUNNY
://SPECTOR: AKM TER HOSSAIN AND LYNN METCALF
CHECKED BY: ERIK NESS



PROJECT: IR STUDY NSB - NLON
PROJECT NO: 1256-10
L'ICATION: AREA A WETLAND
DATE STARTED: 09/19/80
DATA COMPLETED: 09/27/90
DRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS, INC.
DRILLER: CRAIG CONNER
DRILLING METHOD: AIR ROTARY
SAMPLING METHOD:

GROUND ELEVATION: 93.07
PROTECTIVE CASING ELEVATION: 92.69
WELL ELEVATION: 92.69
WATER LEVEL: 7.43 (03/21/91)
DATUN: SUBASE
WEATHER: 65°, CLEAR, SUNNY
THISPECTOR: AKHTER HOSSAIN AND LYNN METCALF
CHECKED BY: ERIK NESS



FROJECT: IR STUDY NSB - NLON
FROJECT NO: 1256-10

JICATION: AREA A WETLAND
DATE STARTED: 09/19/90

CATA COMPLETED: 09/27/90

TRILLING CONTRACTOR: EMPIRE SOILS INVESTIGATIONS. INC
ESTILLER: CRAIG CONNER

GRILLING METHOD: AIR ROTARY

GROUND ELEVATION: 93.07
PROTECTIVE CASING ELEVATION: 92.69
WELL ELEVATION: 92.69
WATER LEVEL: 7 43 (03/21/91)
DATUM: SUBASE
WEATHER: 65'. CLEAR SUNNY
INSPECTOR: AKHTER HOSSAIN AND LYNN METCALF
CHECKED BY: ERIK NESS





Page \_\_\_ of \_\_\_

|                                     |                             |                               | E: NS                                   |                                                       |          |                              | 1 4      | -6-        | 17       | BORING NUMBER:            |          | NUS 23            | <del></del> ;                     |
|-------------------------------------|-----------------------------|-------------------------------|-----------------------------------------|-------------------------------------------------------|----------|------------------------------|----------|------------|----------|---------------------------|----------|-------------------|-----------------------------------|
| DRILL                               | ING C                       | OMF                           | ANY:<br>DATA:                           | SOIC                                                  |          |                              | 7.1      | אכ         | _        | GEOLOGIST: STA            |          | CONT              |                                   |
| F                                   |                             | <u> </u>                      |                                         | Γ                                                     |          |                              |          |            | ΛA       | TERIAL DESCRIPTION        | T        |                   |                                   |
| Sample<br>No. and<br>Type or<br>RGD | Depth<br>(FL) or<br>Run No. | Blows/<br>6° or<br>RQD<br>(%) | Sample<br>Recovery/<br>Sample<br>Langth | Litholog<br>Chang<br>(Depthif<br>or Screen<br>Interve | "L1      | Sell D.<br>Commel<br>Reak 16 | ency o   | Co         | ior      | , Meterial Classification | USCS     | Remarks           | FIO or<br>PID<br>Reading<br>(ppm) |
| S-1                                 | 0.0                         | 5/                            | 1.8/20                                  |                                                       |          | MD                           | æ        | Bei        | y_       | SILTY SAND - TR ROOTS/    | ΞM       | MOIST             | %                                 |
| 1350                                |                             | 13/3                          |                                         |                                                       |          |                              |          | _          | <u> </u> | 1 ROCK FRAG.              |          |                   |                                   |
| 5-2                                 |                             | 9/0                           | 1.7/2.0                                 |                                                       |          | MDE                          | NSE      |            | į<br>L   | SILTY SAND - SOME ROCK    | 5m       | MOIST             | 0/2                               |
| 1352                                | 4.0                         | 8/3<br>13                     |                                         |                                                       |          |                              |          |            | Ļ        | FRAG                      |          |                   |                                   |
| S-3                                 |                             | 8/6                           | 1.5/2.0                                 |                                                       |          | MŒ                           | Œ        |            |          | FINE TO MED SAND          | M        | DAMP + MOIST      | 19/4                              |
| 1405                                | 6.0                         | 1/5                           |                                         |                                                       | ı        | ا                            |          | ٦          |          |                           | Sp       |                   |                                   |
| 5-4                                 |                             | 1/2                           | 1-3/2.0                                 | ד                                                     | _        | MDE                          | RE       | IAT<br>490 | K<br>N   | SUTY F. MED SAND          | SM       | MOIST             | %2                                |
| 1407                                | 8.0                         | 3/8                           |                                         |                                                       | Н        |                              | <u> </u> |            | ,_       |                           | Sp       |                   |                                   |
| 5-5                                 | •                           | 9/8                           | 1.5/2.0                                 | 9.0                                                   | Ц        |                              |          | GRI        | ΔĽ       | <b>\</b>                  |          | MOIST > WET       | 9/4                               |
| 1415                                | 10.0                        | 2                             |                                         | HIT<br>HZO                                            |          | ١                            | 7        | 4          | 2-1-     | SILTY F SAND              | SM       | E 9'WET<br>SENT \ |                                   |
| 5-6                                 |                             | 36                            | 1.6%                                    | ≈9                                                    | , ,      | MÆ                           | ME       | Bei        | 3        | 4                         |          | SW50.23-08        |                                   |
| 1418                                | 12.0                        | 100                           |                                         |                                                       | N        |                              |          | GRA        | Ψ.       | SILTY VF SAND             | SM       | wer               | Ŏ                                 |
|                                     |                             |                               |                                         |                                                       | U        |                              |          |            |          |                           |          | ALMOST SAUDY STUT |                                   |
|                                     |                             |                               |                                         |                                                       |          |                              |          |            |          |                           |          |                   |                                   |
|                                     | 120                         |                               |                                         |                                                       |          | 7                            | 1        | V          | 7        | +                         |          |                   |                                   |
| ร-า                                 |                             | 45                            | 1-8/2.0                                 |                                                       |          | MDE                          | Œ        | TAV<br>BSZ |          | SILTY F SAND- SANDY       | SM       | WET               | %2                                |
| 1430                                | 17.0                        | 8                             |                                         | 17.0                                                  | Ц        | Ì                            | 7        |            |          | SICT                      | ML       |                   |                                   |
|                                     |                             |                               |                                         | -                                                     |          |                              |          |            |          |                           | <u> </u> | w/ layering       |                                   |
|                                     |                             | $\angle$                      |                                         |                                                       |          |                              |          |            |          |                           |          |                   |                                   |
|                                     |                             |                               |                                         |                                                       |          |                              |          |            |          | TI OT AZH                 |          |                   |                                   |
|                                     |                             |                               |                                         |                                                       |          |                              |          |            |          | SPOONS 7                  |          |                   |                                   |
|                                     |                             |                               |                                         | ·                                                     |          |                              | -        | ·          |          | SCREEN 7-17               |          |                   |                                   |
|                                     |                             |                               |                                         |                                                       |          |                              |          |            |          | SAND 5-17                 |          | •                 |                                   |
|                                     |                             |                               |                                         |                                                       |          |                              |          |            |          | PELLETS 3-5               |          |                   |                                   |
|                                     |                             |                               |                                         |                                                       |          |                              |          |            |          | FLUSH MT (GROUT TO S      | บย       | )                 |                                   |
| *When r                             | ock co                      | ring er                       | iter rock                               | broken                                                | ess      | 5.                           |          |            |          |                           |          |                   |                                   |
| CONVE                               |                             |                               |                                         | : <u> </u>                                            | Ýε       | es                           | _ No     | ;          |          | WELL I.D.#: HNUS          | -2       | 3                 |                                   |
| - /_inn /i                          |                             |                               | SFX                                     | UP                                                    |          | 1340                         | <u> </u> | JR.        | ٤.       | 9.                        | L        | B (SWLOK)         | ·                                 |
| Signatu                             | .co/c\.                     |                               | <del></del>                             | ·<br>—                                                | <u> </u> | <del>. ;</del>               |          |            |          |                           |          |                   | <u> </u>                          |

GROUNDWATER ELEVATIONS - ROUNDS 9 THROUGH 11
YEAR 3 GROUNDWATER MONITORING REPORT FOR AREA A LANDFILL
NSB-NLON, GROTON, CONNECTICUT

TABLE 4-4

|                         |                                    | Rou      | ind 9                              | Rou      | nd 10                              | Rot                 | ınd 11                             |
|-------------------------|------------------------------------|----------|------------------------------------|----------|------------------------------------|---------------------|------------------------------------|
| WELL                    | Reference Elevation <sup>(2)</sup> | Decer    | nber-01                            | Mar      | ch-02                              |                     | mber-02                            |
| ID                      | (feet)                             | Depth to | Groundwater                        | Depth to | Groundwater                        | Depth to            | Groundwater                        |
|                         |                                    | Water    | Elevation <sup>(2)</sup><br>(feet) | Water    | Elevation <sup>(2)</sup><br>(feet) | Water               | Elevation <sup>(2)</sup><br>(feet) |
| 4MW1S                   | 129.55                             | 9.9 🕊    | 119.65                             | 6.29 ⊁   | 123.26                             | 8.15                | 121.40                             |
| 2LMW20S                 | 86.83                              | 18.02    | 68.81                              | 15.81    | 71.02                              | 16.53               | 70.30                              |
| 2WMW21S                 | 76.31                              | 4.98     | 71.33                              | 4.33     | 71,98                              | 4.77                | 71.54                              |
| 3MW37S                  | 47.26                              | 3.79 卷   | 43.47                              | 3.61*    | 43.65                              | 3.65                | 43.61                              |
| 3MW12D <sup>(1)</sup>   | 47.22                              |          |                                    | ••       |                                    | 4.44 <sup>(3)</sup> | 42.78                              |
| 2WMW38DS                | 74.06                              | 7.61     | 66.45                              | 5.81     | 68.25                              | 7.93                | 66.13                              |
| 2WMW39DS                | 73.53                              | 3.4 *    | 70.13                              | 2.40 🛠   | 71.13                              | 3.31                | 70,22                              |
| 2WMW40DS                | 73.21                              | 3.81     | 69.40                              | 3.15     | 70.06                              | 3.79                | 69.42                              |
| 2WMW41DS                | 73.39                              | 3.24     | 70.15                              | 2.42     | 70.97                              | 2.89                | 70.50                              |
| 2WMW42DS                | 73.65                              | 2.5      | 71.15                              | 2.05     | 71.60                              | 2.64                | 71.01                              |
| 2WMW43DS                | 74.36                              | 3.28     | 71.08                              | 2.44     | 71.92                              | 2.90                | 71.46                              |
| 2WMW44DS                | 73.72                              | 2.29     | 71.43                              | 1.62     | 72.10                              | 2.00                | 71.72                              |
| 2WMW45DS                | 74.24                              | 2.95     | 71.29                              | 2.12     | 72.12                              | 2.60                | 71.72                              |
| 2WMW46DS                | 73.53                              | 2.28     | 71.25                              | 1.55 🗶   | 71.98                              | 1.97                | 71.56                              |
| 2WMW47DS                | 73.39                              | 2.37     | 71.02                              | 1.38     | 72.01                              | 1.75                |                                    |
| 2LMW29A <sup>(1)</sup>  | 91.37                              |          |                                    |          | 72.01                              | 8.91                | 71.64                              |
| 2LMW29F <sup>(1)</sup>  | 91.50                              |          |                                    |          |                                    | 10.56               | 82.46                              |
| 2LMW7S <sup>(1)</sup>   | 84.87                              |          |                                    |          |                                    | 11.85               | 80.94                              |
| 2LMW7D <sup>(1)</sup>   | 85.74                              |          |                                    |          |                                    | 6.65                | 73.02                              |
| 2LMW32F <sup>(1)</sup>  | 84.52                              |          |                                    |          |                                    |                     | 79.09                              |
| 2LMW32DS <sup>(1)</sup> | 84.17                              |          |                                    |          |                                    | 13.18               | 71.34                              |
| 2LMW32B <sup>(1)</sup>  | 84.81                              |          |                                    |          |                                    | 12.57<br>12.21      | 71.60<br>72.60                     |

<sup>1</sup> No water levels were taken in these wells during Rounds 9 and 10.

<sup>2</sup> Elevations based on Base 1982 Vertical Datum.

<sup>3</sup> Water level measured in December 2002.

TABLE 3-1

# MONITORING WELL CONSTRUCTION AND ROUND 4 WATER LEVEL INFORMATION YEAR 1 ANNUAL GROUNDWATER MONITORING REPORT FOR SITES 3 AND 7 .NSB-NLON, GROTON, CONNECTICUT

| Monitoring<br>Well | Northing (1) | Easting (1) | Ground Surface<br>Élev (ft) (2) |               |               | Screened Aquifer           |            | Screen Bottom | Screen Top    | Screen Bottom | Depth to                  | Groundwater                   |
|--------------------|--------------|-------------|---------------------------------|---------------|---------------|----------------------------|------------|---------------|---------------|---------------|---------------------------|-------------------------------|
| Site 3             |              |             | EIBV (II)                       | Elev (ft) (2) | Elev (ft) (2) |                            | Depth (ft) | Depth (ft)    | Elev (ft) (2) | Elev (ft) (2) | Water (ft) <sup>(3)</sup> | Elevation (ft) <sup>(3)</sup> |
| 2DMW16S            | 708522.1     | 1181411.1   | 33.21                           | 35.69         | 35.46         | Constitution (All 1997)    |            |               |               |               |                           |                               |
| 2DMW16D            | 708531.9     | 1181404.8   | 33.51                           |               |               | Overburden (Alluvium)      | 1.69       | 11.69         | 31.52         | 21.52         | 3.87                      | 31.59                         |
| 2DMW25S            | 708649.4     |             |                                 | 35.30         | NA NA         | Bedrock                    | 18.00      | 59.91         | 15.51         | -26.40        | 3.72                      | 31.58                         |
|                    |              | 1180952.5   | 31,09                           | 33.02         | 32.59         | Overburden (Fill)          | 5.50       | 10.50°        | 25.59         | 20.59         | 6.80                      | 25.79                         |
| 2DMW28D            | 708835.6     | 1180594.4   | 33.22                           | 33.22         | 33.01         | Bedrock                    | 26.00      | 136.00        | 7.22          | -102.78       | 16.11                     | 16.90                         |
| 2DMW29S            | 709579.0     | 1181082.1   | 32.59                           | 34.47         | 34.29         | Overburden (Alluvium)      | 6.00       | 16.00         | 26.59         | 16.59         | 8,57                      | 25.72                         |
| 3MW15S             | 709329.6     | 1180638.3   | 33.20                           | 33.24         | 32.86         | Overburden (Alluvium)      | 28.00      | 38.00         | 5.20          | -4.80         | 29.38                     | 3.48                          |
| 3MW151             | 709351.2     | 1180640.8   | 33.50                           | 33.53         | 33.10         | Overburden (Alluvium)      | 55.50      | 65.50         | -22.00        | -32.00        | 30.85                     | 2.25                          |
| 3MW16S             | 709908.8     | 1180730.0   | 36.10                           | 36.10         | 35.78         | Bedrock                    | 17.00      | 27.00         | 19.10         | 9.10          | 14.36                     | 21,42                         |
| 3MW16D             | 709899.8     | 1180723.2   | 36.20                           | 36.19         | 35.80         | Bedrock                    | 59.00      | 69.00         | -22.80        | -32.80        |                           |                               |
| Site 7             |              |             |                                 |               |               | Boarden                    | 1 00.00    | 03.00 1       | -22.00        | *32.60        | 22,12 🔆                   | 13.68                         |
| 7MW1D              | 709291.1     | 1182145.8   | 52.28                           | NA NA         | 51.69         | Bedrock                    | 14.20      | 25.20         | 38.08         | 27.08         | 8.98                      | 42.71                         |
| 7MW3S              | 709033.9     | 1181704.2   | 43.59                           | 43.59         | 43.32         | Overburden (Fill/Alluvium) | 6.90       | 16,90         | 36.69         | 26.69         | 5.60                      | 37.72                         |
| 7MW3I              | 709021.9     | 1181707.0   | 43.40                           | 45.38         | 45.21         | Overburden (Alluvium)      | 22.50      | 32.50         | 20.90         | 10.90         | 7.35                      | 37.86                         |
| 7MW5D              | 709280.3     | 1181887.3   | 54.43                           | 54.43         | 54,18         | Bedrock                    | 32.00      | 42.00         | 22.43         | 12.43         | 12.40*                    | 41.78                         |
| 7MW9S              | 709177.8     | 1181377.0   | 35.80                           | 35,77         | 35,40         | Overburden (Alluvium)      | 4.00       | 14.00         | 31.81         | 21.81         |                           |                               |
| 7MW12S             | 709075.9     | 1181805.7   | 44.10                           | 44.13         | 43.62         | Overburden (Fill/Alluvium) | 3.50       |               |               |               | 3.86                      | 31.54                         |
| 7MW12!             | 709070.3     | 1181808.8   | 44.20                           | 44.22         | 43.90         |                            |            | 13.50         | 40.60         | 30.60         | 3.26                      | 40.36                         |
| 7MW13S             | 708891.7     | 1181882.7   |                                 |               |               | Overbürden (Alluvium)      | 20.00      | 30.00         | 24.20         | 14,20         | 4.97                      | 38.93                         |
| / 11111 100 1      | 700091.7     | 1101002./   | 48.60                           | 50.79         | 50.58         | Overburden (Fill/Alluvium) | 6.50       | 16.50         | 42.10         | 32.10         | 8.91                      | 41,67                         |

<sup>1</sup> North American Datum (NAD) 83, Connecticut State Plane Coordinate System

<sup>2</sup> North American Vertical Datum (NAVD) 88 (NAVD 88 = 1982 Base Vertical Datum - 2.39 feet (3)). Vertical datum conversion factor of 2.39 feet was provided by NSB-NLON Public Works Department. 3 Water levels were measured on March 17th and 18th, 2007.

NA - Not available

Elev - Elevation

ft - Feet

#### TABLE 2-2

# WATER LEVEL MEASUREMENTS AND ELEVATIONS OCTOBER 2002 DGI BASEWIDE GROUNDWATER OU RI UPDATE/FS NSB-NLON, GROTON, CONNECTICUT

| Well Name  | Depth to Top of Monitored Interval (feet bgs) | Depth to<br>Bottom of<br>Monitored<br>Interval<br>(feet bgs) | Reference<br>Point<br>Elevation <sup>(1)</sup><br>(feet) | Reference<br>Point<br>Elevation <sup>(2)</sup><br>(feet) | Well<br>Diameter<br>(inches) | Aquiter Monitored        | October<br>2002<br>Depth to<br>Water<br>(feet) | October<br>2002 Water<br>Elevation <sup>(2)</sup><br>(feet) |
|------------|-----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------|--------------------------|------------------------------------------------|-------------------------------------------------------------|
| SITES 3/14 |                                               |                                                              |                                                          |                                                          |                              |                          | 1,100.7                                        |                                                             |
| 2DMW10D    | 10.00                                         | 26.09                                                        | 54.52                                                    | 52.13                                                    | 6                            | BEDROCK                  | 10.13                                          | 42.00                                                       |
| 2DMW11D    | 19.50                                         | 25.50                                                        | 53.20                                                    | 50.81                                                    | 6                            | BEDROCK                  | NM <sup>(3)</sup>                              | NA.                                                         |
| 2DMW11S    | 2.50                                          | 12.50                                                        | 46.85                                                    | 44.46                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 2.09                                           | 42.37                                                       |
| 2DMW15D    | 10.00                                         | 19.51                                                        | 44.09                                                    | 41.70                                                    | 6                            | BEDROCK                  | 7.32                                           | 34.38                                                       |
| 2DMW16D    | 18.00                                         | 59.91                                                        | 37.69                                                    | 35.30                                                    | 6                            | BEDROCK                  | 5.28                                           | 30.02                                                       |
| 2DMW16S    | 1.69                                          | 11.69                                                        | 37.85                                                    | 35.46                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 5.85                                           | 29.61                                                       |
| 2DMW23D    | 7.50                                          | 65.00                                                        | 83.38                                                    | 80.99                                                    | 6                            | BEDROCK                  | 30.41                                          | 50.58                                                       |
| 2DMW24D    | 25.00                                         | 45.00                                                        | 36.07                                                    | 33.68                                                    | 6                            | BEDROCK                  | 4.65                                           | 29.03                                                       |
| 2DMW24S    | 4.00                                          | 14.00                                                        | 36.29                                                    | 33.90                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | NM <sup>(4)</sup>                              | NA NA                                                       |
| 2DMW25D    | 18.00                                         | 40.00                                                        | 35.48                                                    | 33.09                                                    | 6                            | BEDROCK                  | 8.48                                           | 24.61                                                       |
| 2DMW25S    | 5.50                                          | 10.50                                                        | 34.98                                                    | 32.59                                                    | 2                            | OVERBURDEN (FILL)        | 8.12                                           | 24.47                                                       |
| 2DMW26D    | 30.00                                         | 40.00                                                        | 29.19                                                    | 26.80                                                    | 2                            | OVERBURDEN (ALLUVIUM))   | 10.51                                          | 16.29                                                       |
| 2DMW26S    | 8.00                                          | 18.00                                                        | 28.71                                                    | 26.32                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 6.63                                           | 19.69                                                       |
| 2DMW27D    | 20.00                                         | 205.00                                                       | 27.95                                                    | 25.56                                                    | 6                            | BEDROCK                  | 12.96                                          | 12.60                                                       |
| 2DMW28D    | 26.00                                         | 136.00                                                       | 35.40                                                    | 33.01                                                    | 6                            | BEDROCK                  | 16.95                                          | 16.06                                                       |
| 2DMW28S    | 17.00                                         | 22.00                                                        | 35.26                                                    | 32.87                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 18.23                                          | 14.64                                                       |
| 2DMW29S    | 6.00                                          | 16.00                                                        | 36.68                                                    | 34.29                                                    | 2 ,                          | OVERBURDEN (ALLUVIUM)    | 9.11                                           | 25.18                                                       |
| 2DMW30S    | 4.00                                          | 9.00                                                         | 33.11                                                    | 30.72                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 7.35                                           | 23.37                                                       |
| 3MW12D     | 20.00                                         | 25.00                                                        | 47.22                                                    | 44.83                                                    | 2                            | BEDROCK                  | 4.44                                           | 40.39 <sup>(5)</sup>                                        |
| 3MW14S     | 28.00                                         | 38.00                                                        | 36.81                                                    | 34.42                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 32.16                                          | 2.26                                                        |
| 14MW1S     | 4.00                                          | 14.00                                                        | 51.54                                                    | 49.05                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 5.01                                           | 44.04                                                       |
| 3TW27      | 1.00                                          | 6.00                                                         | 38.20                                                    | 35.81                                                    | <del>- i - </del>            | OVERBURDEN (ALLUVIUM)    | 5.86                                           | 29.95                                                       |
| 3TW28      | 1.70                                          | 6.70                                                         | 39.56                                                    | 37.17                                                    | 1.                           | OVERBURDEN (ALLUVIUM)    | 7.12                                           | 30.05                                                       |
| 3TW29      | 3.00                                          | 7.50                                                         | 38.96                                                    | 36.57                                                    | 1                            | OVERBURDEN (ALLUVIUM)    | 8.78                                           | 27.79                                                       |
| 3TW30      | 6.00                                          | 16.00                                                        | 37.81                                                    | 35.42                                                    | 1                            | OVERBURDEN (ALLUVIUM)    | 8.13                                           | 27.29                                                       |
| SITE 7     |                                               |                                                              |                                                          |                                                          |                              |                          | 0.10                                           | 27.23                                                       |
| 7MW10S     | 4.00                                          | 14.00                                                        | 43.42                                                    | 41.03                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 12.25                                          | 28.78                                                       |
| 7MW3D      | 23.80                                         | 33.80                                                        | 46.67                                                    | 44.28                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 8.90                                           | 35.38                                                       |
| SITE 20    |                                               |                                                              |                                                          |                                                          | ,                            |                          |                                                |                                                             |
| 2WCMW1S    | 8.00                                          | 18.00                                                        | 83.92                                                    | 81.53                                                    | 2                            | OVERBURDEN (FILL/DREDGE) | 12,10                                          | 69.43                                                       |
| 2WCMW2S    | 4.00                                          | 14.00                                                        | 86.16                                                    | 83.77                                                    | 2                            | OVERBURDEN (FILL)        | 4.57                                           | 79.20                                                       |
| 2WCMW3S    | 5.75                                          | 15.75                                                        | 85.95                                                    | 83.56                                                    | 2                            | OVERBURDEN (FILL/DREDGE) | 10.03                                          | 73.53                                                       |
| 2WMW4D     | 13.00                                         | 119.40                                                       | 92.69                                                    | 90:30                                                    | 6                            | BEDROCK                  | 6.14                                           | 84.16                                                       |
| SITE 15    |                                               |                                                              |                                                          |                                                          |                              |                          |                                                |                                                             |
| 15MW1D     | 36.00                                         | 46.00                                                        | 28.05                                                    | 25.66                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 10.24                                          | 15.42                                                       |
| 15MW1S     | 5.00                                          | 15.00                                                        | 28.08                                                    | 25.69                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 7.02                                           | 18.67                                                       |
| 15MW2S     | 5.00                                          | 15.00                                                        | 28.90                                                    | 26.51                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 7.82                                           | 18.69                                                       |
| 15MW3S     | 5.00                                          | 15.00                                                        | 26.26                                                    | 23.87                                                    | 2                            | OVERBURDEN (ALLUVIUM)    | 5.81                                           | 18.06                                                       |
| 15TW01     | 5.00                                          | 15.00                                                        | 29.62                                                    | 27.23                                                    | 1                            | OVERBURDEN (ALLUVIUM)    | 8.45                                           | 18.78                                                       |
| 15TW02     | 5.00                                          | 15.00                                                        | 29.09                                                    | 26.70                                                    | 1                            | OVERBURDEN (ALLUVIUM)    | 7.98                                           | 18.72                                                       |
| 15TW03     | 5.00                                          | 15.00                                                        | 27.52                                                    | 25.13                                                    | 1                            | OVERBURDEN (ALLUVIUM)    | 6.49                                           | 18.64                                                       |

#### Notes

- 1 Elevation based on Base 1982 Vertical Datum.
- 2 Elevation based on NAVD 1988.
- 3 A water level measurement could not be taken at monitoring well 2DMW24S because it could not be located. It was assumed to have been destroyed.
- 4 A water level measurement could not be taken at monitoring well 2DMW11D because it was destroyed.
- 5 Measured on 12/04/02.

bgs = Below ground surface.

NA = Not applicable.

NM = No Measurement,

### TABLE 2-2

#### WATER TABLE ELEVATION SUMMARY - JUNE 2000 BASEWIDE GROUNDWATER OU RI NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 3

| Well Name      | Depth to<br>Top of<br>Screen<br>(Feet) | Depth to<br>Bottom of<br>Screen<br>(Feet) | Top of<br>Casing<br>Elevation<br>1982<br>Datum | Top of<br>Casing<br>Elevation<br>1988<br>Datum | Well<br>Diameter | Aquifer Monitored              | Depth to<br>Water<br>(feet)<br>June<br>2000 | Water<br>Elevation<br>(ft-ms!)*<br>June<br>2000 |
|----------------|----------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------|--------------------------------|---------------------------------------------|-------------------------------------------------|
| 7MW4S          | 4.00                                   | 14.00                                     | 46.84                                          | 44.45                                          | 2                | BEDROCK                        | 2.08                                        | 42.37                                           |
| 7MW50          | 32.00                                  | 42.00                                     | 56.57                                          | 54.18                                          | 2                | BEDROCK                        | 11.84                                       | 42.34                                           |
| 7MW5S          | 7.00                                   | 17.00                                     | 56.62                                          | 54.23                                          | 2                | OVERBURDEN (ALLUVIUM)/ BEDROCK | 11.9                                        | 42.33                                           |
| 7MW6S          | 4.00                                   | 14.00                                     | 46.65                                          | 44.26                                          | 2                | OVERBURDEN (ALLUVIUM)          | 3.97                                        | 40.29                                           |
| 7MW7S          | 5.50                                   | 15.50                                     | 46.57                                          | 44.18                                          | 2                | BEDROCK                        | 1,87                                        | 42.31                                           |
| 7MW8S          | 3.00                                   | 13.00                                     | 42.10                                          | 39.71                                          | 2                | OVERBURDEN (ALLUVIUM)          | 3.81                                        | 35.90                                           |
| 7MW9S          | 4.00                                   | 14.00                                     | 37.91                                          | 35.52                                          | 2                | OVERBURDEN (ALLUVIUM)          | 4.48                                        | 31.04                                           |
| B325-MW1       | 3.00                                   | 13.00                                     | 47.23                                          | 44.84                                          | 2                | OVERBURDEN/BEDROCK             | 2.53                                        | 42.31                                           |
| B325-MW3       | 2.50                                   | 12.50                                     | 46.05                                          | 43.66                                          | 2                | OVERBURDEN                     | 1.24                                        | 42.42                                           |
| B325-MW4       | 4.00                                   | 14.00                                     | 46.88                                          | 44.49                                          | 2                | OVERBURDEN                     | 3.42                                        | 41.07                                           |
| SOUTHERN R     |                                        |                                           |                                                |                                                |                  |                                | 7                                           |                                                 |
| 8MW1           | 6.40                                   | 16.40                                     | 10.15                                          | 7.76                                           | 2                | OVERBURDEN (FILL)              | 8.37                                        | -0.61                                           |
| 8MW2D          | 54.00                                  | 64.00                                     | 9.77                                           | 7.38                                           | 2                | OVERBURDEN (ALLUVIUM)          | 7.18                                        | 0.20                                            |
| 8MW2S          | 5.90                                   | 15.90                                     | 9.43                                           | 7.04                                           | 2                | OVERBURDEN (FILL)              | 6.52                                        | 0.52                                            |
| 8MW3           | 5.80                                   | 15.80                                     | 8.96                                           | 6.57                                           | 2                | OVERBURDEN (FILL)              | 6.09                                        | 0.48                                            |
| 8MW4           | 5.40                                   | 14.40                                     | 9.34                                           | 6.95                                           | 2                | OVERBURDEN (FILL)              | 6.14                                        | 0.81                                            |
| 8MW5S<br>8MW6D | 60.00                                  | 16.00<br>70.00                            | 10.94                                          | 8.55<br>7.23                                   | 2                | OVERBURDEN (FILL)              | 9.03                                        | -0.48                                           |
| 8MW6S          | 4.00                                   | 14.00                                     | 9.62<br>9.66                                   | 7.23                                           | 2                | OVERBURDEN (ALLUVIUM)          | 7.15                                        | 0.08                                            |
| 8MW8D          | 48.00                                  | 78.00                                     | 19.53                                          | 17.14                                          | 2                | OVERBURDEN (FILL) BEDROCK      | 6.43                                        | 0.84                                            |
| 8MW8S          | 7.00                                   | 17.00                                     | 19.68                                          | 17.29                                          | 2                | OVERBURDEN (ALLUVIUM)/ BEDROCK | 16.58                                       | 0.56<br>2.62                                    |
| 15MW1D         | 36.00                                  | 46.00                                     | 28.05                                          | 25.66                                          | 2                | OVERBURDEN (ALLUVIUM)          | 14.67<br>9.22                               | 16.44                                           |
| 15MW1S         | 5.00                                   | 15.00                                     | 28.08                                          | 25.69                                          | 2                | OVERBURDEN (ALLUVIUM)          | 3.87                                        | 21.82                                           |
| 15MW2S         | 5.00                                   | 15.00                                     | 28.90                                          | 26.51                                          | 2                | OVERBURDEN (ALLUVIUM)          | 4.61                                        | 21.90                                           |
| 15MW3S         | 5.00                                   | 15.00                                     | 26.26                                          | 23.87                                          | 2                | OVERBURDEN (ALLUVIUM)          | 4.38                                        | 19.49                                           |
| 23MW01D        | 50.00                                  | 56.50                                     | 36.83                                          | 34.44                                          | 2                | BEDROCK                        | 3.85                                        | 30.59                                           |
| 23MW02D        | 18.60                                  | 28.50                                     | 23.19                                          | 20.80                                          | 8                | BEDROCK                        | 3.72                                        | 17.08                                           |
| 23MW03D        | 39.00                                  | 55.00                                     | 22.91                                          | 20.52                                          | 8                | BEDROCK                        | 1.1                                         | 19.42                                           |
| ERM-1          | 3.54                                   | 13.04                                     | 22.49                                          | 20.10                                          | 2                | OVERBURDEN (FILL)              | 4.25                                        | 15.85                                           |
| ERM-13         | 5.50                                   | 14.55                                     | 25.52                                          | 23.13                                          | 2                | OVERBURDEN (FILL)              | 6.02                                        | 17.11                                           |
| ERM-14         | 5.50                                   | 14.28                                     | 25.21                                          | 22.82                                          | 2                | OVERBURDEN (FILL)              | 5.69                                        | 17.13                                           |
| ERM-15         | 2.25                                   | 11.25                                     | 22.63                                          | 20.24                                          | 2                | OVERBURDEN (FILL)              | 3.46                                        | 16.78                                           |
| ERM-17         | 2.72                                   | 11.72                                     | 22.15                                          | 19.76                                          | 2                | OVERBURDEN (FILL)              | 4.09                                        | 15.67                                           |
| ERM-19         | 2.81                                   | 11.81                                     | 22.03                                          | 19.64                                          | 2                | OVERBURDEN (FILL)              | 4.13                                        | 15.51                                           |
| ERM-2          | 3.71                                   | 13.21                                     | 21.46                                          | 19.07                                          | 2                | OVERBURDEN (FILL)              | 3.81                                        | 15.26                                           |
| HNUS-10        | 5.00                                   | 15.00                                     | 23.25                                          | 20.86                                          | 2                | OVERBURDEN (FILL)              | 8.81                                        | 12.05                                           |
| HNUS-11        | 5.00                                   | 15.00                                     | 22.23                                          | 19.84                                          | 2                | OVERBURDEN (FILL)              | 8.63                                        | 11.21                                           |
| HNUS-12        | 5.00                                   | 15.00                                     | 26.47                                          | 24.08                                          | 2                | OVERBURDEN (FILL)              | 2.68                                        | 21.40                                           |
| HNUS-13        | 5.00                                   | 15.00                                     | 25.71                                          | 23.32                                          | 2                | OVERBURDEN (FILL)              | 1.22                                        | 22.10                                           |
| HNUS-15        | 5.00                                   | 15.00                                     | 23.13                                          | 20.74                                          | 2                | OVERBURDEN (FILL)              | 4.94                                        | 15.80                                           |
| HNUS-2         | 4.00                                   | 14.00                                     | 20.70                                          | 18.31                                          | 2                | OVERBURDEN (FILL)              | 4.82                                        | 13.49                                           |
| HNUS-21        | 5.00                                   | 15.00                                     | 22.35                                          | 19.96                                          | 2                | OVERBURDEN (FILL)              | 7                                           | 12.96                                           |
| HNUS-22        | 10.00                                  | 20.00                                     | 27.70                                          | 25.31                                          | 2                | OVERBURDEN (FILL)              | 9.78                                        | 15.53                                           |
| HNUS-23        | 7.00                                   | 17.00                                     | 20.42                                          | 18.03                                          | 2                | OVERBURDEN (FILL)              | 6.93-                                       | 11.10                                           |
| HNUS-24        | 5.00                                   | 15.00                                     | 27.11                                          | 24.72                                          | 2                | OVERBURDEN (FILL)              | 10.71                                       | 14.01                                           |
| HNUS-4         | 4.00                                   | 14.00                                     | 21.24                                          | 18.85                                          | 2                | OVERBURDEN (FILL)              | 4.32                                        | 14.53                                           |
| HNUS-5         | 4.00                                   | 14.00                                     | 21.35                                          | 18.96                                          | 2                | OVERBURDEN (FILL)              | 4.22                                        | 14.74                                           |
| LOWER SUBA     |                                        |                                           |                                                |                                                |                  |                                |                                             |                                                 |
| 6MW1S          | 4.00                                   | 14.00                                     | 8.63                                           | 6.24                                           | 2                | OVERBURDEN (FILL)              | 5.9                                         | 0.34                                            |
| 6MW2D          | 77.00                                  | 87.00                                     | 7.85                                           | 5.46                                           | 2                | OVERBURDEN (ALLUVIUM)          | 4.51                                        | 0.95                                            |
| 6MW2S          | 3.20                                   | 13.20                                     | 7.30                                           | 4.91                                           | 2                | OVERBURDEN (FILL/DREDGE)       | 4.5                                         | 0.41                                            |
| 6MW6D          | 28.00                                  | 42.00                                     | 12.50                                          | 10.11                                          | 6                | BEDROCK                        | 8.99                                        | 1.12                                            |
| 6MW6S          | 6.00                                   | 16.00                                     | 12.16                                          | 9.77                                           | 2                | OVERBURDEN (FILL)              | 8.65                                        | 1.12                                            |
| 13MW12         | 5.30                                   | 15.30                                     | 9.21                                           | 6.82                                           | 2                | OVERBURDEN (FILL)              | 6.34                                        | 0.48                                            |
| 13MW14         | 4.80                                   | 14.80                                     | 7.98                                           | 5.59                                           | 2 .              | OVERBURDEN (FILL)              | 5.02                                        | 0.57                                            |

### TABLE 2-3

### SUMMARY OF WATER ELEVATIONS - AUGUST 2000 BASEWIDE GROUNDWATER OU RI NSB-NLON, GROTON, CONNECTICUT PAGE 2 OF 3

| Well Name     | Depth to<br>Top of<br>Screen<br>(Feet) | Depth to<br>Bottom of<br>Screen<br>(Feet) | Top of<br>Casing<br>Elevation<br>1982<br>Datum | Top of<br>Casing<br>Elevation<br>1988<br>Datum | Well<br>Diameter | Aquifer Monitored                        | Depth to<br>Water<br>(feet)<br>August<br>2000 | Water<br>Elevation<br>(ft-msl)*<br>August<br>2000 |
|---------------|----------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| 7MW7S         | 5.50                                   | 15.50                                     | 46.57                                          | 44.18                                          | 2                | BEDROCK                                  | 2.45                                          | 41.73                                             |
| 7MW8S         | 3.00                                   | 13.00                                     | 42.10                                          | 39.71                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 5.84                                          | 33.87                                             |
| 7MW9S         | 4.00                                   | 14.00                                     | 37.91                                          | 35.52                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 5.88                                          | 29.64                                             |
| B325-MW1      | 3.00                                   | 13.00                                     | 47.23                                          | 44.84                                          | 2                | OVERBURDEN/BEDROCK                       | 3.15                                          | 41.69                                             |
| B325-MW3      | 2.50                                   | 12.50                                     | 46.05                                          | 43.66                                          | 2                | OVERBURDEN                               | 1.87                                          | 41.79                                             |
| B325-MW4 ·    | 4.00                                   | 14.00                                     | 46.88                                          | 44.49                                          | 2                | OVERBURDEN                               | 4.07                                          | 40.42                                             |
| 14MW1S        | 4.00                                   | 14.00                                     | 51.44                                          | 49.05                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 5.32                                          | 43.73                                             |
| SOUTHERN REGI |                                        |                                           |                                                |                                                |                  |                                          |                                               |                                                   |
| BMW1          | 6.40                                   | 16.40                                     | 10.15                                          | 7.76                                           | 2                | OVERBURDEN (FILL)                        | 8.70                                          | -0.94                                             |
| 8MW10S        | 14.50                                  | 21.50                                     | 21.61                                          | 19.22                                          | 2                | BEDROCK                                  | 16.35                                         | 2.87                                              |
| BMW2D         | 54.00                                  | 64.00                                     | 9.77                                           | 7.38                                           | 2                | OVERBURDEN (ALLUVIUM)                    | 7.65                                          | -0.27                                             |
| BMW2S<br>BMW3 | 5.90                                   | 15.90                                     | 9.43                                           | 7.04                                           | 2                | OVERBURDEN (FILL)                        | 7.03                                          | 0.01                                              |
| BMW4          | 5.80                                   | 15.80                                     | 8.96                                           | 6.57                                           | 2                | OVERBURDEN (FILL)                        | 6.53                                          | 0.04                                              |
| BMW5S         | 5.40                                   | 14.40                                     | 9.34                                           | 6.95                                           | 2                | OVERBURDEN (FILL)                        | 6.67                                          | 0.28                                              |
| BMW6D         | 6.00                                   | 16.00                                     | 10.94                                          | . 8.55                                         | 2                | OVERBURDEN (FILL)                        | 9.30                                          | -0.75                                             |
| BMW6S         | 60.00                                  | 70.00                                     | 9.62                                           | 7.23                                           | 2                | OVERBURDEN (ALLUVIUM)                    | 7.70                                          | -0.47                                             |
| BMW8D         | 4.00<br>48.00                          | 14.00                                     | 9.66                                           | 7.27                                           | 2                | OVERBURDEN (FILL)                        | 6.96                                          | 0.31                                              |
| BMW8S         | 7.00                                   | 78.00<br>17.00                            | 19.53                                          | 17.14                                          | 2                | BEDROCK                                  | 16.81                                         | 0.33                                              |
| BMW9S         | 14.00                                  | 19.00                                     | 19.68                                          | 17.29                                          | 2                | OVERBURDEN (ALLUVIUM)/ BEDROCK           | 15.24                                         | 2.05                                              |
| 15MW1D        | 36.00                                  | 46.00                                     | 21.40<br>28.05                                 | 19.01<br>25.66                                 | 2                | BEDROCK                                  | 15.93                                         | 3.08                                              |
| 15MW1S        | 5.00                                   | 15.00                                     | 28.08                                          | 25.69                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 9.98                                          | 15.68                                             |
| 15MW2S        | 5.00                                   | 15.00                                     | 28.90                                          | 26.51                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 5.58                                          | 20.11                                             |
| 15MW3S        | 5.00                                   | 15.00                                     | 26.26                                          | 23.87                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 6.36                                          | 20.15                                             |
| 23MW01D       | 50.00                                  | 56.50                                     | 36.83                                          | 34.44                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 4.49                                          | 19.38                                             |
| 23MW01S       | 6.00                                   | 16.00                                     | 37.25                                          | 34.86                                          | 2                | BEDROCK OVERBURDEN (ALLUVIUM)            | 4.65                                          | 29.79                                             |
| 23MW02D       | 18.60                                  | 28.50                                     | 23.19                                          | 20.80                                          | 8                | BEDROCK                                  | 6.64                                          | 28.22                                             |
| 23MW02S       | 4.00                                   | 14.00                                     | 23.35                                          | 20.96                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 6.11                                          | 14.69                                             |
| 3MW03D        | 39.00                                  | 55.00                                     | 22.91                                          | 20.52                                          | 8                | BEDROCK                                  | 6.09                                          | 14.87                                             |
| 3MW04D        | 65.50                                  | 95.50                                     | 21.89                                          | 19.50                                          | 2                | BEDROCK                                  | 7.19<br>7.44                                  | 13.33                                             |
| 3MW04S        | 45.00                                  | 55.00                                     | 21.56                                          | 19.17                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 8.11                                          | 12.06                                             |
| INUS-11       | 5.00                                   | 15.00                                     | 22.23                                          | 19.84                                          | 2                | OVERBURDEN (FILL)                        | 8.88                                          | 11.06                                             |
| INUS-13       | 5.00                                   | 15.00                                     | 25.71                                          | 23.32                                          | 2                | OVERBURDEN (FILL)                        | 4.51                                          | 10.96<br>18.81                                    |
| INUS-2        | 4.00                                   | 14.00                                     | 20.70                                          | 18.31                                          | 2                | OVERBURDEN (FILL)                        | 5.47                                          | 12.84                                             |
| INUS-20       | 5.00                                   | 15.00                                     | 22.51                                          | 20.12                                          | 2                | OVERBURDEN (FILL)                        | 8.24                                          | 11.88                                             |
| INUS-23       | 7.00                                   | 17.00                                     | 20.42                                          | 18.03                                          | 2                | OVERBURDEN (FILL)                        | 8.89                                          | 9.14                                              |
| OWER SUBASE I | WELLS                                  |                                           |                                                |                                                |                  | OVER IDOVIDEN (I ICE)                    | 0.03                                          | 3.14                                              |
| OMW14         | 3.20                                   | 10.20                                     | 12.68                                          | 10.29                                          | 2                | OVERBURDEN(FILL/ALLUVIUM)                | 9.35                                          | 0.94                                              |
| W1-7RI        | 5.00                                   | 9.00                                      | 8.11                                           | 5.72                                           | 2                | OVERBURDEN(FILL)                         | 5.50                                          | 0.22                                              |
| W2-3RI        | 3.00                                   | 8.00                                      | 7.78                                           | 5.39                                           | 2                | OVERBURDEN(FILL)                         | 5.94                                          | -0.55                                             |
| W2-6RI        | 3.00                                   | 8.00                                      | 6.02                                           | 3.63                                           | 2                | OVERBURDEN(FILL)                         | 3.00                                          | 0.63                                              |
| IW3-6RI       | 3:00                                   | 8.00                                      | 6.31                                           | 3.92                                           | 2                | OVERBURDEN(FILL)                         | 3.31                                          | 0.61                                              |
| W3-7RI        | 3.00                                   | 8.00                                      | 6.66                                           | 4.27                                           | 2                | OVERBURDEN(FILL)                         | 3.88                                          | 0.39                                              |
| IW4-6RI       | 3.00                                   | 8.00                                      | 6.90                                           | 4.51                                           | 2                | OVERBURDEN(FILL)                         | 3.92                                          | 0.59                                              |
| W4-7RI        | 3.00                                   | 8.00                                      | 8.06                                           | 5.67                                           | 2                | OVERBURDEN(FILL)                         | 5.50                                          |                                                   |
| ESO10         | 4.30                                   | 9.30                                      | 8.10                                           | 5.71                                           | 2                | OVERBURDEN (ALLUVIUM)                    |                                               | 0.17                                              |
| 3MW1          | 7.49                                   | 17.49                                     | 13.36                                          | 10:97                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 6.02<br>10.11                                 | -0.31                                             |
| 3MW10         | 5.00                                   | 15.00                                     | 8.44                                           | 6.05                                           | 2                | OVERBURDEN (ALLUVIUM)                    |                                               | 0.86                                              |
| 3MW12         | 5.30                                   | 15.30                                     | 9.21                                           | 6.82                                           | 2                | OVERBURDEN (ALLOVIOM)                    | 6.12                                          | -0.07                                             |
| 3MW14         | 4.80                                   | 14.80                                     | 7.98                                           | 5.59                                           | 2                | OVERBURDEN (FILL)                        |                                               | 0.44                                              |
| 3MW19         | 5.00                                   | 15.00                                     | 8.05                                           | 5.66                                           | 2                | OVERBURDEN (FILL)                        | 6.60                                          | -1.01                                             |
| BMW2          | 7.67                                   | 17.67                                     | 12.80                                          | 10.41                                          | 2                | OVERBURDEN (ALLUVIUM)                    | 4.58                                          | 1.08                                              |
| BMW20         | 3.00                                   | 13.00                                     | 10.45                                          | 8.06                                           | 2                | OVERBURDEN (ALLOVIUM)  OVERBURDEN (FILL) | 9.49                                          | 0.92                                              |
| BMW21         | 5.00                                   | 15.00                                     | 8.70                                           | 6.31                                           | 2                |                                          | 7.12                                          | 0.94                                              |
| змуз          | 7.36                                   | 17.36                                     | 12.89                                          | 10.50                                          | 2 .              | OVERBURDEN (FILL) OVERBURDEN (ALLUVIUM)  | 5.33                                          | 0.98                                              |

# APPENDIX B.6 SITE 7 - TORPEDO SHOPS SOIL DATA

# SUMMARY OF SITE 3 SOIL DATA -AREA A DOWNSTREAM BASEWIDE GROUDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GRORON, CONNECTICUT

## PAGE 1 OF 1

| location                     | 3SB14S3     | 3SB29D0     | 3SB29D1     |
|------------------------------|-------------|-------------|-------------|
| matrix                       | SB          | SB          | SB          |
| sample                       | S3SB14S3234 | S3SB29D0911 | S3SB29D1012 |
| depth                        | 32-34       | 09-11       | 10-12       |
| sample_date                  | 6/22/00     | 6/13/00     | 6/23/00     |
| validated                    | TRUE        | TRUE        | TRUE        |
| cto_proj                     | 312         | 312         | 312         |
| proj_manager                 | CERCONE, D. | CERCONE, D. | CERCONE, D. |
| Grain Size (%)               |             |             |             |
| SIEVE # 10                   |             | 100         |             |
| SIEVE # 100                  |             | 94.44       |             |
| SIEVE # 200                  |             | 66.05       |             |
| SIEVE # 4                    |             | 100         |             |
| SIEVE # 40                   |             | 99.07       |             |
| SIEVE # 50                   |             | 98.61       |             |
| SIEVE 1-1/2"                 |             | 100         |             |
| SIEVE 1/2"                   |             | 100         |             |
| SIEVE 3"                     | · ·         | 100         |             |
| SIEVE 3/4"                   |             | 100         |             |
| SIEVE 3/8"                   |             | 100         |             |
| Miscellaneous Parameters     |             |             |             |
| BULK DENSITY (LB/CU FT)      |             | 112.22      |             |
| PH                           |             | 6.96        |             |
| POROSITY (N)                 |             | 0.3306      |             |
| SPECIFIC GRAVITY             |             | 2.69        |             |
| TOTAL ORGANIC CARBON (MG/KG) | 109 U       |             | 123 U       |

$$112.22 \frac{16}{ft^3} \Rightarrow 1.89 \frac{9}{cm^3}$$

$$Conv. = 0.016$$
FACTOR

# APPENDIX B.2

SITE 3 - AREA A DOWNSTREAM SOIL DATA

# SUMMARY OF SITE 7 SOIL DATA - TORPEDO SHOPS BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONNECTICUT

PAGE 1 OF 1

| location                 | 7SB01       |
|--------------------------|-------------|
| matrix                   | SB          |
| sample                   | S7SB010912  |
| sacode                   | NORMAL      |
| depth                    | 09-12       |
| sample_date              | 6/13/00     |
| validated                | TRUE        |
| cto_proj                 | 312         |
| proj_manager             | CERCONE, D. |
| Grain Size (%)           |             |
| SIEVE # 10               | 35.38       |
| SIEVE # 100              | 27.44       |
| SIEVE # 200              | 19.49       |
| SIEVE # 4                | 45.71       |
| SIEVE # 40               | 30.99       |
| SIEVE # 50               | 29.82       |
| SIEVE 1-1/2"             | 100         |
| SIEVE 1/2"               | 63.77       |
| SIEVE 3°                 | , 100       |
| SIEVE 3/4°               | 100         |
| SIEVE 3/8°               | 58.69       |
| Miscellaneous Parameters |             |
| BULK DENSITY (LB/FT)     | 98.77       |
| PH                       | 8.33        |
| POROSITY(N)              | 0.3736      |
| SPECIFIC GRAVITY         | 2.53        |

$$98.77 \frac{16}{43} \Rightarrow 1.58 = 1.68 \text{ g/cm}^3$$

$$\begin{bmatrix} \text{Conv.} & = 0.016 \\ \text{FACTOR} & \end{bmatrix}$$

**APPENDIX B.17** 

SITE 23 - TANK FARM SOIL DATA

### SUMMARY OF SITE 23 SOIL DATA TANK FARM BASEWIDE GROUNDWATER OPERABLE UNIT REMEDIAL INVESTIGATION NSB-NLON, GROTON, CONNECTICUT

### PAGE 1 OF 1

| site                        | 23           | 23           |
|-----------------------------|--------------|--------------|
| location                    | 23SB02S      | 23SB04S      |
| matrix                      | SB           | SB           |
| sample                      | S23SB02S0810 | S23SB04S1012 |
| depth                       | 08-10        | 10-12        |
| sample_date                 | 6/13/00      | 6/13/00      |
| validated                   | TRUE         | TRUE         |
| cto_proj                    | 312          | . 312        |
| proj_manager                | CERCONE, D.  | CERCONE, D.  |
| Grain Size (%)              |              |              |
| SIEVE # 10                  | 87.69        | 97.51        |
| SIEVE # 100                 | 40.62        | 39.98        |
| SIEVE # 200                 | 25.12        | 17.01        |
| SIEVE # 4                   | 92.55        | 98.70        |
| SIEVE # 40                  | 65.74        | 87.00        |
| SIEVE # 50                  | 57.20        | 79.31        |
| SIEVE 1-1/2"                | 100          | 100          |
| SIEVE 1/2"                  | 98.41        | 100          |
| SIEVE 3"                    | 100          | 100          |
| SIEVE 3/4"                  | 100          | 100          |
| SIEVE 3/8"                  | 97.22        | 99.57        |
| Miscellaneous Parameters    | <u> </u>     |              |
| BULK DENSITY (LB/CU FT)     | 90.83        | 90.75        |
| PH                          | 5.96         | 7.46         |
| SPECIFIC GRAVITY            | 2.54         | 2.68         |
| OTAL ORGANIC CARBON (MG/KG) | 125 U        | 126 U        |
| POROSITY (N)                | 0.4263       | 0.4567       |

$$90.8 \frac{16}{4^3} \Rightarrow 1.5 \frac{9}{0m^3}$$

$$\begin{bmatrix} conv. = 0.016 \end{bmatrix}$$

ATTACHMENT B
VAPOR INTRUSION MODELING PRINTOUTS

SITE 2
AREA A UPGRADIENT

RESIDENTIAL

| GW-ADV           | CALCULATE RIS                                                                                                            | SK-BASED GROU                                                                                                       | JNDWATER CONC                                                                              | ENTRATION (en                                                                           | ter "X" in "YES" bo                                                                          | x)                                                                                                        |                                          |                                |                                                                                           |                           |                           |                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|---------------------------|---------------------------|-----------------------------|
| rsion 3.1; 02/04 |                                                                                                                          | YES                                                                                                                 |                                                                                            | 1                                                                                       |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
| Reset to         |                                                                                                                          | 123                                                                                                                 | OR                                                                                         | J                                                                                       |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
| Defaults         | CALCULATE IN                                                                                                             | CREMENTAL RIS                                                                                                       |                                                                                            | GROUNDWAT                                                                               | ER CONCENTRATI                                                                               | ON (enter "X" in "YE!                                                                                     | S" box and initial grou                  | ndwater conc. be               | low)                                                                                      |                           |                           |                             |
|                  |                                                                                                                          | YES                                                                                                                 | X                                                                                          | 1                                                                                       |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  |                                                                                                                          | 153                                                                                                                 |                                                                                            | J                                                                                       |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  | ENTER                                                                                                                    | ENTER                                                                                                               |                                                                                            |                                                                                         |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  | Chemical                                                                                                                 | Initial groundwater                                                                                                 |                                                                                            |                                                                                         |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  | CAS No.                                                                                                                  | conc.,                                                                                                              |                                                                                            |                                                                                         |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  | (numbers only,<br>no dashes)                                                                                             | C <sub>w</sub><br>(μg/L)                                                                                            |                                                                                            |                                                                                         | Chemical                                                                                     |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  |                                                                                                                          |                                                                                                                     |                                                                                            |                                                                                         |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
| *                | 67663                                                                                                                    | 1.00E+00                                                                                                            | _j ·                                                                                       |                                                                                         | Chloroform                                                                                   |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  | ENTER                                                                                                                    | ENTER                                                                                                               | ENTER                                                                                      | ENTER                                                                                   | ENTER                                                                                        | ENTER                                                                                                     | ENTER                                    | ENTER                          | ENTER                                                                                     |                           | ENTER                     |                             |
|                  |                                                                                                                          | Depth                                                                                                               |                                                                                            | Totals mu                                                                               | st add up to value o                                                                         |                                                                                                           |                                          |                                | Soil.                                                                                     |                           |                           | =                           |
| MORE ¥           | Average<br>soil/                                                                                                         | below grade<br>to bottom                                                                                            | Depth                                                                                      | Thickness                                                                               | Thickness<br>of soil                                                                         | Thickness<br>of soil                                                                                      | Soil                                     |                                | stratum A<br>SCS                                                                          |                           | User-defined<br>stratum A |                             |
| \                | groundwater                                                                                                              | of enclosed                                                                                                         | below grade                                                                                | of soil                                                                                 | stratum B                                                                                    | stratum C,                                                                                                | stratum                                  | scs                            | soil type                                                                                 |                           | soil vapor                |                             |
|                  | temperature,                                                                                                             | space floor,                                                                                                        | to water table,                                                                            | stratum A,                                                                              | (Enter value or 0)                                                                           |                                                                                                           | directly above                           | soil type                      | (used to estimate                                                                         | OR                        | permeability,             |                             |
|                  | T <sub>S</sub>                                                                                                           | LF                                                                                                                  | Lwt                                                                                        | h <sub>A</sub>                                                                          | h <sub>B</sub>                                                                               | hc                                                                                                        | water table,                             | directly above                 | soil vapor                                                                                |                           | k <sub>v</sub>            |                             |
|                  | (°C)                                                                                                                     | (cm)                                                                                                                | (cm)                                                                                       | (cm)                                                                                    | (cm)                                                                                         | (cm)                                                                                                      | (Enter A, B, or C)                       | water table                    | permeability)                                                                             | ı                         | (cm²)                     |                             |
|                  | 11                                                                                                                       | 15                                                                                                                  | 190                                                                                        | 190                                                                                     | 0                                                                                            | 0                                                                                                         | A                                        | SL                             | SL                                                                                        | [                         |                           |                             |
|                  |                                                                                                                          |                                                                                                                     |                                                                                            |                                                                                         |                                                                                              |                                                                                                           |                                          |                                |                                                                                           |                           |                           |                             |
|                  | ENTER                                                                                                                    | ENTER                                                                                                               | ENTER                                                                                      | ENTER                                                                                   | ENTER                                                                                        | ENTER                                                                                                     | ENTER                                    | ENTER                          | ENTER                                                                                     | ENTER                     | ENTER                     | ENTER                       |
| MORE 🗸           | Stratum A<br>SCS                                                                                                         | Stratum A                                                                                                           | Stratum A                                                                                  | Stratum A                                                                               | Stratum B                                                                                    | Stratum B                                                                                                 | Stratum B                                | Stratum B                      | Stratum C                                                                                 | Stratum C                 | Stratum C                 | Stratum C                   |
|                  | soil type                                                                                                                | soil dry<br>bulk density,                                                                                           | soil total porosity,                                                                       | soil water-filled<br>porosity,                                                          | SCS<br>soil type                                                                             | soil dry<br>bulk density,                                                                                 | soil total porosity,                     | soil water-filled<br>porosity, | SCS<br>soil type                                                                          | soil dry<br>bulk density, | soil total porosity,      | soil water-filled porosity, |
|                  | Lookup Soil                                                                                                              | $\rho_b^A$                                                                                                          | n <sup>A</sup>                                                                             | θ,,^                                                                                    | Lookup Soil                                                                                  | ρ <sub>b</sub> <sup>B</sup>                                                                               | ,n <sup>B</sup>                          | θ,,,,,                         | Lookup Soil                                                                               | ρ <sub>ь</sub> C          | n <sup>c</sup>            | θ"ς                         |
|                  | Parameters                                                                                                               | (g/cm <sup>3</sup> )                                                                                                | (unitless)                                                                                 | (cm³/cm³)                                                                               | Parameters                                                                                   | (g/cm³)                                                                                                   | (unitless)                               | (cm³/cm³)                      | Parameters                                                                                | (g/cm³)                   | (unitless)                | (cm³/cm³)                   |
|                  | SL                                                                                                                       | 1.80                                                                                                                | 0.330                                                                                      | 0.103                                                                                   |                                                                                              | 100                                                                                                       | 0.035                                    |                                | s I                                                                                       |                           |                           | 0.054                       |
|                  | \ <u>\</u>                                                                                                               | 1.00                                                                                                                | 0.000                                                                                      |                                                                                         |                                                                                              |                                                                                                           |                                          |                                |                                                                                           | ' 166 .                   | 0.375                     |                             |
| MORE             | ENTER                                                                                                                    |                                                                                                                     |                                                                                            |                                                                                         | S                                                                                            | 1.66                                                                                                      | 0.375                                    | 0.054                          | <del></del>                                                                               | 1.66                      | 0.375                     | 0.001                       |
| ₩.O.K.E          |                                                                                                                          | ENTER                                                                                                               | ENTER                                                                                      | , ENTER                                                                                 | ENTER                                                                                        | ENTER                                                                                                     | ENTER                                    | 0.054                          | ENTER                                                                                     | 1.66                      | 0.375                     | 0.001                       |
|                  | Enclosed space                                                                                                           | ENTER<br>Soil-bldg.                                                                                                 | ENTER<br>Enclosed<br>space                                                                 | ENTER<br>Enclosed                                                                       |                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                     |                                          | 1 0.054                        | ENTER<br>Average vapor                                                                    | 1.66                      | 0.375                     | 0.001                       |
|                  | Enclosed<br>space<br>floor                                                                                               | Soil-bldg.<br>pressure                                                                                              | Enclosed<br>space<br>floor                                                                 | ENTER Enclosed space floor                                                              | ENTER Enclosed space                                                                         | ENTER Floor-wall seam crack                                                                               | ENTER<br>Indoor<br>air exchange          |                                | ENTER Average vapor flow rate into bldg. OR                                               |                           | 0.375                     |                             |
|                  | Enclosed<br>space<br>floor<br>thickness,                                                                                 | Soil-bldg.<br>pressure<br>differential,                                                                             | Enclosed<br>space<br>floor<br>length,                                                      | ENTER Enclosed space floor width,                                                       | ENTER Enclosed space height,                                                                 | ENTER Floor-wall seam crack width,                                                                        | ENTER Indoor air exchange rate,          |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat                        |                           | 0.375                     |                             |
|                  | Enclosed<br>space<br>floor<br>thickness,<br>L <sub>crack</sub>                                                           | Soil-bldg.<br>pressure<br>differential,<br>ΔP                                                                       | Enclosed<br>space<br>floor<br>length,<br>L <sub>B</sub>                                    | ENTER Enclosed space floor width, We                                                    | ENTER Enclosed space height, H <sub>B</sub>                                                  | ENTER Floor-wall seam crack width, w                                                                      | ENTER Indoor air exchange rate, ER       |                                | ENTER Average vapor flow rate into bldg. OR eave blank to calculat                        |                           | 0.375                     |                             |
|                  | Enclosed<br>space<br>floor<br>thickness,<br>L <sub>crack</sub><br>(cm)                                                   | Soil-bldg. pressure differential,                                                                                   | Enclosed<br>space<br>floor<br>length,<br>L <sub>B</sub><br>(cm)                            | ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                   | ENTER Enclosed space height, H <sub>B</sub> (cm)                                             | ENTER Floor-wall seam crack width, w (cm)                                                                 | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat                        |                           | 0.375                     |                             |
|                  | Enclosed<br>space<br>floor<br>thickness,<br>L <sub>crack</sub>                                                           | Soil-bldg.<br>pressure<br>differential,<br>ΔP                                                                       | Enclosed<br>space<br>floor<br>length,<br>L <sub>B</sub>                                    | ENTER Enclosed space floor width, We                                                    | ENTER Enclosed space height, H <sub>B</sub>                                                  | ENTER Floor-wall seam crack width, w                                                                      | ENTER Indoor air exchange rate, ER       |                                | ENTER Average vapor flow rate into bldg. OR eave blank to calculat                        |                           | 0.375                     | 0.00                        |
| MORE             | Enclosed<br>space<br>floor<br>thickness,<br>L <sub>crack</sub><br>(cm)                                                   | Soil-bldg. pressure differential,                                                                                   | Enclosed<br>space<br>floor<br>length,<br>L <sub>B</sub><br>(cm)                            | ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                   | ENTER Enclosed space height, H <sub>B</sub> (cm)                                             | ENTER Floor-wall seam crack width, w (cm)                                                                 | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     | 5.55                        |
| MORE +           | Enclosed space floor thickness, Lorack (cm)                                                                              | Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging                                                 | Enclosed space floor length, Ls (cm)                                                       | ENTER Enclosed space floor width, We (cm) 1000  ENTER                                   | ENTER  Enclosed space height, He (cm)  244  ENTER Target                                     | Floor-wall seam crack width, w (cm) 0.1  ENTER Target hazard                                              | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |
| MORE ¥           | Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for                                    | Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for                                        | Enclosed space floor length, L <sub>B</sub> (cm) 1000 ENTER Exposure                       | ENTER Enclosed space floor width, We (cm)  1000  ENTER  Exposure                        | ENTER  Enclosed space height, He (cm)  244  ENTER Target risk for                            | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for                                | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |
| MORE ¥           | Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens,                       | Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging time for noncarcinogens                 | Enclosed space floor length, L <sub>B</sub> (cm) 1000 ENTER Exposure                       | ENTER Enclosed space floor width, We (cm) 1000  ENTER                                   | ENTER  Enclosed space height, He (cm)  244  ENTER Target                                     | Floor-wall seam crack width, w (cm) 0.1  ENTER Target hazard                                              | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |
| MORE ¥           | Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for                                    | Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for                                        | Enclosed space floor length, L <sub>B</sub> (cm)  ENTER  Exposure duration,                | ENTER Enclosed space floor width, We (cm)  1000  ENTER  Exposure frequency,             | ENTER  Enclosed space height, He (cm)  244  ENTER Target risk for carcinogens,               | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens,                | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |
| MORE ¥           | Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens, AT <sub>c</sub>       | Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging time for noncarcinogens $\Delta T_{NC}$ | Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED       | ENTER Enclosed space floor width, We (cm)  1000  ENTER  Exposure frequency, EF          | ENTER  Enclosed space height, He (cm)  244  ENTER Target risk for carcinogens, TR            | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ            | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |
| MORE ¥           | Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens, AT <sub>c</sub> (yrs) | Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens AT <sub>NC</sub> (yrs)  | Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | ENTER Enclosed space floor width, We (cm)  1000  ENTER Exposure frequency, EF (days/yr) | ENTER  Enclosed space height, He (cm)  244  ENTER Target risk for carcinogens, TR (unitiess) | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |
| MORE V           | Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens, AT <sub>c</sub> (yrs) | Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens AT <sub>NC</sub> (yrs)  | Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | ENTER Enclosed space floor width, We (cm)  1000  ENTER Exposure frequency, EF (days/yr) | ENTER  Enclosed space height, He (cm)  244  ENTER Target risk for carcinogens, TR (unitless) | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Indoor air exchange rate, ER (1/h) |                                | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>sol</sub> (L/m) |                           | 0.375                     |                             |

### CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 1.04E-01                                                         | 1.00E-05                                                           | 3.66E-03                                                                     | 25                                                                             | 6,988                                                                             | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                 | 4.9E-02                               |

END

| Exposure<br>duration,                                                          | Source-<br>building<br>separation,                                                      | Stratum A<br>soil<br>air-filled<br>porosity,            | Stratum B<br>soil<br>air-filled<br>porosity,                               | Stratum C<br>soil<br>air-filled<br>porosity,                                                  | Stratum A effective total fluid saturation,                                                      | Stratum A<br>soil<br>intrinsic<br>permeability,                                                  | Stratum A<br>soil<br>relative air<br>permeability,                                | Stratum A<br>soil<br>effective vapor<br>permeability,                     | Thickness of capillary zone,                            | Total porosity in capillary zone,                         | Air-filled porosity in capillary zone,                                                   | Water-filled porosity in capillary zone,                                                          | Floor-<br>wali<br>seam<br>perimeter,                   |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| t                                                                              | L <sub>T</sub>                                                                          | θ <sub>a</sub> ^                                        | $\theta_a^{\ B}$                                                           | $\theta_a^c$                                                                                  | Ste                                                                                              | k <sub>i</sub>                                                                                   | k <sub>rg</sub>                                                                   | k,                                                                        | Lcz                                                     | n <sub>cz</sub>                                           | $\theta_{a,cz}$                                                                          | $\theta_{w,cz}$                                                                                   | X <sub>crack</sub>                                     |
| (sec)                                                                          | (cm)                                                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                     | (cm³/cm³)                                                                  | (cm³/cm³)                                                                                     | (cm³/cm³)                                                                                        | (cm²)                                                                                            | (cm²)                                                                             | (cm²)                                                                     | (cm)                                                    | (cm³/cm³)                                                 | (cm³/cm³)                                                                                | (cm³/cm³)                                                                                         | (cm)                                                   |
| 9.46E+08                                                                       | 175                                                                                     | 0.227                                                   | 0.321                                                                      | 0.321                                                                                         | 0.220                                                                                            | 5.94E-09                                                                                         | 0.879                                                                             | 5.22E-09                                                                  | 25.00                                                   | 0.33                                                      | 0.010                                                                                    | 0.320                                                                                             | 4,000                                                  |
| 3.402.00                                                                       | 173                                                                                     | 0.221                                                   | 0.521                                                                      | 1 0.321                                                                                       | 0.220                                                                                            | J.94L-09                                                                                         | 1 0.079                                                                           | J.22E-09                                                                  | 20.00                                                   | 0.55                                                      | 1 0.010                                                                                  | 0.320                                                                                             | 1 4,000                                                |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>bullding</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless) | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H' <sub>TS</sub><br>(unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μ <sub>Ts</sub><br>(g/cm-s) | Stratum A effective diffusion coefficient, D <sup>eff</sup> A (cm²/s)     | Stratum B effective diffusion coefficient, Deff (cm²/s) | Stratum C effective diffusion coefficient, Deff c (cm²/s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm) |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                | 15                                                                         | 7,544                                                                                         | 1.95E-03                                                                                         | 8.38E-02                                                                                         | 1.76E-04                                                                          | 6.85E-03                                                                  | 0.00E+00                                                | 0.00E+00                                                  | 2.48E-05                                                                                 | 1.70E-04                                                                                          | 175                                                    |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)          | Average vapor flow rate into bidg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>orack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                    | Exponent of equivalent foundation Peclet number, exp(Pe <sup>f</sup> ) (unitless)                | Infinite source indoor attenuation coefficient, α (unitless)                      | infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³)                     |                                                                                          |                                                                                                   |                                                        |
| 15                                                                             | 8.38E+01                                                                                | 0.10                                                    | 8.33E+01                                                                   | 6.85E-03                                                                                      | 4.00E+02                                                                                         | 1.29E+132                                                                                        | 6.00E-05                                                                          | 5.03E-03                                                                  | 2.3E-05                                                 | 4.9E-02                                                   | ]                                                                                        |                                                                                                   |                                                        |

**RESULTS SHEET** 

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

**INCREMENTAL RISK CALCULATIONS:** 

| Indoor                                           | Risk-based                                         | Pure                                                                                | Final                                                                                                                    |                                                                                                                                                                    | Incremental risk from                                                                                                                                              | Hazard<br>quotient                                                                                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| exposure                                         | indoor                                             | component                                                                           | indoor                                                                                                                   |                                                                                                                                                                    | vapor                                                                                                                                                              | from vapor                                                                                                                                                                                                                                                            |
| groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | exposure<br>groundwater<br>conc.,<br>(µg/L)        | water<br>solubility,<br>S<br>(μg/L)                                                 | exposure<br>groundwater<br>conc.,<br>(μg/L)                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                              | intrusion to<br>indoor air,<br>carcinogen<br>(unitless)                                                                                                            | intrusion to<br>indoor air,<br>noncarcinogen<br>(unitless)                                                                                                                                                                                                            |
| l NA                                             | NΔ                                                 | 7 92F+06                                                                            | NΔ                                                                                                                       | · .<br>                                                                                                                                                            | 4.8F-08                                                                                                                                                            | T 9.8E-05                                                                                                                                                                                                                                                             |
|                                                  | exposure<br>groundwater<br>conc.,<br>noncarcinogen | exposure indoor groundwater exposure conc., groundwater noncarcinogen conc., (μg/L) | exposure indoor component groundwater exposure water conc., groundwater solubility, noncarcinogen conc., S (μg/L) (μg/L) | exposure indoor component indoor groundwater exposure water exposure conc., groundwater solubility, groundwater noncarcinogen conc., S conc., (μg/L) (μg/L) (μg/L) | exposure indoor component indoor groundwater exposure water exposure conc., groundwater solubility, groundwater noncarcinogen conc., S conc., (μg/L) (μg/L) (μg/L) | Indoor Risk-based Pure Final risk from exposure indoor component indoor vapor groundwater exposure water exposure intrusion to conc., groundwater solubility, groundwater indoor air, noncarcinogen conc., S conc., carcinogen (μg/L) (μg/L) (μg/L) (μg/L) (unitless) |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## INCREMENTAL RISK CALCULATIONS:

| Indoor                                                    | Indoor                                                       | Risk-based                                            | Pure                                             | Final                                                 |   | Incremental risk from                                            | Hazard<br>quotient                                                       |
|-----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|---|------------------------------------------------------------------|--------------------------------------------------------------------------|
| exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | component<br>water<br>solubility,<br>S<br>(mg/L) | indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | · | vapor<br>intrusion to<br>indoor air,<br>carcinogen<br>(unitless) | from vapor<br>intrusion to<br>indoor air,<br>noncarcinogen<br>(unitless) |
| 2.10E+01                                                  | 1.02E+04                                                     | 2.10E+01                                              | 7.92E+06                                         | 2.10E+01                                              | · | NA                                                               | NA NA                                                                    |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

| GW-ADV<br>rersion 3.1; 02/04 | CALCULATE RIS                                                                                                                      | SK-BASED GROUI                                                                                                                                    | DWATER CONC                                                                                             | ENTRATION (en                                                                                               | iter "X" in "YES" box                                                                                      | <)                                                                                                                                                 |                                                             |                                          |                                                                                              |                                   |                                 |                                          |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------|
| Reset to                     |                                                                                                                                    | YES                                                                                                                                               |                                                                                                         | ]                                                                                                           |                                                                                                            |                                                                                                                                                    |                                                             |                                          |                                                                                              |                                   |                                 |                                          |
| Defaults                     | CALCULATE INC                                                                                                                      | CREMENTAL RISK                                                                                                                                    | OR<br>S FROM ACTUAL                                                                                     | GROUNDWAT                                                                                                   | ER CONCENTRATI                                                                                             | ON (enter "X" in "YE:                                                                                                                              | S" box and initial grou                                     | Indwater conc. bel                       | ow)                                                                                          |                                   |                                 |                                          |
|                              |                                                                                                                                    | YES                                                                                                                                               | X                                                                                                       | ]                                                                                                           |                                                                                                            |                                                                                                                                                    |                                                             | •                                        |                                                                                              |                                   |                                 |                                          |
| •                            | ENTER                                                                                                                              | ENTER<br>Initial                                                                                                                                  |                                                                                                         |                                                                                                             |                                                                                                            |                                                                                                                                                    |                                                             |                                          |                                                                                              |                                   |                                 |                                          |
|                              | Chemical<br>CAS No.                                                                                                                | groundwater<br>conc.,                                                                                                                             |                                                                                                         |                                                                                                             |                                                                                                            |                                                                                                                                                    |                                                             |                                          |                                                                                              |                                   |                                 |                                          |
|                              | (numbers only,<br>no dashes)                                                                                                       | C <sub>w</sub><br>(μg/L)                                                                                                                          | _                                                                                                       |                                                                                                             | Chemical                                                                                                   |                                                                                                                                                    |                                                             | * -                                      |                                                                                              |                                   |                                 |                                          |
|                              | 79016                                                                                                                              | 9.00E-01                                                                                                                                          | ]                                                                                                       |                                                                                                             | Trichloroethyle                                                                                            | ne                                                                                                                                                 |                                                             |                                          |                                                                                              |                                   |                                 |                                          |
|                              | ENTER                                                                                                                              | ENTER                                                                                                                                             | ENTER                                                                                                   | ENTER                                                                                                       | ENTER                                                                                                      | ENTER                                                                                                                                              | ENTER                                                       | ENTER                                    | ENTER                                                                                        |                                   | ENTER                           | ]                                        |
| MORE                         | Average                                                                                                                            | Depth<br>below grade                                                                                                                              |                                                                                                         |                                                                                                             | st add up to value o                                                                                       | Thickness                                                                                                                                          |                                                             |                                          | Soil<br>stratum A                                                                            |                                   | User-defined                    |                                          |
| <u> </u>                     | soil/<br>groundwater                                                                                                               | to bottom<br>of enclosed                                                                                                                          | Depth<br>below grade                                                                                    | Thickness<br>of soil                                                                                        | of soil<br>stratum B,                                                                                      | of soil<br>stratum C,                                                                                                                              | Soil<br>stratum                                             | scs                                      | SCS<br>soil type                                                                             | 25                                | stratum A<br>soil vapor         |                                          |
|                              | temperature,<br>T <sub>s</sub>                                                                                                     | space floor,<br>L <sub>F</sub>                                                                                                                    | to water table,<br>L <sub>w1</sub>                                                                      | stratum A,                                                                                                  | (Enter value or 0)<br>h <sub>8</sub>                                                                       | (Enter value or 0)                                                                                                                                 | directly above<br>water table.                              | soil type<br>directly above              | (used to estimate soil vapor                                                                 | OR                                | permeability,<br>k <sub>v</sub> |                                          |
|                              | (°C)                                                                                                                               | (cm)                                                                                                                                              | (cm)                                                                                                    | (cm)                                                                                                        | (cm)                                                                                                       | (cm)                                                                                                                                               | (Enter A, B, or C)                                          | water table                              | permeability)                                                                                |                                   | (cm²)                           |                                          |
|                              | 11                                                                                                                                 | 15                                                                                                                                                | 190                                                                                                     | 190                                                                                                         | 0                                                                                                          | 0                                                                                                                                                  | Α                                                           | SL                                       | SL                                                                                           |                                   |                                 | i                                        |
|                              | ENTER                                                                                                                              | ENTER                                                                                                                                             | ENTER                                                                                                   | ENTER                                                                                                       | ENTER                                                                                                      | ENTER                                                                                                                                              | ENTER                                                       | ENTER                                    | ENTER                                                                                        | ENTER                             | ENTER                           | ENTER                                    |
| MORE<br>↓                    | Stratum A<br>SCS                                                                                                                   | Stratum A<br>soil dry                                                                                                                             |                                                                                                         | Stratum A soil water-filled                                                                                 | Stratum B<br>SCS                                                                                           | Stratum B<br>soil dry                                                                                                                              | Stratum B<br>soil total                                     | Stratum B<br>soil water-filled           | Stratum C<br>SCS                                                                             | Stratum C<br>soil dry             | Stratum C<br>soil total         | Stratum C<br>soil water-filled           |
|                              | soil type<br>Lookup Soil                                                                                                           | bulk density,<br>ρ <sub>ι</sub> <sup>A</sup>                                                                                                      | porosity,<br>n <sup>A</sup>                                                                             | porosity,<br>θ <sub>w</sub> <sup>A</sup>                                                                    | soll type<br>Lookup Soil                                                                                   | bulk density,<br>ρ <sub>b</sub> <sup>8</sup>                                                                                                       | porosity,<br>n <sup>B</sup>                                 | porosity,<br>θ <sub>w</sub> <sup>B</sup> | soil type<br>Lookup Soil                                                                     | bulk density,<br>ρ <sub>ь</sub> c | porosity,<br>n <sup>C</sup>     | porosity,<br>θ <sub>w</sub> <sup>C</sup> |
|                              | Parameters                                                                                                                         | FU                                                                                                                                                |                                                                                                         |                                                                                                             |                                                                                                            |                                                                                                                                                    |                                                             |                                          |                                                                                              |                                   |                                 | /3/3\                                    |
|                              |                                                                                                                                    | (g/cm³)                                                                                                                                           | (unitiess)                                                                                              | (cm³/cm³)                                                                                                   | Parameters                                                                                                 | (g/cm <sup>3</sup> )                                                                                                                               | (unitless)                                                  | (cm <sup>3</sup> /cm <sup>3</sup> )      | Parameters                                                                                   | (g/cm³)                           | (unitless)                      | (cm³/cm³)                                |
|                              | SL                                                                                                                                 |                                                                                                                                                   | (unitless)<br>0.330                                                                                     | (cm³/cm³)<br>0.103                                                                                          | Parameters                                                                                                 |                                                                                                                                                    | (unitless)<br>0.375                                         |                                          | s                                                                                            | (g/cm³)                           | (unitless)<br>0.375             | (cm /cm )                                |
| MORE                         | SL<br>ENTER<br>Enclosed                                                                                                            | (g/cm³) 1.80 ENTER                                                                                                                                | 0.330  ENTER Enclosed                                                                                   | 0.103 ENTER Enclosed                                                                                        | S                                                                                                          | (g/cm <sup>3</sup> )  1.66  ENTER                                                                                                                  | (unitless) 0.375 ENTER                                      | (cm <sup>3</sup> /cm <sup>3</sup> )      | S ENTER Average vapor                                                                        |                                   |                                 |                                          |
| MORE ↓                       | SL<br>ENTER<br>Enclosed<br>space<br>floor                                                                                          | (g/cm³)  1.80  ENTER  Soil-bldg. pressure                                                                                                         | 0.330  ENTER Enclosed space floor                                                                       | 0.103  ENTER Enclosed space floor                                                                           | S ENTER Enclosed space                                                                                     | (g/cm³)  1.66  ENTER  Floor-wall seam crack                                                                                                        | (unitless)  0.375  ENTER Indoor air exchange                | (cm³/cm³)<br>} 0.054                     | ENTER Average vapor flow rate into bidg. OR                                                  | 1.66                              |                                 |                                          |
|                              | SL<br>ENTER<br>Enclosed<br>space                                                                                                   | (g/cm³)  1.80  ENTER  Soil-bldg.                                                                                                                  | 0.330  ENTER Enclosed space                                                                             | 0.103  ENTER Enclosed space                                                                                 | S ENTER Enclosed                                                                                           | (g/cm³)  1.66  ENTER  Floor-wall                                                                                                                   | (unitless) 0.375 ENTER Indoor                               | (cm³/cm³)<br>} 0.054                     | S  ENTER Average vapor flow rate into bidg.                                                  | 1.66                              |                                 |                                          |
|                              | SL  ENTER Enclosed space floor thickness,                                                                                          | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential,                                                                                           | 0.330  ENTER Enclosed space floor length,                                                               | 0.103  ENTER Enclosed space floor width,                                                                    | S ENTER Enclosed space height,                                                                             | (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                                                 | (unitless)  0.375  ENTER Indoor air exchange rate,          | (cm³/cm³)<br>} 0.054                     | ENTER Average vapor flow rate into bidg OR eave blank to calcular                            | 1.66                              |                                 |                                          |
|                              | SL  ENTER Enclosed space floor thickness, Lcrack                                                                                   | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP                                                                                        | 0.330  ENTER Enclosed space floor length, L <sub>B</sub>                                                | ENTER<br>Enclosed<br>space<br>floor<br>width,<br>W <sub>B</sub>                                             | S ENTER Enclosed space height,                                                                             | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                                               | (unitless)  0.375  ENTER Indoor air exchange rate, ER       | (cm³/cm³)<br>} 0.054                     | ENTER Average vapor flow rate into bidg. OR eave blank to calcular                           | 1.66                              |                                 |                                          |
|                              | SL  ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging                                             | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging                                                 | ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                                  | ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                                       | S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target                                        | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard                                                               | (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>} 0.054                     | S ENTER Average vapor flow rate into bidg. OR eave blank to calcular O <sub>soil</sub> (L/m) | 1.66                              |                                 |                                          |
| ₩ORE                         | SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens,                                   | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging time for noncarcinogens,                        | 0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER Exposure duration,                       | 0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER  Exposure frequency,              | Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for carcinogens,                        | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,                                  | (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>} 0.054                     | S ENTER Average vapor flow rate into bidg. OR eave blank to calcular O <sub>soil</sub> (L/m) | 1.66                              |                                 |                                          |
| ₩ORE                         | SL  ENTER Enclosed space floor thickness, L-crack (cm)  10  ENTER Averaging time for                                               | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for                                                | 0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure                    | 0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER  Exposure                         | S ENTER Enclosed space height, Hg (cm) 244 ENTER Target risk for                                           | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                                                  | (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>} 0.054                     | S ENTER Average vapor flow rate into bidg. OR eave blank to calcular O <sub>soil</sub> (L/m) | 1.66                              |                                 |                                          |
| ₩ORE                         | SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc                               | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential,                                                                                           | 0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED       | 0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER Exposure frequency, EF            | Enclosed space height, HB (cm)  244  ENTER Target risk for carcinogens, TR                                 | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ                              | (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>} 0.054                     | S ENTER Average vapor flow rate into bidg. OR eave blank to calcular O <sub>soil</sub> (L/m) | 1.66                              |                                 |                                          |
| ₩ORE                         | SL  ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens, AT <sub>c</sub> (yrs) | (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, $\Delta T_{NC}$ (yrs) | 0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | 0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER  Exposure frequency, EF (days/yr) | Enclosed space height, H <sub>B</sub> (cm)  244  ENTER  Entrer  Target risk for carcinogens, TR (unitless) | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless)  1 ate risk-based | (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>} 0.054                     | S ENTER Average vapor flow rate into bidg. OR eave blank to calcular O <sub>soil</sub> (L/m) | 1.66                              |                                 |                                          |

## CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm²/s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                              | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

|   | Exposure duration,            | Source-<br>building<br>separation,              | Stratum A<br>soil<br>air-filted<br>porosity,<br>$\theta_a^A$ | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^C$       | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub> | Stratum A<br>soil<br>intrinsic<br>permeability,                | Stratum A<br>soil<br>relative air<br>permeability, | Stratum A<br>soil<br>effective vapor<br>permeability,  | Thickness of capillary zone,                           | Total<br>porosity in<br>capillary<br>zone,             | Air-filled<br>porosity in<br>capillary<br>zone,            | Water-filled<br>porosity in<br>capillary<br>zone,          | Floor-<br>wall<br>seam<br>perimeter, |
|---|-------------------------------|-------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|
| _ | (sec)                         | (cm)                                            | (cm <sup>3</sup> /cm <sup>3</sup> )                          | (cm³/cm³)                                                    | (cm³/cm³)                                                          | (cm³/cm³)                                                               | κ <sub>ι</sub><br>(cm²)                                        | κ <sub>rg</sub><br>(cm²)                           | (cm²)                                                  | (cm)                                                   | n <sub>cz</sub><br>(cm³/cm³)                           | θ <sub>a,cz</sub><br>(cm³/cm³)                             | θ <sub>w,cz</sub><br>(cm³/cm³)                             | X <sub>crack</sub><br>(cm)           |
| - | - 105.00                      | 1                                               |                                                              |                                                              |                                                                    |                                                                         |                                                                | <del></del>                                        |                                                        |                                                        |                                                        |                                                            |                                                            |                                      |
| L | 9.46E+08                      | 175                                             | 0.227                                                        | 0.321                                                        | 0.321                                                              | 0.220                                                                   | 5.94E-09                                                       | 0.879                                              | 5.22E-09                                               | 25.00                                                  | 0.33                                                   | 0.010                                                      | 0.320                                                      | 4,000                                |
|   | Bidg.<br>ventilation<br>rate, | Area of<br>enclosed<br>space<br>below<br>grade, | Crack-<br>to-total<br>area<br>ratio,                         | Crack<br>depth<br>below<br>grade,                            | Enthalpy of<br>vaporization at<br>ave. groundwater<br>temperature, | Henry's law<br>constant at<br>ave. groundwater<br>temperature,          | Henry's law<br>constant at<br>ave. groundwater<br>temperature, | Vapor<br>viscosity at<br>ave. soil<br>temperature, | Stratum<br>A<br>effective<br>diffusion<br>coefficient, | Stratum<br>B<br>effective<br>diffusion<br>coefficient, | Stratum<br>C<br>effective<br>diffusion<br>coefficient, | Capillary<br>zone<br>effective<br>diffusion<br>coefficient | Total<br>overall<br>effective<br>diffusion<br>coefficient, | Diffusion<br>path<br>length,         |
|   | Q <sub>building</sub>         | A <sub>B</sub>                                  | η                                                            | $Z_{crack}$                                                  | $\Delta H_{v,TS}$                                                  | H <sub>TS</sub>                                                         | H' <sub>TS</sub>                                               | μτς                                                | Deff <sub>A</sub>                                      | D <sup>eff</sup> B                                     | D <sup>eff</sup> c                                     | D <sup>eff</sup> cz                                        | ${\mathsf D}^{eff}{}_{\mathsf T}$                          | La                                   |
|   | (cm³/s)                       | (cm²)                                           | (unitless)                                                   | (cm)                                                         | (cal/mol)                                                          | (atm-m³/mol)                                                            | (unitless)                                                     | (g/cm-s)                                           | (cm²/s)                                                | (cm²/s)                                                | (cm²/s)                                                | (cm²/s)                                                    | (cm²/s)                                                    | (cm)                                 |
| Г | 1.69E+04                      | 1.06E+06                                        | 3.77E-04                                                     | 15                                                           | 8,544                                                              | 5.05E-03                                                                | 2.17E-01                                                       | 1.76E-04                                           | 5.20E-03                                               | 0.00E+00                                               | 0.00E+00                                               | 8.83E-06                                                   | 6.12E-05                                                   | 175                                  |
|   | 1.002.04                      | 1.002.00                                        | 0.772-04                                                     | 1. 10                                                        | 0,544                                                              | 1 0.002-03                                                              | 2.172-01                                                       | 1.702-04                                           | 3.20E-03                                               | 0.00E+00                                               | 0.002700                                               | 0.03E-06                                                   | 0.12E-05                                                   | 1/5                                  |
|   | Convection                    | Source                                          |                                                              | Average vapor                                                | Crack<br>effective                                                 |                                                                         | Exponent of<br>equivalent<br>foundation                        | Infinite<br>source<br>indoor                       | Infinite<br>source                                     | Unit                                                   |                                                        |                                                            |                                                            |                                      |
|   | path                          | vapor                                           | Crack                                                        | flow rate                                                    | diffusion                                                          | Area of                                                                 | Peclet                                                         | attenuation                                        | bldg.                                                  | risk                                                   | Reference                                              |                                                            |                                                            |                                      |
|   | length,                       | conc.,                                          | radius,                                                      | into bldg.,                                                  | coefficient,<br>D <sup>crack</sup>                                 | crack,                                                                  | number,                                                        | coefficient,                                       | conc.,                                                 | factor,                                                | conc.,                                                 |                                                            |                                                            |                                      |
|   | Lp                            | C <sub>source</sub>                             | r <sub>crack</sub>                                           | Q <sub>soil</sub>                                            | -                                                                  | A <sub>crack</sub>                                                      | exp(Pe <sup>r</sup> )                                          | α                                                  | C <sub>building</sub>                                  | URF                                                    | RfC                                                    |                                                            |                                                            |                                      |
| - | (cm)                          | (μg/m³)                                         | (cm)                                                         | (cm³/s)                                                      | (cm²/s)                                                            | (cm²)                                                                   | (unitless)                                                     | (unitless)                                         | (μg/m³)                                                | (μg/m³) <sup>-1</sup>                                  | (mg/m³)                                                |                                                            |                                                            |                                      |
|   | 15                            | 1.95E+02                                        | 0.10                                                         | 8.33E+01                                                     | 5.20E-03                                                           | 4.00E+02                                                                | 8.41E+173                                                      | 2.18E-05                                           | 4.24E-03                                               | 1.1E-04                                                | 3.5E-02                                                | ]                                                          |                                                            |                                      |

**RESULTS SHEET** 

#### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |          | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA NA                                                   | NA                                                                  | 1.47E+06                                                 | NA                                                             | -<br>  [ | 1.9E-07                                                                    | 1.2E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 4.69E+00                                             | 7.74E+03                                                               | 4.69E+00                                                            | 1.47E+06                                                 | 4.69E+00                                                       | [ | NA NA                                                                      | NA                                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| GW-ADV<br>rsion 3.1; 02/04 | CALCULATE RIS                                                                | SK-BASED GROU                                                                    | INDWATER CONC                                                 | ENTRATION (en                                                        | ter "X" in "YES" bo                                                        | x)                                                                           |                                    |                                     |                                |                           |                            |                             |
|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------|---------------------------|----------------------------|-----------------------------|
| Reset to                   |                                                                              | YES                                                                              | OR                                                            | ]                                                                    |                                                                            |                                                                              |                                    |                                     |                                |                           |                            |                             |
| Defaults                   | CALCULATE IN                                                                 | CREMENTAL RIS                                                                    |                                                               | GROUNDWATE                                                           | ER CONCENTRAT                                                              | ON (enter "X" in "YE                                                         | S" box and initial groun           | ndwater conc. bei                   | low)                           |                           |                            |                             |
|                            |                                                                              | YES                                                                              | X                                                             | ]                                                                    |                                                                            |                                                                              |                                    | *                                   |                                |                           |                            |                             |
|                            | ENTER                                                                        | ENTER                                                                            |                                                               |                                                                      |                                                                            |                                                                              |                                    |                                     |                                |                           |                            |                             |
|                            | Chemical                                                                     | Initial<br>groundwater                                                           |                                                               |                                                                      |                                                                            | •                                                                            |                                    |                                     |                                |                           |                            |                             |
|                            | CAS No.<br>(numbers only,                                                    | conc.,<br>C <sub>w</sub><br>(μg/L)                                               |                                                               |                                                                      | Chemical                                                                   |                                                                              |                                    |                                     |                                |                           |                            |                             |
|                            | no dashes)                                                                   |                                                                                  | <del></del>                                                   |                                                                      |                                                                            |                                                                              | ' .<br>•                           |                                     |                                |                           |                            |                             |
|                            | 79016                                                                        | 9.00E-01                                                                         | * 1                                                           |                                                                      | Trichloroethyle                                                            | ene                                                                          |                                    |                                     |                                |                           | · .                        | _                           |
|                            | ENTER                                                                        | ENTER<br>Depth                                                                   | ENTER                                                         | ENTER<br>Totals mus                                                  | ENTER<br>st add up to value o                                              | ENTER<br>of L <sub>wt</sub> (cell G28)                                       | ENTER                              | ENTER                               | ENTER<br>Soil                  |                           | ENTER                      |                             |
| MORE ¥                     | Average<br>soil/                                                             | below grade<br>to bottom                                                         | Depth                                                         | Thickness                                                            | Thickness<br>of soil                                                       | Thickness<br>of soil                                                         | Soll                               |                                     | stratum A<br>SCS               |                           | User-defined<br>stratum A  |                             |
|                            | groundwater<br>temperature,                                                  | of enclosed<br>space floor,                                                      | below grade<br>to water table,                                | of soil<br>stratum A                                                 | stratum B,<br>(Enter value or 0)                                           | stratum C,<br>(Enter value or 0)                                             | stratum<br>directly above          | SCS<br>soil type                    | soil type<br>(used to estimate | OR .                      | soil vapor<br>permeability |                             |
|                            | T <sub>s</sub><br>(°C)                                                       | L <sub>F</sub><br>(cm)                                                           | L <sub>WT</sub><br>(cm)                                       | h <sub>A</sub><br>(cm)                                               | h <sub>B</sub> (cm)                                                        | h <sub>c</sub><br>(cm)                                                       | water table,<br>(Enter A, B, or C) | directly above water table          | soil vapor<br>permeability)    |                           | k <sub>v</sub><br>(cm²)    |                             |
|                            |                                                                              |                                                                                  | 190                                                           |                                                                      | 0                                                                          | (cit)                                                                        | A                                  | SL                                  | SL                             |                           | (0,1.7                     |                             |
|                            | 11                                                                           | 15                                                                               | 1 190                                                         | 190                                                                  |                                                                            | <u> </u>                                                                     | <u> </u>                           | ] JL                                | 1 31.                          |                           |                            | <b>.</b>                    |
| MORE                       | ENTER<br>Stratum A                                                           | ENTER<br>Stratum A                                                               | ENTER<br>Stratum A                                            | ENTER<br>Stratum A                                                   | ENTER<br>Stratum B                                                         | ENTER<br>Stratum B                                                           | ENTER<br>Stratum B                 | ENTER<br>Stratum B                  | ENTER<br>Stratum C             | ENTER<br>Stratum C        | ENTER<br>Stratum C         | ENTER<br>Stratum C          |
| WOKE 4                     | SCS                                                                          | soil dry                                                                         | soil total                                                    | soil water-filled                                                    | SCS                                                                        | soil dry                                                                     | soil total porosity,               | soil water-filled porosity,         | SCS<br>soil type               | soil dry<br>bulk density, | soil total porosity,       | soil water-filled porosity, |
|                            | soil type                                                                    | bulk density,<br>ρ <sub>ь</sub> <sup>A</sup>                                     | porosity,<br>n <sup>4</sup>                                   | porosity,<br>θ <sub>w</sub> <sup>A</sup>                             | Lookup Soil                                                                | bulk density,<br>ρ <sub>ь</sub> <sup>в</sup>                                 | u <sub>B</sub>                     | θ <sub>w</sub> B                    | Lookup Soil<br>Parameters      | ρ <sub>b</sub> C          | n <sup>C</sup>             | θ <sub>w</sub> .c           |
|                            | Parameters                                                                   | (g/cm <sup>3</sup> )                                                             | (unitiess)                                                    | (cm³/cm³)                                                            | Parameters                                                                 | (g/cm³)                                                                      | (unitless)                         | (cm <sup>3</sup> /cm <sup>3</sup> ) | Parameters                     | (g/cm³)                   | (unitless)                 | (cm³/cm³)                   |
|                            | SL                                                                           | 1.80                                                                             | 0.330                                                         | 0.103                                                                | S                                                                          | 1.66                                                                         | 0.375                              | 0.054                               | s                              | 1.66                      | 0.375                      | 0.054                       |
| MORE                       | ENTER<br>Enclosed                                                            | ENTER                                                                            | ENTER<br>Enclosed                                             | ENTER<br>Enclosed                                                    | ENTER                                                                      | ENTER                                                                        | ENTER                              |                                     | ENTER<br>Average vapor         |                           |                            |                             |
| <u> </u>                   | space                                                                        | Soil-bldg.<br>pressure                                                           | space<br>floor                                                | space<br>floor                                                       | Enclosed<br>space                                                          | Floor-wall<br>seam crack                                                     | Indoor<br>air exchange             |                                     | flow rate into bldg.<br>OR     |                           |                            |                             |
|                            | thickness,                                                                   | differential,                                                                    | length,                                                       | width,                                                               | height,                                                                    | width,                                                                       | rate,                              | ı ı                                 | eave blank to calcula          | te                        |                            |                             |
|                            |                                                                              | ΔΡ                                                                               | L <sub>B</sub>                                                | W <sub>B</sub>                                                       | H <sub>B</sub>                                                             | widai,                                                                       | ER.                                |                                     | Q <sub>soil</sub>              |                           |                            |                             |
|                            | L <sub>orack</sub><br>(cm)                                                   |                                                                                  |                                                               |                                                                      |                                                                            |                                                                              |                                    | •                                   |                                |                           |                            |                             |
|                            | L <sub>crack</sub>                                                           | ΔР                                                                               | L <sub>B</sub>                                                | W <sub>B</sub>                                                       | He                                                                         | w                                                                            | ER                                 | •<br>]                              | Q <sub>soil</sub>              |                           |                            |                             |
| MORE                       | L <sub>crack</sub> (cm)                                                      | ΔP<br>(g/cm-s <sup>2</sup> )<br>40<br>ENTER                                      | L <sub>B</sub><br>(cm)                                        | W <sub>B</sub><br>(cm)                                               | H <sub>B</sub> (cm) 244 ENTER                                              | (cm)<br>0.1                                                                  | ER<br>(1/h)                        | •<br>]                              | Q <sub>soil</sub><br>(L/m)     |                           |                            |                             |
| MORE ↓                     | Lorack (cm)  10  ENTER Averaging time for                                    | (g/cm-s²)  40  ENTER Averaging time for                                          | (cm) 1000 ENTER Exposure                                      | W <sub>B</sub> (cm)  1000   ENTER  Exposure                          | H <sub>B</sub> (cm)  244  ENTER Target risk for                            | (cm)  0.1  ENTER Target hazard quotient for                                  | ER<br>(1/h)                        | ]                                   | Q <sub>soil</sub><br>(L/m)     |                           |                            |                             |
|                            | Lorack (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub>       | ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens AT <sub>NC</sub>       | (cm)  1000  ENTER  Exposure duration, ED                      | W <sub>B</sub> (cm)  1000    ENTER  Exposure frequency, EF           | H <sub>9</sub> (cm)  244  ENTER Target risk for carcinogens, TR            | W (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ            | ER<br>(1/h)                        | 1                                   | Q <sub>soil</sub><br>(L/m)     |                           |                            |                             |
|                            | Lorack (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub> (yrs) | ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens AT <sub>NC</sub> (yrs) | L <sub>8</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | W <sub>B</sub> (cm)  1000    ENTER  Exposure frequency, EF (days/yr) | H <sub>B</sub> (cm)  244  ENTER Target risk for carcinogens, TR (unitless) | W (cm)  0.1  ENTER Target hazard quotient for noncarcinogens,                | ER<br>(1/h)                        | •                                   | Q <sub>soil</sub><br>(L/m)     |                           |                            |                             |
|                            | Lorack (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub>       | ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens AT <sub>NC</sub>       | (cm)  1000  ENTER  Exposure duration, ED                      | W <sub>B</sub> (cm)  1000    ENTER  Exposure frequency, EF           | H <sub>B</sub> (cm)  244  ENTER Target risk for carcinogens, TR (unitless) | W (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ER<br>(1/h)                        |                                     | Q <sub>soil</sub><br>(L/m)     |                           |                            |                             |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

|   | Exposure duration,                          | Source-<br>building<br>separation,<br>L <sub>T</sub>        | Stratum A soil air-filled porosity, $\theta_a^A$ | Stratum B soil air-filled porosity,                                        | Stratum C<br>soil<br>air-filled<br>porosity,<br>θ <sub>a</sub> <sup>C</sup>    | Stratum A effective total fluid saturation, S <sub>te</sub>   | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k                 | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub> | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub>   | Thickness of capillary zone,                            | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>ez</sub> | Air-filled porosity in capillary zone, θ <sub>acz</sub>     | Water-filled porosity in capillary zone,                   | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>creck</sub> |
|---|---------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|   | (sec)                                       | (cm)                                                        | (cm <sup>3</sup> /cm <sup>3</sup> )              | (cm <sup>3</sup> /cm <sup>3</sup> )                                        | (cm³/cm³)                                                                      | (cm³/cm³)                                                     | (cm²)                                                                | (cm²)                                                                 | (cm²)                                                                     | (cm)                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                           | (cm <sup>3</sup> /cm <sup>3</sup> )                         | (cm <sup>3</sup> /cm <sup>3</sup> )                        | (cm)                                                       |
| = | 1000/                                       |                                                             |                                                  |                                                                            | <b>,</b>                                                                       |                                                               | \ <u>\</u>                                                           | <u> </u>                                                              | \\                                                                        |                                                         | , contract of                                                 |                                                             |                                                            | <u> </u>                                                   |
|   | 9.46E+08                                    | 175                                                         | 0.227                                            | 0.321                                                                      | 0.321                                                                          | 0.220                                                         | 5.94E-09                                                             | 0.879                                                                 | 5.22E-09                                                                  | 25.00                                                   | 0.33                                                          | 0.010                                                       | 0.320                                                      | 4,000                                                      |
|   |                                             |                                                             |                                                  |                                                                            |                                                                                |                                                               |                                                                      |                                                                       |                                                                           |                                                         |                                                               |                                                             |                                                            |                                                            |
|   | Bldg.<br>ventilation<br>rate,               | Area of<br>enclosed<br>space<br>below<br>grade,             | Crack-<br>to-total<br>area<br>ratio,             | Crack<br>depth<br>below<br>grade,                                          | Enthalpy of vaporization at ave. groundwater temperature,                      | Henry's law constant at ave. groundwater temperature,         | Henry's law constant at ave. groundwater temperature,                | Vapor<br>viscosity at<br>ave. soil<br>temperature,                    | Stratum<br>A<br>effective<br>diffusion<br>coefficient,                    | Stratum<br>B<br>effective<br>diffusion<br>coefficient,  | Stratum<br>C<br>effective<br>diffusion<br>coefficient,        | Capillary<br>zone<br>effective<br>diffusion<br>coefficient, | Total<br>overall<br>effective<br>diffusion<br>coefficient, | Diffusion<br>path<br>length,                               |
|   | Q <sub>building</sub>                       | A <sub>B</sub>                                              | η                                                | Z <sub>crack</sub>                                                         | $\Delta H_{v,TS}$                                                              | H <sub>TS</sub>                                               | H' <sub>TS</sub>                                                     | $\mu_{TS}$                                                            | Deff                                                                      | D <sup>eff</sup> B                                      | Deff                                                          | D <sup>eff</sup> cz                                         | D <sup>eff</sup> T                                         | La                                                         |
| _ | (cm³/s)                                     | (cm²)                                                       | (unitless)                                       | (cm)                                                                       | (cal/mol)                                                                      | (atm-m³/mol)                                                  | (unitless)                                                           | (g/cm-s)                                                              | (cm²/s)                                                                   | (cm²/s)                                                 | (cm²/s)                                                       | (cm²/s)                                                     | (cm²/s)                                                    | (cm)                                                       |
|   | 1.69E+04                                    | 1.06E+06                                                    | 3.77E-04                                         | 15                                                                         | 8,544                                                                          | 5.05E-03                                                      | 2.17E-01                                                             | 1.76E-04                                                              | 5.20E-03                                                                  | 0.00E+00                                                | 0.00E+00                                                      | 8.83E-06                                                    | 6.12E-05                                                   | 175                                                        |
|   | Convection path length, L <sub>p</sub> (cm) | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(μg/m³) | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)   | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> ) | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless) | Infinite source indoor attenuation coefficient, α (unitless)          | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³)                         |                                                             |                                                            |                                                            |
|   | 45                                          | 4.055.00                                                    | 0.40                                             | 0.005.04                                                                   | 5 205 22                                                                       | 4.005.00                                                      | 0.445.472                                                            | 2.18E-05                                                              | 4.24E-03                                                                  | 2.0E-06                                                 | 6.0E-01                                                       |                                                             |                                                            |                                                            |
| L | 15                                          | 1.95E+02                                                    | 0.10                                             | 8.33E+01                                                                   | 5.20E-03                                                                       | 4.00E+02                                                      | 8.41E+173                                                            | 4.10E-V3                                                              | 1 4.24E-U3                                                                | 2.02-00                                                 | 0.0E-01                                                       | j                                                           |                                                            |                                                            |

**RESULTS SHEET** 

# **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(μg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(μg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |       | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                                     | NA                                                   | 1.47E+06                                                 | NA                                                             | ] • [ | 3.5E-09                                                                    | 6.8E-06                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

#### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

**INCREMENTAL RISK CALCULATIONS:** 

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) | Increm<br>risk fr<br>vap<br>intrusid<br>indoor<br>carcind<br>(unitle | om quotien or from vap on to intrusion air, indoor ai ogen noncarcino | t<br>or<br>to<br>ir,<br>ogen |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|
| 2.58E+02                                                            | 1.33E+05                                                               | 2.58E+02                                                            | 1.47E+06                                                 | 2.58E+02                                        | ] NA                                                                 | NA NA                                                                 |                              |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

| GW-ADV<br>/ersion 3.1; 02/04 | CALCULATE RIS                                                                                                                                       | K-BASED GROUN                                                                                                                                                           | NDWATER CONC                                                                                                                                    | ENTRATION (en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ter "X" in "YES" bo                                                                                                                          | ×)                                                                                                                                                         |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Reset to                     |                                                                                                                                                     | YES                                                                                                                                                                     | OR                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
| Defaults                     | CALCULATE INC                                                                                                                                       | REMENTAL RISK                                                                                                                                                           |                                                                                                                                                 | GROUNDWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ER CONCENTRAT                                                                                                                                | ION (enter "X" in "YE                                                                                                                                      | S" box and initial grou                                                                                   | ndwater conc. be                                                              | low)                                                                                                                                   |                                                                             |                                                                      |                                                                                  |
|                              |                                                                                                                                                     | YES                                                                                                                                                                     | X                                                                                                                                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
|                              | ENTER                                                                                                                                               | ENTER<br>Initial                                                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
|                              | Chemical                                                                                                                                            | groundwater                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
|                              | CAS No. (numbers only,                                                                                                                              | conc.,<br>C <sub>w</sub>                                                                                                                                                |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             | •                                                                    |                                                                                  |
|                              | no dashes)                                                                                                                                          | (μg/L)                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical                                                                                                                                     |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
|                              | 67663                                                                                                                                               | 1.00E+00                                                                                                                                                                |                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloroform                                                                                                                                   |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
|                              | ENTER                                                                                                                                               | ENTER<br>Depth                                                                                                                                                          | ENTER                                                                                                                                           | ENTER<br>Totals mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENTER<br>st add up to value o                                                                                                                | ENTER<br>of Last (cell G28)                                                                                                                                | ENTER                                                                                                     | ENTER                                                                         | ENTER<br>Soil                                                                                                                          |                                                                             | ENTER                                                                | •                                                                                |
| MORE                         | Average soil/                                                                                                                                       | below grade<br>to bottom                                                                                                                                                | Depth                                                                                                                                           | Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thickness<br>of soil                                                                                                                         | Thickness<br>of soil                                                                                                                                       | Soil                                                                                                      |                                                                               | stratum A<br>SCS                                                                                                                       |                                                                             | User-defined stratum A                                               |                                                                                  |
| <u> </u>                     | groundwater                                                                                                                                         | of enclosed space floor,                                                                                                                                                | below grade<br>to water table,                                                                                                                  | of soil<br>stratum A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stratum B,<br>(Enter value or 0)                                                                                                             | stratum C,<br>(Enter value or 0)                                                                                                                           | stratum<br>directly above                                                                                 | SCS<br>soil type                                                              | soil type<br>(used to estimate                                                                                                         | OR                                                                          | soil vapor permeability,                                             |                                                                                  |
|                              | temperature,<br>T <sub>S</sub>                                                                                                                      | L <sub>F</sub>                                                                                                                                                          | L <sub>wt</sub>                                                                                                                                 | h <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h <sub>B</sub>                                                                                                                               | h <sub>C</sub>                                                                                                                                             | water table,                                                                                              | directly above                                                                | soil vapor                                                                                                                             | Oit                                                                         | k <sub>v</sub>                                                       |                                                                                  |
|                              | (°C)                                                                                                                                                | (cm)                                                                                                                                                                    | (cm)                                                                                                                                            | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (cm)                                                                                                                                         | (cm)                                                                                                                                                       | (Enter A, B, or C)                                                                                        | water table                                                                   | permeability)                                                                                                                          |                                                                             | (cm²)                                                                | •                                                                                |
|                              | 11                                                                                                                                                  | 15                                                                                                                                                                      | 190                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                            | 0                                                                                                                                                          | Α                                                                                                         | SL                                                                            | SL                                                                                                                                     |                                                                             |                                                                      | <b>J</b> .                                                                       |
|                              |                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                            |                                                                                                           |                                                                               |                                                                                                                                        |                                                                             |                                                                      |                                                                                  |
| MORE                         | ENTER<br>Stratum A                                                                                                                                  | ENTER<br>Stratum A                                                                                                                                                      | ENTER<br>Stratum A                                                                                                                              | ENTER<br>Stratum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENTER<br>Stratum B                                                                                                                           | ENTER<br>Stratum B                                                                                                                                         | ENTER<br>Stratum B                                                                                        | ENTER<br>Stratum B                                                            | ENTER<br>Stratum C                                                                                                                     | ENTER<br>Stratum C                                                          | ENTER<br>Stratum C                                                   | ENTER<br>Stratum C                                                               |
| MORE +                       | Stratum A<br>SCS                                                                                                                                    | Stratum A soil dry                                                                                                                                                      | Stratum A soil total                                                                                                                            | Stratum A soil water-filled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B<br>SCS                                                                                                                             | Stratum B soil dry                                                                                                                                         | Stratum B soil total                                                                                      | Stratum B soil water-filled                                                   | Stratum C<br>SCS                                                                                                                       | Stratum C<br>soil dry                                                       | Stratum C soil total                                                 | Stratum C soil water-filled                                                      |
| MORE                         | Stratum A SCS soil type Lookup Soil                                                                                                                 | Stratum A<br>soil dry<br>bulk density,<br>Pb                                                                                                                            | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                          | Stratum A soil water-filled porosity, $\theta_{w}^{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stratum B<br>SCS<br>soil type                                                                                                                | Stratum B<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>B</sup>                                                                                      | Stratum B<br>soil total<br>porosity,<br>t <sup>B</sup>                                                    | Stratum B soil water-filled porosity, $\theta_w^B$                            | Stratum C SCS soil type Lookup Soil                                                                                                    | Stratum C<br>soil dry<br>bulk density,<br>PbC                               | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soit water-filled<br>porosity,<br>$\theta_w^C$                      |
| MORE ¥                       | Stratum A<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                          | Stratum A<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                           | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>$(cm^3/cm^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>$ ho_b^B$<br>(g/cm <sup>3</sup> )                                                                                | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm³/cm³)      | Stratum C SCS soil type Lookup Soil Parameters                                                                                         | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE ↓                       | Stratum A SCS Soil type Lookup Soil Parameters                                                                                                      | Stratum A<br>soil dry<br>bulk density,<br>$\rho_b^A$<br>(g/cm <sup>3</sup> )                                                                                            | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A soil water-filled porosity, $\theta_w^A$ (cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>$\rho_b^B$<br>(g/cm³)                                                                                            | Stratum B soil total porosity,  t  (unitless)                                                             | Stratum B soil water-filled porosity, $\theta_w^B$                            | Stratum C SCS soil type Lookup Soil Parameters                                                                                         | Stratum C<br>soil dry<br>bulk density,<br>PbC                               | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soit water-filled<br>porosity,<br>$\theta_w^C$                      |
| MORE                         | Stratum A<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                          | Stratum A<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                           | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>$(cm^3/cm^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type<br>Lookup Sol<br>Parameters<br>S<br>ENTER                                                                      | Stratum B soil dry bulk density, p. 8 (g/cm³)  1.66  ENTER                                                                                                 | Stratum B soil total porosity,                                                                            | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm³/cm³)      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor                                                                  | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
|                              | Stratum A SCS SOII type Lookup Soil Parameters  SL ENTER                                                                                            | Stratum A<br>soil dry<br>bulk density,<br>$\rho_b^A$<br>(g/cm <sup>3</sup> )                                                                                            | Stratum A soil total porosity, n <sup>A</sup> (unitless)                                                                                        | Stratum A soil water-filled porosity, e <sub>w</sub> <sup>A</sup> (cm <sup>3</sup> /cm <sup>3</sup> )  0.103  ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>$\rho_b^B$<br>(g/cm³)                                                                                            | Stratum B soil total porosity,  t  (unitless)                                                             | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm³/cm³)      | Stratum C SCS SOII type Lookup Soil Parameters S ENTER                                                                                 | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness,                                                            | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential,                                                                             | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                         | Stratum A soil water-filled porosity, the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the filled porosity of the fil | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height,                                                               | Stratum B soil dry bulk density, p. 8 (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                   | Stratum B soil total porosity,  t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate,         | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                  | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor                                                                       | Stratum A soil dry bulk density, Ph (g/cm³)  1.80  ENTER  Soil-bldg. pressure                                                                                           | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor                                                                 | Stratum A soil water-filled porosity, \$\theta_{\text{w}}^{} \ (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space                                                                       | Stratum B soil dry bulk density, p.8 (g/cm³)  1.66  ENTER  Floor-wall seam crack                                                                           | Stratum B soil total porosity, t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange                | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS SOII type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR                                          | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lcrack                                                    | Stratum A soil dry bulk density, \$\rho_b^A\$ (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, \$\rho P\$                                                        | Stratum A soil total porosity, n* (unitless)  0.330  ENTER Enclosed space floor length, LB                                                      | Stratum A soil water-filled porosity, the water-filled porosity, the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water filled porosity of the water | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                | Stratum B soil dry bulk density, p. B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                 | Stratum B soil total porosity,                                                                            | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER                                    | Stratum A soil dry bulk density, Ph (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)                                                                | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                     | Stratum A soil water-filled porosity, \$\theta_{\text{\chi}}\$ (cm^3/cm^3) \$\$ 0.103 \$\$ ENTER Enclosed space floor width, \$W_8\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER                                 | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER                                                  | Stratum B soil total porosity, t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Qaoil (L/m)       | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE +                       | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for                   | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for                                 | Stratum A soil total porosity, n* (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER                                    | Stratum A soil water-filled porosity, \$\theta_*^\ (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor width, \$W_8\$ (cm)  1000  ENTER  Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height, He (cm) 300 ENTER Target risk for                             | Stratum B soil dry bulk density, p. B. (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                   | Stratum B soil total porosity, t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Qaoil (L/m)       | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging                            | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                 | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | Stratum A soil water-filled porosity, \$\theta_w^*\$ (cm³/cm³) \$0.103\$  ENTER Enclosed space floor width, \$W_B\$ (cm) \$1000\$  ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target                          | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER  Target hazard                                   | Stratum B soil total porosity, t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Qaoil (L/m)       | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lcrack (cm)  10  ENTER Averaging time for carcinogens,    | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for                                 | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration,                | Stratum A soil water-filled porosity, \$\theta_{\text{\chi}}\$ (cm^3/cm^3) \$\$ 0.103 \$\$ ENTER Enclosed space floor width, \$W_{\text{\chi}}\$ (cm) \$\$ 1000 \$\$ ENTER Exposure frequency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,    | Stratum B soil dry bulk density, P.B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,     | Stratum B soil total porosity, t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Qaoil (L/m)       | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc | Stratum A soil dry bulk density, Ph (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity, \$\theta_{\text{\chi}}\$ (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor width, \$W_8\$ (cm)  1000  ENTER  Exposure frequency, \$\text{EF}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soll Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens, TR | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ | Stratum B soil total porosity, t <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 9,8 (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Qaoil (L/m)       | Stratum C<br>soli dry<br>bulk density,<br>$\rho_b^C$<br>(g/cm³)             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |

# CHEMICAL PROPERTIES SHEET

| Diffusivit<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | in water,<br>D <sub>w</sub> | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|-----------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| 1.04E-0                                                         | 1 1.00E-05                  | 3.66E-03                                                                     | 25                                                                             | 6,988                                                                            | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                              | 4.9E-02                               |

| Exposure duration,    | Source-<br>building<br>separation,    | Stratum A<br>soil<br>air-filled<br>porosity, | Stratum B<br>soil<br>air-filled<br>porosity, | Stratum C<br>soil<br>air-filled<br>porosity, | Stratum A<br>effective<br>total fluid<br>saturation, | Stratum A<br>soil<br>intrinsic<br>permeability, | Stratum A<br>soil<br>relative air<br>permeability, | Stratum A<br>soil<br>effective vapor<br>permeability, | Thickness of capillary zone,  | Total<br>porosity in<br>capillary<br>zone, | Air-filled porosity in capillary zone, | Water-filled porosity in capillary zone, | Floor-<br>wall<br>seam<br>perimeter, |
|-----------------------|---------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------|--------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|
| τ                     | L <sub>T</sub>                        | $\theta_a^{A}$                               | $\theta_a^B$                                 | $\theta_a^c$                                 | Ste                                                  | k <sub>i</sub>                                  | k <sub>rg</sub>                                    | k,                                                    | L <sub>cz</sub>               | n <sub>cz</sub>                            | ⊕ <sub>a,cz</sub>                      | θ <sub>w,cz</sub>                        | X <sub>crack</sub>                   |
| (sec)                 | (cm)                                  | (cm³/cm³)                                    | (cm <sup>3</sup> /cm <sup>3</sup> )          | (cm³/cm³)                                    | (cm³/cm³)                                            | (cm²)                                           | (cm²)                                              | (cm²)                                                 | (cm)                          | (cm <sup>3</sup> /cm <sup>3</sup> )        | (cm <sup>3</sup> /cm <sup>3</sup> )    | (cm³/cm³)                                | (cm)                                 |
| 7.88E+08              | 175                                   | 0.227                                        | 0.321                                        | 0.321                                        | 0.220                                                | 5.94E-09                                        | 0.879                                              | 5.22E-09                                              | 25.00                         | 0.33                                       | 0.010                                  | 0.320                                    | 4,000                                |
|                       | · · · · · · · · · · · · · · · · · · · |                                              |                                              |                                              |                                                      |                                                 |                                                    |                                                       |                               |                                            |                                        |                                          |                                      |
|                       | Area of enclosed                      | Crack-                                       | Crack ·                                      | Enthalpy of                                  | Henry's law                                          | Henry's law                                     | Vapor                                              | Stratum<br>A                                          | Stratum<br>B                  | Stratum<br>C                               | Capillary<br>zone                      | Total<br>overall                         | Diffi.a.                             |
| Bidg.<br>ventilation  | space<br>below                        | to-total<br>area                             | depth<br>below                               | vaporization at<br>ave. groundwater          | constant at<br>ave. groundwater                      | constant at<br>ave. groundwater                 | viscosity at ave. soil                             | effective<br>diffusion                                | effective<br>diffusion        | effective<br>diffusion                     | effective<br>diffusion                 | effective<br>diffusion                   | Diffusion<br>path                    |
| rate,                 | grade,                                | ratio,                                       | grade,                                       | temperature,                                 | temperature,                                         | temperature,                                    | temperature,                                       | coefficient,                                          | coefficient,                  | coefficient,                               | coefficient,                           | coefficient,                             | length,                              |
| Q <sub>bullding</sub> | A <sub>B</sub>                        | η                                            | Z <sub>crack</sub>                           | $\Delta H_{v,TS}$                            | H <sub>TS</sub>                                      | H' <sub>TS</sub>                                | μτε                                                | D <sup>eff</sup> <sub>A</sub>                         | D <sup>eff</sup> <sub>B</sub> | D <sup>eff</sup> c                         | D <sup>eff</sup> cz                    | D <sup>eff</sup> <sub>T</sub>            | La                                   |
| (cm <sup>3</sup> /s)  | (cm²)                                 | (unitless)                                   | (cm)                                         | (cal/mol)                                    | (atm-m³/mol)                                         | (unitless)                                      | (g/cm-s)                                           | (cm²/s)                                               | (cm²/s)                       | (cm <sup>2</sup> /s)                       | (cm²/s)                                | (cm²/s)                                  | (cm)                                 |
|                       | · · · · · · · · · · · · · · · · · · · |                                              |                                              | r = 2''                                      |                                                      |                                                 |                                                    |                                                       |                               | T                                          | T                                      |                                          | T                                    |
| 6.92E+04              | 1.06E+06                              | 3.77E-04                                     | 15                                           | 7,544                                        | 1.95E-03                                             | 8.38E-02                                        | 1.76E-04                                           | 6.85E-03                                              | 0.00E+00                      | 0.00E+00                                   | 2.48E-05                               | 1.70E-04                                 | 175                                  |
|                       |                                       |                                              | Average                                      | Crack                                        |                                                      | Exponent of equivalent                          | Infinite<br>source                                 | infinite                                              |                               |                                            |                                        |                                          |                                      |
| Convection            | Source                                |                                              | vapor                                        | effective                                    |                                                      | foundation                                      | indoor                                             | source                                                | Unit                          |                                            |                                        |                                          |                                      |
| path                  | vapor                                 | Crack                                        | flow rate                                    | diffusion                                    | Area of                                              | Peclet                                          | attenuation                                        | bldg.                                                 | risk                          | Reference                                  |                                        |                                          |                                      |
| length,               | conc.,                                | radius,                                      | into bldg.,                                  | coefficient,                                 | crack,                                               | number,                                         | coefficient,                                       | conc.,                                                | factor,                       | conc.,                                     |                                        |                                          |                                      |
| Lp                    | C <sub>source</sub>                   | r <sub>creck</sub>                           | Q <sub>sol</sub>                             | D <sup>crack</sup>                           | A <sub>crack</sub>                                   | exp(Pe <sup>r</sup> )                           | α                                                  | C <sub>building</sub>                                 | URF                           | RfC                                        |                                        |                                          |                                      |
| (cm)                  | (μg/m³)                               | (cm)                                         | (cm <sup>3</sup> /s)                         | (cm²/s)                                      | (cm²)                                                | (unitless)                                      | (unitless)                                         | (μg/m³)                                               | (μg/m³) <sup>-1</sup>         | (mg/m³)                                    |                                        |                                          |                                      |
| 15                    | 8.38E+01                              | 0.10                                         | 8.33E+01                                     | 6.85E-03                                     | 4.00E+02                                             | 1.29E+132                                       | 1.47E-05                                           | 1.23E-03                                              | 2.3E-05                       | 4.9E-02                                    | 1                                      |                                          |                                      |
| 1.0                   | 1 0.30E-701                           | 0.10                                         | 1 0,000,01                                   | L 0.00E-00                                   | 1. 4.000-102                                         | 1.2061102                                       | 1.7/12-00                                          | 1.201-00                                              | 2.02-00                       | 1 7.06-02                                  | <b>.</b>                               |                                          |                                      |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(μg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |          | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                      | NA                                                   | 7.92E+06                                                 | NA                                                             | -<br>  [ | 6.9E-09                                                                    | 1.7E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

**PRG SHEET** 

#### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | ris<br>\<br>intr<br>ind<br>car | remental sk from vapor rusion to loor air, cinogen nitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.44E+02                                                            | 5.81E+04                                                               | 1.44E+02                                             | 7.92E+06                                                 | 1.44E+02                                                       |                                | NA                                                          | l NA                                                                         |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

| GW-ADV            | CALCULATE R                  | ISK-BASED GROU              | INDWATER CONC      | ENTRATION (                         | enter "X" in "YES" bo     | ox)                           |                          |                    |                                |                                        |                             |                                |
|-------------------|------------------------------|-----------------------------|--------------------|-------------------------------------|---------------------------|-------------------------------|--------------------------|--------------------|--------------------------------|----------------------------------------|-----------------------------|--------------------------------|
| ersion 3.1; 02/04 |                              | YES                         |                    | 7                                   |                           |                               |                          |                    |                                |                                        |                             |                                |
| Reset to          |                              | 123                         | OR                 | J.                                  |                           |                               |                          |                    |                                |                                        |                             |                                |
| Defaults          | CALCULATE IN                 | CREMENTAL RIS               |                    | GROUNDWA                            | TER CONCENTRAT            | FION (enter "X" in "YE        | ES" box and initial grou | indwater conc. be  | low)                           |                                        |                             |                                |
|                   |                              | YES                         |                    | 7                                   |                           |                               |                          |                    | ,                              |                                        |                             |                                |
|                   |                              | 162                         | X                  | j                                   |                           |                               |                          |                    |                                |                                        |                             |                                |
|                   | ENTER                        | ENTER                       |                    |                                     |                           |                               |                          |                    |                                |                                        |                             |                                |
|                   | Chemical                     | Initial<br>groundwater      |                    |                                     |                           |                               |                          |                    |                                |                                        |                             |                                |
|                   | CAS No.                      | conc.,                      |                    |                                     |                           |                               |                          |                    |                                |                                        |                             |                                |
|                   | (numbers only,<br>no dashes) | C <sub>w</sub><br>(μg/L)    |                    |                                     | Chemical                  |                               |                          |                    |                                |                                        |                             |                                |
|                   |                              |                             | <del></del>        | *                                   | Chemical                  |                               | •                        |                    |                                |                                        |                             |                                |
|                   | 79016                        | 5.00E-01                    | J                  |                                     | Trichloroethyl            | ene                           | ]                        |                    |                                |                                        |                             |                                |
|                   | ENTER                        | ENTER                       | ENTER              | ENTER                               | ENTER                     | ENTER                         | ENTER                    | ENTER              | ENTER                          | ······································ | ENTER                       | 7                              |
|                   |                              | Depth                       |                    |                                     | ust add up to value o     | of L <sub>wT</sub> (cell G28) |                          | LITTER             | Soil                           |                                        | ENIER                       |                                |
| MORE ¥            | Average<br>soil/             | below grade<br>to bottom    | Depth              | Thickness                           | Thickness                 | Thickness                     |                          |                    | stratum A                      |                                        | User-defined                |                                |
| <del></del>       | groundwater                  | of enclosed                 | below grade        | of soil                             | of soil stratum B,        | of soil<br>stratum C,         | Soil<br>stratum          | scs                | SCS                            |                                        | stratum A                   | 1                              |
|                   | temperature,                 | space floor,                | to water table,    | stratum A,                          | (Enter value or 0)        |                               | directly above           | soil type          | soil type<br>(used to estimate | OR                                     | soil vapor<br>permeability, |                                |
|                   | Ts                           | L <sub>F</sub>              | L <sub>wt</sub>    | h <sub>A</sub>                      | h <sub>B</sub>            | h <sub>C</sub>                | water table,             | directly above     | soil vapor                     | •                                      | k <sub>v</sub>              |                                |
|                   | (°C)                         | (cm)                        | (cm)               | (cm)                                | (cm)                      | (cm)                          | (Enter A, B, or C)       | water table        | permeability)                  |                                        | (cm²)                       | j                              |
|                   | 11                           | 15                          | 1 190              | 190                                 | 0                         | 0                             | A                        | SL                 | CI                             | 1                                      |                             | Ì                              |
|                   |                              |                             |                    |                                     | <u> </u>                  |                               |                          | 1 31               | SL                             | L                                      | <u> </u>                    | ŀ                              |
|                   | ENTER                        | ENTER                       | ENTER              | ENTER                               | ENTER                     | FUTEO                         |                          |                    |                                |                                        |                             |                                |
| MORE              | Stratum A                    | Stratum A                   | Stratum A          | Stratum A                           | Stratum B                 | ENTER<br>Stratum B            | ENTER<br>Stratum B       | ENTER<br>Stratum B | ENTER<br>Stratum C             | ENTER<br>Stratum C                     | ENTER                       | ENTER                          |
| Ψ                 | scs                          | soil dry                    | soil total         | soil water-filled                   | SCS                       | soil dry                      | soil total               | soil water-filled  | SCS                            | soil dry                               | Stratum C<br>soil total     | Stratum C<br>soil water-filled |
|                   | soil type                    | bulk density,               | porosity,          | porosity,                           | soil type                 | bulk density,                 | porosity,                | porosity,          | soil type                      | bulk density,                          | porosity,                   | porosity,                      |
|                   | Lookup Soil<br>Parameters    | ρ <sub>6</sub> <sup>A</sup> | n <sup>A</sup>     | θ,,Α                                | Lookup Soil<br>Parameters | $\rho_b^B$                    | n <sup>B</sup> (         | θ <b>″</b> Β       | Lookup Soil                    | ρ <sub>b</sub> C                       | n <sup>C</sup>              | e,,c                           |
|                   |                              | ) (g/cm <sup>3</sup> )      | (unitless)         | (cm <sup>3</sup> /cm <sup>3</sup> ) | Falanteters               | (g/cm³)                       | (unitless)               | (cm³/cm³)          | Parameters                     | (g/cm³)                                | (unitless)                  | (cm³/cm³)                      |
|                   | SL                           | 1.80                        | 0.330              | 0.103                               | S                         | 1.66                          | 0.375                    | 0.054              | S                              | 1.66                                   | 0.375                       | 0.054                          |
|                   | ENTER                        | ENTER                       | ENTER              | ENTER                               | ENTER                     | ENTER                         | ENTER                    |                    |                                |                                        |                             |                                |
| MORE              | Enclosed                     |                             | Enclosed           | Enclosed                            | LIVILIX                   | ENIER                         | ENIER                    |                    | ENTER<br>Average vapor         |                                        |                             |                                |
| <u> </u>          | space                        | Soil-bldg.                  | space              | space                               | Enclosed                  | Floor-wall                    | Indoor                   |                    | flow rate into bidg.           |                                        |                             |                                |
|                   | floor<br>thickness,          | pressure<br>differential,   | floor<br>length,   | floor                               | space                     | seam crack                    | air exchange             | * *                | OR                             |                                        |                             |                                |
|                   | L <sub>crack</sub>           | ΔP                          | L <sub>B</sub>     | width,<br>W <sub>B</sub>            | height,<br>H <sub>B</sub> | width,<br>w                   | rate,<br>ER              | Le                 | eave blank to calcula          | ite                                    |                             |                                |
|                   | (cm)                         | (g/cm-s²)                   | (cm)               | (cm)                                | (cm)                      | (cm)                          | (1/h)                    |                    | Q <sub>soil</sub><br>(L/m)     |                                        |                             |                                |
|                   |                              |                             |                    |                                     |                           |                               |                          | •                  | \C/11/                         | •                                      |                             |                                |
|                   | 10                           | 40                          | 1000               | 1000                                | 300                       | 0.1                           | 0.83                     | ] [                | 5                              |                                        |                             |                                |
| MORE              | ENTER                        | ENTER                       | ENTER              | ENTER                               | ENTER                     | ENTER                         |                          |                    |                                |                                        |                             |                                |
| <u> </u>          | Averaging                    | Averaging                   | <b>5</b>           |                                     | Target                    | Target hazard                 |                          |                    |                                |                                        |                             |                                |
|                   | time for<br>carcinogens,     | time for<br>noncarcinogens, | Exposure duration, | Exposure<br>frequency,              | risk for                  | quotient for                  |                          |                    |                                |                                        |                             |                                |
|                   | AT <sub>C</sub>              | AT <sub>NC</sub>            | ED.                | EF                                  | carcinogens,<br>TR        | noncarcinogens,<br>THQ        |                          |                    |                                |                                        |                             |                                |
|                   | (yrs)                        | (yrs)                       | (yrs)              | (days/yr)                           | (unitless)                | (unitless)                    |                          |                    |                                | •                                      |                             |                                |
| * .               | 70                           | 25                          | 25                 | 250                                 | 1.0E-06                   | 1                             |                          |                    |                                |                                        |                             |                                |
| !                 |                              |                             |                    |                                     |                           |                               |                          |                    |                                |                                        |                             |                                |
| END               |                              |                             |                    |                                     | Used to calcul            |                               |                          |                    |                                |                                        |                             |                                |
|                   |                              |                             |                    |                                     | groundwater of            | concentration.                |                          |                    |                                |                                        |                             |                                |
|                   |                              |                             |                    |                                     |                           |                               |                          |                    |                                |                                        |                             |                                |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                              | 3.5E-02                               |

| Exposure duration, t (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ B}$<br>$(cm^3/cm^3)$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ C}$<br>(cm³/cm³)                 | Stratum A effective total fluid saturation, Ste (cm³/cm³)                                         | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm²) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²) | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm) | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³) | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> )        | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³)                | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                                       | 175                                                                                     | 0.227                                                                     | 0.321                                                                             | 0.321                                                                                         | 0.220                                                                                             | 5.94E-09                                                                   | 0.879                                                                                       | 5.22E-09                                                                         | 25.00                                                         | 0.33                                                                       | 0.010                                                                                               | 0.320                                                                             | 4,000                                                              |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>bulkling</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)                   | Enthalpy of vaporization at ave. groundwater temperature, ΔΗ <sub>ν,TS</sub> (cal/mol)        | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H'TS (unitless)      | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µrs<br>(g/cm-s)                       | Stratum A effective diffusion coefficient, Deff (cm²/s)                          | Stratum  B  effective  diffusion  coefficient,  Deff  (cm²/s) | Stratum C effective diffusion coefficient, Deffic (cm²/s)                  | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, $D^{eff}_{T}$ (cm <sup>2</sup> /s) | Diffusion path length,                                             |
| 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                                | 8,544                                                                                         | 5.05E-03                                                                                          | 2.17E-01                                                                   | 1.76E-04                                                                                    | 5.20E-03                                                                         | 0.00E+00                                                      | 0.00E+00                                                                   | 8.83E-06                                                                                            | 6.12E-05                                                                          | 175                                                                |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br><sup>r</sup> crack<br>(cm)                            | Average<br>vapor<br>flow rate<br>into bldg.,<br>Q <sub>soil</sub><br>(cm³/s)      | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                     | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)       | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)        | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>1</sup>        | Reference<br>conc.,<br>RfC<br>(mg/m³)                                      |                                                                                                     |                                                                                   |                                                                    |
| 15                                                                             | 1.08E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                          | 5.20E-03                                                                                      | 4.00E+02                                                                                          | 8.41E+173                                                                  | 5.34E-06 \                                                                                  | 5.78E-04                                                                         | 1.1E-04                                                       | 3.5E-02                                                                    | ]                                                                                                   |                                                                                   |                                                                    |

#### **RESULTS SHEET**

## RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

#### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure component water solubility, S (µg/L) | Final indoor exposure groundwater conc., (µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA NA                                                               | NA NA                                                   | NA                                                   | 1.47E+06                                  | NA                                              | · | 1.6E-08                                                                    | 1.1E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

#### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 3.22E+01                                                            | 4.42E+04                                                               | 3.22E+01                                             | 1.47E+06                                                 | 3.22E+01                                        | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| GW-ADV             | CALCULATE RIS                                                                                                                                             | SK-BASED GROUN                                                                                                                                                                              | NDWATER CONC                                                                                                                                    | ENTRATION (en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ter "X" in "YES" bo                                                                                                                          | x)                                                                                                                                                         |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Version 3.1; 02/04 |                                                                                                                                                           |                                                                                                                                                                                             | <del></del>                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
| Reset to           |                                                                                                                                                           | YES                                                                                                                                                                                         | OR                                                                                                                                              | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
| Defaults           | CALCULATE INC                                                                                                                                             | TOCMENTAL DICK                                                                                                                                                                              |                                                                                                                                                 | CPOLINDWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED CONCENTRAT                                                                                                                                | ION (enter "V" in "VE                                                                                                                                      | S" box and initial grou                                              | ndwater conc. hel                                                                          | ow)                                                                                                                                          |                                                                                               |                                                                      |                                                                                   |
|                    | CALCOLA IL INC                                                                                                                                            | SALMENTAL RIGA                                                                                                                                                                              | O FROM ACTUAL                                                                                                                                   | GROONDWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EK CONCENTION                                                                                                                                | ION (enter X III ) FE                                                                                                                                      | 3 DOX and milital grou                                               | INGWARE CONC. DE                                                                           | O# <i>)</i>                                                                                                                                  |                                                                                               |                                                                      |                                                                                   |
|                    |                                                                                                                                                           | YES                                                                                                                                                                                         | X                                                                                                                                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | ENTER                                                                                                                                                     | ENTER                                                                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                            | 4                                                                    | 4                                                                                          |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | ENTER                                                                                                                                                     | Initial                                                                                                                                                                                     |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | Chemical<br>CAS No.                                                                                                                                       | groundwater                                                                                                                                                                                 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | (numbers only,                                                                                                                                            | conc.,<br>C <sub>w</sub>                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | no dashes)                                                                                                                                                | (μg/L)                                                                                                                                                                                      | -                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chemical                                                                                                                                     |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | 79016                                                                                                                                                     | 9.00E-01                                                                                                                                                                                    | · .                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triphlomothyle                                                                                                                               |                                                                                                                                                            | ·<br>}                                                               |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | 73010                                                                                                                                                     | 3.00E-01                                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trichloroethyle                                                                                                                              | ile                                                                                                                                                        |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | ENTER                                                                                                                                                     | ENTER                                                                                                                                                                                       | ENTER                                                                                                                                           | ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ENTER                                                                                                                                        | ENTER                                                                                                                                                      | ENTER                                                                | ENTER                                                                                      | ENTER                                                                                                                                        |                                                                                               | ENTER                                                                | 1                                                                                 |
| NOOF               | A                                                                                                                                                         | Depth                                                                                                                                                                                       |                                                                                                                                                 | Totals mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | st add up to value o<br>Thickness                                                                                                            |                                                                                                                                                            |                                                                      |                                                                                            | Soil                                                                                                                                         |                                                                                               | Lleas defined                                                        |                                                                                   |
| MORE               | Average<br>soil/                                                                                                                                          | below grade<br>to bottom                                                                                                                                                                    | Depth                                                                                                                                           | Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of soil                                                                                                                                      | Thickness<br>of soil                                                                                                                                       | Soil                                                                 |                                                                                            | stratum A<br>SCS                                                                                                                             |                                                                                               | User-defined<br>stratum A                                            | ļ                                                                                 |
|                    | groundwater                                                                                                                                               | of enclosed                                                                                                                                                                                 | below grade                                                                                                                                     | of soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | stratum B,                                                                                                                                   | stratum C,                                                                                                                                                 | stratum                                                              | scs                                                                                        | soil type                                                                                                                                    |                                                                                               | soil vapor                                                           |                                                                                   |
|                    | temperature,                                                                                                                                              | space floor,                                                                                                                                                                                | to water table,                                                                                                                                 | stratum A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Enter value or 0)                                                                                                                           | (Enter value or 0)                                                                                                                                         | directly above                                                       | soil type                                                                                  | (used to estimate                                                                                                                            | OR                                                                                            | permeability,                                                        |                                                                                   |
|                    | Ts                                                                                                                                                        | L <sub>F</sub>                                                                                                                                                                              | L <sub>WT</sub>                                                                                                                                 | h <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h <sub>B</sub>                                                                                                                               | h <sub>c</sub>                                                                                                                                             | water table,                                                         | directly above                                                                             | soil vapor                                                                                                                                   |                                                                                               | k <sub>v</sub>                                                       |                                                                                   |
|                    | (°C)                                                                                                                                                      | (cm)                                                                                                                                                                                        | (cm)                                                                                                                                            | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (cm)                                                                                                                                         | (cm)                                                                                                                                                       | (Enter A, B, or C)                                                   | water table                                                                                | permeability)                                                                                                                                |                                                                                               | (cm²)                                                                |                                                                                   |
|                    | 11                                                                                                                                                        | 15                                                                                                                                                                                          | 190                                                                                                                                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                            | 0                                                                                                                                                          | Α                                                                    | SL                                                                                         | SL                                                                                                                                           |                                                                                               |                                                                      | 1                                                                                 |
|                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                     | <del></del>                                                                                                                                                                                 | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                              | <del></del>                                                                                                                                                |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      | •                                                                                 |
|                    |                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                                                            |                                                                      |                                                                                            |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                    | ENTER                                                                                                                                                     | ENTER                                                                                                                                                                                       | ENTER                                                                                                                                           | ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ENTER                                                                                                                                        | ENTER                                                                                                                                                      | ENTER                                                                | ENTER                                                                                      | ENTER                                                                                                                                        | ENTER                                                                                         | ENTER                                                                | ENTER                                                                             |
| MORE               | ENTER<br>Stratum A                                                                                                                                        | ENTER<br>Stratum A                                                                                                                                                                          | ENTER<br>Stratum A                                                                                                                              | ENTER<br>Stratum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ENTER<br>Stratum B                                                                                                                           | ENTER<br>Stratum B                                                                                                                                         | ENTER<br>Stratum B                                                   | ENTER<br>Stratum B                                                                         | ENTER<br>Stratum C                                                                                                                           | ENTER<br>Stratum C                                                                            | ENTER<br>Stratum C                                                   | Stratum C                                                                         |
| MORE ↓             | Stratum A                                                                                                                                                 | Stratum A soil dry                                                                                                                                                                          | Stratum A soil total                                                                                                                            | Stratum A soil water-filled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stratum B<br>SCS                                                                                                                             | Stratum B soil dry                                                                                                                                         | Stratum B<br>soil total                                              | Stratum B soil water-filled                                                                | Stratum C<br>SCS                                                                                                                             | Stratum C<br>soil dry                                                                         | Stratum C soil total                                                 | Stratum C<br>soil water-filled                                                    |
| MORE ↓             | Stratum A<br>SCS<br>soil type                                                                                                                             | Stratum A<br>soil dry<br>bulk density,                                                                                                                                                      | Stratum A<br>soil total<br>porosity,                                                                                                            | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stratum B<br>SCS<br>soil type                                                                                                                | Stratum B<br>soil dry<br>bulk density,                                                                                                                     | Stratum B<br>soil total<br>porosity,                                 | Stratum B<br>soil water-filled<br>porosity,                                                | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                       |
| MORE ¥             | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                              | Stratum A soil dry bulk density,                                                                                                                                                            | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                          | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stratum B SCS soil type Lookup Soil                                                                                                          | Stratum B soil dry bulk density, $ ho_b^{\ B}$                                                                                                             | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>               | Stratum B soil water-filled porosity, $\theta_w^B$                                         | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,<br>PbC                                                 | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$                   |
| MORE<br>↓          | Stratum A<br>SCS<br>soil type                                                                                                                             | Stratum A<br>soil dry<br>bulk density,                                                                                                                                                      | Stratum A<br>soil total<br>porosity,                                                                                                            | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stratum B<br>SCS<br>soil type                                                                                                                | Stratum B<br>soil dry<br>bulk density,                                                                                                                     | Stratum B<br>soil total<br>porosity,                                 | Stratum B<br>soil water-filled<br>porosity,                                                | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                       |
| MORE ¥             | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                              | Stratum A soil dry bulk density,                                                                                                                                                            | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                          | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stratum B SCS soil type Lookup Soil                                                                                                          | Stratum B soil dry bulk density, $ ho_b^{\ B}$                                                                                                             | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>               | Stratum B soil water-filled porosity, $\theta_w^B$                                         | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,<br>PbC                                                 | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{\mathbf{w}}^{\mathbf{C}}$ |
| MORE V             | Stratum A SCS soil type Lookup Soil Parameters                                                                                                            | Stratum A soil dry bulk density, Pb (g/cm³)                                                                                                                                                 | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A soil water-filled porosity, $\theta_w^A$ (cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters                                                                                               | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm <sup>3</sup> )                                                                                         | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless) | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$               | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
|                    | Stratum A SCS soil type Lookup Soil Parameters SL ENTER                                                                                                   | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                               | Stratum A soil total porosity, n <sup>A</sup> (unitless)                                                                                        | Stratum A soil water-filled porosity, e <sub>w</sub> <sup>A</sup> (cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>p. <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                          | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless) | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$               | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE ↓             | Stratum A SCS soil type Lookup Soil Parameters                                                                                                            | Stratum A soil dry bulk density, Pb (g/cm³)                                                                                                                                                 | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A soil water-filled porosity, $\theta_w^A$ (cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters                                                                                               | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm <sup>3</sup> )                                                                                         | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless) | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$               | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| . ↓ . MORE         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor                                                                             | Stratum A soil dry bulk density, pb <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure                                                                                     | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor                                                                 | Stratum A soil water-filled porosity, θ <sub>w</sub> ^ (cm³/cm³)  0.103  ENTER Enclosed space floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space                                                                       | Stratum B soil dry bulk density, p.5 (g/cm³)  1.66  ENTER  Floor-wall seam crack                                                                           | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR                                                | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| . ↓ . MORE         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness,                                                                  | Stratum A soil dry bulk density, \$\rho_b^A\$ (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential,                                                                                       | Stratum A soil total porosity, n* (unitless)  0.330  ENTER Enclosed space floor length,                                                         | Stratum A soil water-filled porosity, \$\theta_w^A\$ (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                               | Stratum B soil dry bulk density, p.6 (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                    | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                        | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| . ↓ . MORE         | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack                                                         | Stratum A soil dry bulk density, Pb^A (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP                                                                                            | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub>                                          | Stratum A soil water-filled porosity, e.g., (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                | Stratum B soil dry bulk density, p. 6 (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                 | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat                         | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| . ↓ . MORE         | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness,                                                                  | Stratum A soil dry bulk density, \$\rho_b^A\$ (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential,                                                                                       | Stratum A soil total porosity, n* (unitless)  0.330  ENTER Enclosed space floor length,                                                         | Stratum A soil water-filled porosity, \$\theta_w^A\$ (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                               | Stratum B soil dry bulk density, p.6 (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                    | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                        | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| . ↓ . MORE         | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack                                                         | Stratum A soil dry bulk density, Pb^A (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP                                                                                            | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub>                                          | Stratum A soil water-filled porosity, e.g., (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                | Stratum B soil dry bulk density, p. 6 (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                 | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat                         | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE 4             | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-track (cm)                                                     | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)                                                                                    | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                     | Stratum A soil water-filled porosity, \$\theta_w^A\$ (cm³/cm³)  0.103  ENTER Enclosed space floor width, \$\text{W}_B\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                           | Stratum B soil dry bulk density, p. 6 (g/cm³)  1.66  ENTER Floor-wall seam crack width, w (cm)                                                             | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE WORE          | Stratum A SCS soil type Lookup 5oil Parameters  SL ENTER Enclosed space floor thickness, L-crack (cm)  10 ENTER                                           | Stratum A soil dry bulk density, pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER                                                                         | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)                                                 | Stratum A soil water-filled porosity, \$\theta_{\text{s}}^{\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/\text{cm}^3/cm | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER                                 | Stratum B soil dry bulk density, p e (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                             | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE 4             | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-track (cm)                                                     | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)                                                                                    | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                     | Stratum A soil water-filled porosity, \$\theta_w^A\$ (cm³/cm³)  0.103  ENTER Enclosed space floor width, \$\text{W}_B\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                           | Stratum B soil dry bulk density, p. 6 (g/cm³)  1.66  ENTER Floor-wall seam crack width, w (cm)                                                             | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE WORE          | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-crack (cm)  10 ENTER Averaging time for carcinogens,           | Stratum A soil dry bulk density, pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                                     | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Le (cm)  1000  ENTER  Exposure duration,                | Stratum A soil water-filled porosity, \$\theta_{\text{\chi}}^{\text{\chi}} (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor width, \$\text{\chi} \text{\chi} (cm)\$  1000  ENTER  Exposure frequency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,    | Stratum B soil dry bulk density, p (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,       | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE WORE          | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-track (cm)  10 ENTER Averaging time for carcinogens, ATc       | Stratum A soil dry bulk density, pb 4 (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>                  | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity, \$\theta_w^*\$ (cm³/cm³)  0.103  ENTER Enclosed space floor width, \$W_B\$ (cm)  1000  ENTER  Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens, TR | Stratum B soil dry bulk density, p.8 (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE WORE          | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-crack (cm)  10 ENTER Averaging time for carcinogens,           | Stratum A soil dry bulk density, pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                                     | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Le (cm)  1000  ENTER  Exposure duration,                | Stratum A soil water-filled porosity, \$\theta_{\text{\chi}}^{\text{\chi}} (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor width, \$\text{\chi} \text{\chi} (cm)\$  1000  ENTER  Exposure frequency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,    | Stratum B soil dry bulk density, p (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,       | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE WORE          | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-track (cm)  10 ENTER Averaging time for carcinogens, ATc       | Stratum A soil dry bulk density, pb 4 (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>                  | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens, TR | Stratum B soil dry bulk density, p.8 (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |
| MORE WORE          | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-crack (cm)  10 ENTER Averaging time for carcinogens, ATc (yrs) | Stratum A soil dry bulk density, \$\rho_b^A\$ (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, \$\rho_P\$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, \$AT_{NC}\$ (yrs) | Stratum A soil total porosity, n* (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, \$\theta_w^*\$ (cm³/cm³)  0.103  ENTER Enclosed space floor width, \$W_B\$ (cm)  1000  ENTER  Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, Hs (cm) 300 ENTER Target risk for carcinogens, TR (unitless)  | Stratum B soil dry bulk density, p.8 (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ | Stratum B soil total porosity,                                       | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Peremeters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat Qsoil (L/m)             | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> c<br>(g/cm <sup>3</sup> )            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$      |

## CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's law constant at reference temperature, H (atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                      | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                                            |

| Exposure<br>duration,<br>t<br>(sec)                              | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)  | Stratum C<br>soil<br>air-filled<br>porosity,<br>9 <sub>a</sub> <sup>C</sup><br>(cm³/cm³)      | Stratum A effective total fluid saturation, S <sub>te</sub> (cm³/cm³)                                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> )          | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm²)                               | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)                     | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)                           | Air-filled<br>porosity in<br>capillary<br>zone,<br>$\theta_{a,cz}$<br>(cm³/cm³)          | Water-filled porosity in capillary zone, θ <sub>w.cz</sub> (cm³/cm³)                              | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                         | 175                                                                                     | 0.227                                                                     | 0.321                                                                      | 0.321                                                                                         | 0.220                                                                                                          | 5.94E-09                                                                                         | 0.879                                                                                       | 5.22E-09                                                                                           | 25.00                                                                             | 0.33                                                                                                 | 0.010                                                                                    | 0.320                                                                                             | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>bulding</sub><br>(cm³/s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H' <sub>TS</sub><br>(unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm²/s) | Stratum B effective diffusion coefficient, Deff <sub>B</sub> (cm <sup>2</sup> /s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 6.92E+04                                                         | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                         | 8,544                                                                                         | 5.05E-03                                                                                                       | 2.17E-01                                                                                         | 1.76E-04                                                                                    | 5.20E-03                                                                                           | 0.00E+00                                                                          | 0.00E+00                                                                                             | 8.83E-06                                                                                 | 6.12E-05                                                                                          | 175                                                                |
| Convection path length, L <sub>p</sub> (cm)                      | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br><sup>F</sup> crack<br>(cm)                            | Average vapor flow rate into bldg.,  Q <sub>soi</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of crack, A <sub>crack</sub> (cm <sup>2</sup> )                                                           | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                             | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                          | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                           | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                |                                                                                          |                                                                                                   |                                                                    |
| 15                                                               | 1.95E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                   | 5.20E-03                                                                                      | 4.00E+02                                                                                                       | 8.41E+173                                                                                        | 5.34E-06                                                                                    | 1.04E-03                                                                                           | 2.0E-06                                                                           | 6.0E-01                                                                                              |                                                                                          |                                                                                                   | *                                                                  |

## RESULTS SHEET

#### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

#### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA NA                                                               | NA                                                      | NA                                                   | 1.47E+06                                                 | NA                                                             | 5.1E-10                                                                    | 1.2E-06                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.77E+03                                                            | 7.58E+05                                                               | 1.77E+03                                                            | 1.47E+06                                                 | 1.77E+03                                        | NA                                                                         | NA                                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 2
AREA A DOWNSTREAM

RESIDENTIAL

#### DATA ENTRY SHEET

|               | GW-ADV            | CALCULATE RE                                                                                                                                                               | SK-BASED CDOL                                                                                                                                                                    | INDWATED COM                                                                                                                                          | 251501501                                                                                                                                         | nter "X" in "YES" bo                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1 .           | sion 3.1; 02/04   | OALOOLA IL AI                                                                                                                                                              | SK-BASED GROU                                                                                                                                                                    | INDWATER CON                                                                                                                                          | JENTRATION (                                                                                                                                      | inter "X" in "YES" bo                                                                                                                                            | ox)                                                                                                                                                                                                   |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
| VOIS          | 31011 3. 1, 02/04 |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       | _                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
| $\overline{}$ |                   |                                                                                                                                                                            | YES                                                                                                                                                                              |                                                                                                                                                       | 7                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               | Reset to          |                                                                                                                                                                            |                                                                                                                                                                                  | OR                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
| 1             | Defaults          | CA1 CI # ATT IN                                                                                                                                                            | on=                                                                                                                                                                              | OK                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
| <u> </u>      |                   | CALCULATE IN                                                                                                                                                               | CREMENTAL RISI                                                                                                                                                                   | KS FROM ACTUA                                                                                                                                         | L GROUNDWA                                                                                                                                        | TER CONCENTRAT                                                                                                                                                   | FION (enter "X" in "YE                                                                                                                                                                                | ES" box and initial grou                                                                                  | indwater conc. he                                                                                     | alow)                                                                                                                                         |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       | _                                                                                                                                                 |                                                                                                                                                                  | •                                                                                                                                                                                                     |                                                                                                           |                                                                                                       | olow)                                                                                                                                         |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            | YES                                                                                                                                                                              | X                                                                                                                                                     | 7                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       | ,                                                                                                                                             |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       | ┛.                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | ENTER                                                                                                                                                                      | ENTER                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            | Initial                                                                                                                                                                          |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | Chemical                                                                                                                                                                   | groundwater                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | CAS No.                                                                                                                                                                    | conc.,                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | (numbers only,                                                                                                                                                             | Cw                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | no dashes)                                                                                                                                                                 | (μg/L)                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                   | <u>.</u>                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | 110 (0001100)                                                                                                                                                              | (µg/L)                                                                                                                                                                           |                                                                                                                                                       | *                                                                                                                                                 | Chemical                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       | •                                                                                                                                             |                                                                             |                                                                      |                                                                                      |
|               |                   | 79016                                                                                                                                                                      | 2 22 2 2                                                                                                                                                                         | <b>-</b>                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       | •                                                                                                         |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | 79016                                                                                                                                                                      | 2.00E+00                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                   | Trichloroethyle                                                                                                                                                  | ene                                                                                                                                                                                                   |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            | 1,                                                                                                                                                                               | _                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       | ı                                                                                                         |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | ENTER                                                                                                                                                                      | ENTER                                                                                                                                                                            | ENTER                                                                                                                                                 | ENTER                                                                                                                                             | ENTER                                                                                                                                                            | ENTER                                                                                                                                                                                                 | - curen                                                                                                   |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      | _                                                                                    |
|               |                   |                                                                                                                                                                            | Depth                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                   | st add up to value o                                                                                                                                             | off (call C20)                                                                                                                                                                                        | ENTER                                                                                                     | ENTER                                                                                                 | ENTER                                                                                                                                         |                                                                             | ENTER                                                                | 1                                                                                    |
|               | MORE              | Average                                                                                                                                                                    | below grade                                                                                                                                                                      |                                                                                                                                                       | Totals IIIc                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       | Soil                                                                                                                                          |                                                                             |                                                                      | ļ                                                                                    |
|               | ₩ .               | soil/                                                                                                                                                                      | to bottom                                                                                                                                                                        | Depth                                                                                                                                                 | Thisbass.                                                                                                                                         | Thickness                                                                                                                                                        | Thickness                                                                                                                                                                                             |                                                                                                           |                                                                                                       | stratum A                                                                                                                                     |                                                                             | User-defined                                                         | 1                                                                                    |
|               | ····              | groundwater                                                                                                                                                                | of enclosed                                                                                                                                                                      | below grade                                                                                                                                           | Thickness                                                                                                                                         | of soil                                                                                                                                                          | of soil                                                                                                                                                                                               | Soil                                                                                                      |                                                                                                       | SCS                                                                                                                                           |                                                                             | stratum A                                                            |                                                                                      |
|               |                   | temperature,                                                                                                                                                               | space floor,                                                                                                                                                                     |                                                                                                                                                       | of soil                                                                                                                                           | stratum B,                                                                                                                                                       | stratum C,                                                                                                                                                                                            | stratum                                                                                                   | SCS                                                                                                   | soil type                                                                                                                                     |                                                                             | soil vapor                                                           | İ                                                                                    |
|               |                   | T <sub>s</sub>                                                                                                                                                             |                                                                                                                                                                                  | to water table,                                                                                                                                       | stratum A,                                                                                                                                        | (Enter value or 0)                                                                                                                                               | (Enter value or 0)                                                                                                                                                                                    | directly above                                                                                            | soil type                                                                                             | (used to estimate                                                                                                                             | OR                                                                          | permeability,                                                        |                                                                                      |
|               |                   |                                                                                                                                                                            | LF                                                                                                                                                                               | Lwt                                                                                                                                                   | h <sub>A</sub>                                                                                                                                    | h <sub>B</sub>                                                                                                                                                   | h <sub>C</sub> .                                                                                                                                                                                      | water table,                                                                                              | directly above                                                                                        | soil vapor                                                                                                                                    |                                                                             | k <sub>v</sub>                                                       |                                                                                      |
|               |                   | (°C)                                                                                                                                                                       | (cm)                                                                                                                                                                             | (cm)                                                                                                                                                  | (cm)                                                                                                                                              | (cm)                                                                                                                                                             | (cm)                                                                                                                                                                                                  | (Enter A, B, or C)                                                                                        | water table                                                                                           | ľ ·                                                                                                                                           |                                                                             | _                                                                    |                                                                                      |
|               |                   |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       | (2.1.6.74, 2, 6.6)                                                                                        | water table                                                                                           | permeability)                                                                                                                                 |                                                                             | (cm²)                                                                |                                                                                      |
|               |                   | 11                                                                                                                                                                         | 15                                                                                                                                                                               | 110                                                                                                                                                   | 110                                                                                                                                               | 0                                                                                                                                                                | 0                                                                                                                                                                                                     | Α                                                                                                         | 6.                                                                                                    | <del></del>                                                                                                                                   |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           | SL                                                                                                    | SL                                                                                                                                            |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   |                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                           |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               |                   | ENTER                                                                                                                                                                      | ENTER                                                                                                                                                                            | ENTER                                                                                                                                                 | ENTER                                                                                                                                             | ENTER                                                                                                                                                            | ENTED                                                                                                                                                                                                 | CNITCO                                                                                                    |                                                                                                       |                                                                                                                                               |                                                                             |                                                                      |                                                                                      |
|               | MORE              | ENTER<br>Stratum A                                                                                                                                                         | ENTER<br>Stratum A                                                                                                                                                               |                                                                                                                                                       | ENTER<br>Stratum A                                                                                                                                | ENTER<br>Stratum B                                                                                                                                               | ENTER<br>Stanton D                                                                                                                                                                                    | ENTER                                                                                                     | ENTER                                                                                                 | ENTER                                                                                                                                         | ENTER                                                                       | ENTER                                                                | ENTER                                                                                |
|               | MORE +            |                                                                                                                                                                            | Stratum A                                                                                                                                                                        | Stratum A                                                                                                                                             | Stratum A                                                                                                                                         | Stratum B                                                                                                                                                        | Stratum B                                                                                                                                                                                             | Stratum B                                                                                                 | Stratum B                                                                                             | Stratum C                                                                                                                                     | Stratum C                                                                   | ENTER<br>Stratum C                                                   | ENTER<br>Stratum C                                                                   |
|               |                   | Stratum A<br>SCS                                                                                                                                                           | Stratum A soil dry                                                                                                                                                               | Stratum A soil total                                                                                                                                  | Stratum A soil water-filled                                                                                                                       | Stratum B<br>SCS                                                                                                                                                 | Stratum B<br>soil dry                                                                                                                                                                                 | Stratum B<br>soil total                                                                                   | Stratum B soil water-filled                                                                           | Stratum C<br>SCS                                                                                                                              | Stratum C<br>soil dry                                                       |                                                                      |                                                                                      |
|               |                   | Stratum A<br>SCS<br>soil type                                                                                                                                              | Stratum A<br>soil dry<br>bulk density,                                                                                                                                           | Stratum A<br>soil total<br>porosity,                                                                                                                  | Stratum A<br>soil water-filled<br>porosity,                                                                                                       | Stratum B<br>SCS<br>soil type                                                                                                                                    | Stratum B<br>soil dry<br>bulk density,                                                                                                                                                                | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B soil water-filled porosity,                                                                 | Stratum C<br>SCS                                                                                                                              | Stratum C<br>soil dry<br>bulk density,                                      | Stratum C<br>soil total                                              | Stratum C<br>soil water-filled                                                       |
|               |                   | Stratum A<br>SCS                                                                                                                                                           | Stratum A<br>soil dry<br>bulk density,<br>Pb                                                                                                                                     | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                                | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$                                                                                       | Stratum B<br>SCS<br>soil type                                                                                                                                    | Stratum B<br>soil dry                                                                                                                                                                                 | Stratum B<br>soil total                                                                                   | Stratum B soil water-filled                                                                           | Stratum C<br>SCS                                                                                                                              | Stratum C<br>soil dry<br>bulk density,                                      | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                          |
|               |                   | Stratum A SCS soil type Lookup Soil                                                                                                                                        | Stratum A<br>soil dry<br>bulk density,                                                                                                                                           | Stratum A<br>soil total<br>porosity,                                                                                                                  | Stratum A<br>soil water-filled<br>porosity,                                                                                                       | Stratum B<br>SCS<br>soil type                                                                                                                                    | Stratum B<br>soil dry<br>bulk density,<br>Pb B                                                                                                                                                        | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup>                                                    | Stratum B soil water-filled porosity, $\theta_w^{\ B}$                                                | Stratum C<br>SCS<br>soil type                                                                                                                 | Stratum C<br>soil dry<br>bulk density,<br>$\rho_b^c$                        | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C soil water-filled porosity, $\theta_{\mathbf{w}}^{\text{C}}$               |
|               |                   | Stratum A<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                                                 | Stratum A<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>Δ</sup><br>(g/cm <sup>3</sup> )                                                                                    | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                                  | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$                                                                                       | Stratum B<br>SCS<br>soil type                                                                                                                                    | Stratum B<br>soil dry<br>bulk density,                                                                                                                                                                | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B soil water-filled porosity,                                                                 | Stratum C SCS soil type Lookup Soil                                                                                                           | Stratum C<br>soil dry<br>bulk density,                                      | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                          |
|               |                   | Stratum A SCS soil type Lookup Soil                                                                                                                                        | Stratum A<br>soil dry<br>bulk density,<br>Pb                                                                                                                                     | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                                | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$                                                                                       | Stratum B<br>SCS<br>soil type                                                                                                                                    | Stratum B<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                                         | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$                          | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                    | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b{}^C$<br>(g/cm³)            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               |                   | Stratum A SCS soil type Lookup Soil Parameters                                                                                                                             | Stratum A soil dry bulk density, $\rho_b^A$ (g/cm³)                                                                                                                              | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                                  | Stratum A soil water-filled porosity, θ,, (cm³/cm³)                                                                                               | Stratum B<br>SCS<br>soil type<br>Loókup Soil<br>Parameters                                                                                                       | Stratum B<br>soil dry<br>bulk density,<br>Pb B                                                                                                                                                        | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup>                                                    | Stratum B soil water-filled porosity, $\theta_w^{\ B}$                                                | Stratum C SCS soil type Lookup Soil                                                                                                           | Stratum C<br>soil dry<br>bulk density,<br>$\rho_b^c$                        | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C soil water-filled porosity, $\theta_{\mathbf{w}}^{\text{C}}$               |
|               |                   | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER                                                                                                                   | Stratum A<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>Δ</sup><br>(g/cm <sup>3</sup> )                                                                                    | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                                  | Stratum A soil water-filled porosity, θ,, (cm³/cm³)                                                                                               | Stratum B<br>SCS<br>Soil type<br>Lookup Soil<br>Parameters                                                                                                       | Stratum B<br>soil dry<br>bulk density,<br>$ ho_b^B$<br>(g/cm <sup>3</sup> )                                                                                                                           | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$                          | Stratum C SCS Soil type Lookup Soil Parameters                                                                                                | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b{}^C$<br>(g/cm³)            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed                                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )<br>1.80                                                                            | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                                  | Stratum A soil water-filled porosity, θ <sub>w</sub> <sup>A</sup> (cm³/cm³)                                                                       | Stratum B<br>SCS<br>soil type<br>Loókup Soil<br>Parameters                                                                                                       | Stratum B<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                                         | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$                          | Stratum C SCS soil type Lookup Soil Parameters S ENTER                                                                                        | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b{}^C$<br>(g/cm³)            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               |                   | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space                                                                                                   | Stratum A soil dry bulk density, $\rho_b^A$ (g/cm³)                                                                                                                              | Stratum A soil total porosity, n <sup>A</sup> (unitless)                                                                                              | Stratum A soil water-filled porosity,                                                                                                             | Stratum B SCS Soil type Lodkup Soil Parameters S ENTER                                                                                                           | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm^3)  1.66                                                                                                                                          | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER                                    | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$                          | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor                                                                         | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b{}^C$<br>(g/cm³)            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor                                                                                              | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )<br>1.80                                                                            | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed                                                                       | Stratum A soil water-filled porosity,                                                                                                             | Stratum B SCS soil type Loökup Soil Parameters S ENTER Enclosed                                                                                                  | Stratum B soil dry bulk density, Pb (g/cm³)  1,66   I ENTER                                                                                                                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor                             | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>$(cm^3/cm^3)$                          | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg.                                                    | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b{}^C$<br>(g/cm³)            | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space                                                                                                   | Stratum A soil dry bulk density, p.h (g/cm³)  1.80  ENTER  Soil-bldg.                                                                                                            | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor                                                                       | Stratum A soil water-filled porosity, θ, Δ (cm³/cm³)  0.103  ENTER Enclosed space floor                                                           | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space                                                                                           | Stratum B soil dry bulk density, p <sub>b</sub> <sup>B</sup> (g/cm <sup>3</sup> )  1.66    ENTER  Floor-wall seam crack                                                                               | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange                  | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR                                                 | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness,                                                                                  | Stratum A soil dry bulk density, ps (g/cm³)  1.80  ENTER  Soil-bldg, pressure                                                                                                    | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                               | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                    | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height,                                                                                   | Stratum B soil dry bulk density, \$\rho_b^8\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width,                                                                                                     | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate,          | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soir Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                         | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS Soil type Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L-crack                                                                            | Stratum A soil dry bulk density, pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP                                                                                   | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub>                                    | Stratum A soil water-filled porosity, $\theta_w^A$ (cm <sup>3</sup> /cm <sup>3</sup> )  0.103  ENTER Enclosed space floor width, $W_B$            | Stratum B SCS soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                                    | Stratum B soil dry bulk density, \$\rho_b^8\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, w                                                                                                   | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER       | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR                                                 | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness,                                                                                  | Stratum A soil dry bulk density, pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential,                                                                                      | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                               | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                    | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height,                                                                                   | Stratum B soil dry bulk density, \$\rho_b^8\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width,                                                                                                     | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate,          | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soir Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                         | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)                                                           | Stratum A soil dry bulk density, ps (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)                                                                 | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)                                                       | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³) 0.103   ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                               | Stratum B soil dry bulk density, p 8 (g/cm³)  1.66    ENTER  Floor-wall seam crack width, w (cm)                                                                                                      | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER       | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soir Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                         | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE              | Stratum A SCS Soil type Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L-crack                                                                            | Stratum A soil dry bulk density, pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP                                                                                   | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub>                                    | Stratum A soil water-filled porosity, $\theta_w^A$ (cm <sup>3</sup> /cm <sup>3</sup> )  0.103  ENTER Enclosed space floor width, $W_B$            | Stratum B SCS soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                                    | Stratum B soil dry bulk density, \$\rho_b^8\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, w                                                                                                   | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER       | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack (cm)                                                                     | Stratum A soil dry bulk density, p. A (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)                                                                       | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                               | Stratum A soil water-filled porosity, 0, % (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                               | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm^3)  1,66  ENTER  Floor-wall seam crack width, w (cm)                                                                                              | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soir Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate                         | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL ENTER Enclosed space floor thickness, Lerack (cm)  10 ENTER                                                             | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, Ap (g/cm-s²)  40  ENTER                                                             | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)                                                       | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³) 0.103   ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER                                                     | Stratum B soil dry bulk density, p 8 (g/cm³)  1.66    ENTER  Floor-wall seam crack width, w (cm)                                                                                                      | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging                                      | Stratum A soil dry bulk density, p. A (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging                                                 | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER                                          | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³) 0.103 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER                                   | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target                                             | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm^3)  1,66  ENTER  Floor-wall seam crack width, w (cm)                                                                                              | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lcrack (cm)  10  ENTER Averaging time for                                        | Stratum A soil dry bulk density, pb A (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for                                | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure                    | Stratum A soil water-filled porosity, $\theta_w^A$ , $(cm^3/cm^3)$ 0.103  ENTER Enclosed space floor width, $W_B$ , $(cm)$ 1000  ENTER  Exposure  | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for                                     | Stratum B soil dry bulk density, p b (g/cm³)  1.66 I  ENTER  Floor-wall seam crack width, w (cm)  0.1 ENTER                                                                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL  ENTER Enclosed space floor thickness, Lerack (cm)  10  ENTER Averaging time for carcinogens,                           | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                          | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                  | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³) 0.103 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER                                   | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for                                     | Stratum B soil dry bulk density, \$\rho_e^8\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                                                      | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10 ENTER Averaging time for carcinogens, AT <sub>C</sub> | Stratum A soil dry bulk density, ps (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>         | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure                    | Stratum A soil water-filled porosity, $\theta_w^A$ , $(cm^3/cm^3)$ 0.103  ENTER Enclosed space floor width, $W_B$ , $(cm)$ 1000  ENTER  Exposure  | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens,                        | Stratum B soil dry bulk density, PB (g/cm³)  1.66 I  ENTER  Floor-wall seam crack width, W (cm)  0.1 ENTER  Target hazard quotient for noncarcinogens,                                                | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL  ENTER Enclosed space floor thickness, Lerack (cm)  10  ENTER Averaging time for carcinogens,                           | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                          | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                  | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³) 0.103   ENTER Enclosed space floor width, WB (cm) 1000   ENTER Exposure frequency, EF        | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR                    | Stratum B soil dry bulk density, \$\rho_0^8\$ (g/cm³)  1.66   ENTER  Floor-wall seam crack width, w (cm)  0.1   ENTER  Target hazard quotient for noncarcinogens, THQ                                 | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL ENTER Enclosed space floor thickness, Lcrack (cm)  10 ENTER Averaging time for carcinogens, ATc (yrs)                   | Stratum A soil dry bulk density, ps (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>         | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED                   | Stratum A soil water-filled porosity, 9, ^ (cm³/cm³) 0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm) 1000  ENTER Exposure frequency, | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens,                        | Stratum B soil dry bulk density, PB (g/cm³)  1.66 I  ENTER  Floor-wall seam crack width, W (cm)  0.1 ENTER  Target hazard quotient for noncarcinogens,                                                | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10 ENTER Averaging time for carcinogens, AT <sub>C</sub> | Stratum A soil dry bulk density, ps (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>         | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED                   | Stratum A soil water-filled porosity, 9 cm s cm s cm s cm s cm s cm s cm s cm                                                                     | Stratum B SCS soil type Lodkup Soil Parameters  S ENTER Enclosed space height, Hs (cm) 244 ENTER Target risk for carcinogens, TR (unitless)                      | Stratum B soil dry bulk density, \$\rho_{B}^{B}\$ (g/cm^{3})  1.66   ENTER  Floor-wall seam crack width, w (cm)  0.1   ENTER  Target hazard quotient for noncarcinogens, THQ (unitless)               | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL ENTER Enclosed space floor thickness, Lcrack (cm)  10 ENTER Averaging time for carcinogens, ATc (yrs)                   | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>ncc</sub> (yrs) | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | Stratum A soil water-filled porosity, 9, 4 (cm³/cm³) 0.103   ENTER Enclosed space floor width, WB (cm) 1000   ENTER Exposure frequency, EF        | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR                    | Stratum B soil dry bulk density, \$\rho_0^8\$ (g/cm³)  1.66   ENTER  Floor-wall seam crack width, w (cm)  0.1   ENTER  Target hazard quotient for noncarcinogens, THQ                                 | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL ENTER Enclosed space floor thickness, Lcrack (cm)  10 ENTER Averaging time for carcinogens, ATc (yrs)                   | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>ncc</sub> (yrs) | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | Stratum A soil water-filled porosity, 9 cm s cm s cm s cm s cm s cm s cm s cm                                                                     | Stratum B SCS Soil type Lodkup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 | Stratum B soil dry bulk density, \$\rho_{\text{p}}^{\text{9}}\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, \$w\$ (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless) | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |
|               | MORE V            | Stratum A SCS Soil type Lookup Soil parameters  SL ENTER Enclosed space floor thickness, Lcrack (cm)  10 ENTER Averaging time for carcinogens, ATc (yrs)                   | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>ncc</sub> (yrs) | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | Stratum A soil water-filled porosity, 9 cm s cm s cm s cm s cm s cm s cm s cm                                                                     | Stratum B SCS soil type Lodkup Soil Parameters  S ENTER Enclosed space height, Hs (cm) 244 ENTER Target risk for carcinogens, TR (unitless)                      | Stratum B soil dry bulk density, \$\rho_8^8\$ (g/cm^3)  1.66                                                                                                                                          | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>θ, <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soif Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{C}$<br>$(cm^{3}/cm^{3})$ |

## CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m <sup>3</sup> /mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                                  | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

| Exposure<br>duration,<br>τ<br>(sec)                                            | Source-<br>building<br>separation,<br>L <sub>1</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)  | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c<br>(cm³/cm³)                 | Stratum A effective total fluid saturation, Ste (cm³/cm³)               | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm²)        | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²) | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)                                 | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)         | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)                       | Water-filled porosity in capillary zone, θ <sub>w,cz</sub> (cm³/cm³)                              | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 9.46E+08                                                                       | 95                                                                                      | 0.227                                                                     | 0.321                                                                      | 0.321                                                                                         | 0.220                                                                   | 5.94E-09                                                                          | 0.879                                                                                       | 5.22E-09                                                                         | 25.00                                                                                         | 0.33                                                                               | 0.010                                                                                    | 0.320                                                                                             | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law constant at ave. groundwater temperature,  H1s (atm-m3/mol) | Henry's law constant at ave. groundwater temperature, H' <sub>TS</sub> (unitless) | Vapor viscosity at ave. soil temperature, μτs (g/cm-s)                                      | Stratum  A  effective diffusion coefficient, Deff A (cm²/s)                      | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>off</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion path length, L <sub>d</sub> (cm)                         |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                         | 8,544                                                                                         | 5.05E-03                                                                | 2.17E-01                                                                          | 1.76E-04                                                                                    | 5.20E-03                                                                         | 0.00E+00                                                                                      | 0.00E+00                                                                           | 8.83E-06                                                                                 | 3.34E-05                                                                                          | 95                                                                 |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )           | Exponent of equivalent foundation Peclet number, exp(Pe <sup>f</sup> ) (unitless) | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite source bldg. conc., C <sub>building</sub> (µg/m³)                       | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              | 1 3.33E-V0                                                                               | 3.342-03                                                                                          | 93                                                                 |
| 15                                                                             | 4.33E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                   | 5.20E-03                                                                                      | 4.00E+02                                                                | 8.41E+173                                                                         | 2.19E-05                                                                                    | 9.48E-03                                                                         | 1.1E-04                                                                                       | 3.5E-02                                                                            | · · · · · · · · · · · · · · · · · · ·                                                    |                                                                                                   |                                                                    |

**RESULTS SHEET** 

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final indoor exposure groundwater conc., (µg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA NA                                                               | NA NA                                                                  | NA                                                   | 1.47E+06                                                 | NA                                              | ] [ | 4.3E-07                                                                    | 2.6E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| 4.67E+00                                                            | 7.70E+03                                                               | 4.67E+00                                             | 1.47E+06                                                 | 4.67E+00                                                       |                                                                            | NA I                                                                         |  |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Chuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

GW-ADV CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) X ENTER ENTER Initial Chemical groundwater CAS No. conc., Cw (numbers only, no dashes) (µg/L) Chemical 79016 2.00E+00 Trichloroethylene ENTER ENTER **ENTER ENTER** ENTER **ENTER ENTER** ENTER ENTER ENTER Totals must add up to value of Lwt (cell G28) Soil Depth User-defined MORE Thickness Thickness stratum A Average below grade soil/ to bottom Depth Thickness of soil of soil Soil SCS stratum A soil type of enclosed etratum SCS soil vapor groundwater below grade of soil stratum 8. stratum C. OR space floor, to water table. stratum A, (Enter value or 0) (Enter value or 0) directly above soil type (used to estimate permeability, temperature. directly above soil vapor Ts LF Lwt h<sub>A</sub> hB hc water table. k, (cm<sup>2</sup>) (°C) (cm) (cm) (cm) (cm) (cm) (Enter A, B, or C) water table permeability) 15 110 110 0 11 ENTER ENTER ENTER ENTER ENTER **ENTER** ENTER **ENTER ENTER** ENTER **ENTER ENTER** MORE Stratum B Stratum C Stratum C Stratum C Stratum C Stratum A Stratum A Stratum B Stratum B Stratum B Stratum A Stratum A SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled porosity, bulk density, bulk density, soil type porosity, soil type bulk density, porosity, porosity, soil type porosity, porosity,  $\rho_b^B$ nB θ"<sup>B</sup>  $\rho_b^C$ nC θ<sub>w</sub>C θ,,,  $\rho_b^A$ n^ Lookup Soll Lookup Soil Lookup Soil Parameters Parameters (g/cm<sup>3</sup>) (cm<sup>3</sup>/cm<sup>3</sup>) (g/cm<sup>3</sup>) (unitless) (cm<sup>3</sup>/cm<sup>3</sup>) (g/cm<sup>3</sup>) (unitless) (cm<sup>3</sup>/cm<sup>3</sup>) (unitless) 1.66 0.375 0.054 SL 1.80 0.330 0.103 S 1.66 0.375 0.054 S ENTER **ENTER** ENTER **ENTER** ENTER ENTER ENTER **ENTER** MORE Enclosed Enclosed Enclosed Average vapor space Soil-bldg. space space Enclosed Floor-wall Indoor flow rate into bldg. air exchange OR floor pressure floor floor space seam crack thickness, differential, width, height, width, rate, Leave blank to calculate length, Q<sub>soil</sub> ΔΡ ER L<sub>B</sub>  $W_B$ HB Lcraci (a/cm-s2) (cm) (1/h) (L/m) (cm) (cm) (cm) (cm) 1000 1000 244 0.25 10 40 0.1 MORE ENTER **ENTER ENTER ENTER** ENTER ENTER Averaging Averaging Target Target hazard time for time for Exposure Exposure risk for quotient for carcinogens, noncarcinogens, frequency. duration. carcinogens, noncarcinogens, ATc AT<sub>NC</sub> ED EF TR THQ (unitless) (yrs) (yrs) (yrs) (days/yr) (unitless) 70 30 30 350 1.0E-06 Used to calculate risk-based END groundwater concentration.

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm²/s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|-----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                            | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

#### INTERMEDIATE CALCULATIONS SHEET

|                                         | xposure<br>uration,         | Source-<br>building<br>separation,              | Stratum A soil air-filled porosity,  | Stratum B soil air-filled porosity, | Stratum C<br>soil<br>air-filled<br>porosity,<br>the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | Stratum A<br>effective<br>total fluid<br>saturation,  | Stratum A<br>soil<br>intrinsic<br>permeability,       | Stratum A<br>soil<br>relative air<br>permeability, | Stratum A soil effective vapor permeability,          | Thickness of capillary zone,                           | Total porosity in capillary zone,                      | Air-filled porosity in capillary zone,                      | Water-filled porosity in capillary zone,                   | Floor-<br>wall<br>seam<br>perimeter, |
|-----------------------------------------|-----------------------------|-------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|
|                                         | (nnn)                       | . L <sub>7</sub>                                | (cm <sup>3</sup> /cm <sup>3</sup> )  | (cm³/cm³)                           | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S <sub>te</sub><br>(cm³/cm³)                          | k <sub>i</sub>                                        | κ <sub>rg</sub>                                    | K <sub>v</sub>                                        | Lcz                                                    | n <sub>cz</sub>                                        | θ <sub>a,cz</sub>                                           | θ <sub>w,cz</sub>                                          | X <sub>crack</sub>                   |
| *********                               | (sec)                       | (cm)                                            | (cm /cm )                            | (cm /cm )                           | (cm /cm )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (cm <sup>-</sup> /cm <sup>-</sup> )                   | (cm²)                                                 | (cm²)                                              | . (cm²)                                               | (cm)                                                   | (cm <sup>3</sup> /cm <sup>3</sup> )                    | (cm³/cm³)                                                   | (cm <sup>3</sup> /cm <sup>3</sup> )                        | (cm)                                 |
| 9.                                      | 46E+08                      | 95                                              | 0.227                                | 0.321                               | 0.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.220                                                 | 5.94E-09                                              | 0.879                                              | 5.22E-09                                              | 25.00                                                  | 0.33                                                   | 0.010                                                       | 0.320                                                      | 4,000                                |
|                                         |                             |                                                 |                                      |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                       |                                                    |                                                       | •                                                      |                                                        |                                                             |                                                            |                                      |
| vei                                     | Bldg.<br>ntilation<br>rate, | Area of<br>enclosed<br>space<br>below<br>grade, | Crack-<br>to-total<br>area<br>ratio, | Crack<br>depth<br>below<br>grade,   | Enthalpy of vaporization at ave. groundwater temperature,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Henry's law constant at ave. groundwater temperature, | Henry's law constant at ave. groundwater temperature, | Vapor<br>viscosity at<br>ave. soil<br>temperature, | Stratum<br>A<br>effective<br>diffusion<br>coefficient | Stratum<br>B<br>effective<br>diffusion<br>coefficient, | Stratum<br>C<br>effective<br>diffusion<br>coefficient, | Capillary<br>zone<br>effective<br>diffusion<br>coefficient, | Total<br>overall<br>effective<br>diffusion<br>coefficient, | Diffusion<br>path<br>length,         |
| C                                       | Q <sub>building</sub>       | AB                                              | η                                    | Z <sub>crack</sub>                  | $\Delta H_{v,TS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H <sub>TS</sub>                                       | H' <sub>TS</sub>                                      | $\mu_{TS}$                                         | D <sup>eff</sup> <sub>A</sub>                         | D <sup>eff</sup> <sub>B</sub>                          | D <sup>eff</sup> c                                     | D <sup>eff</sup> cz                                         | D <sup>eff</sup> <sub>T</sub>                              | Lø                                   |
| (                                       | cm³/s)                      | (cm²)                                           | (unitless)                           | (cm)                                | (cal/mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (atm-m³/mol)                                          | (unitless)                                            | (g/cm-s)                                           | (cm²/s)                                               | (cm²/s)                                                | (cm²/s)                                                | (cm²/s)                                                     | (cm²/s)                                                    | (cm)                                 |
|                                         | 69E+04                      | 4.005.00                                        | 0.775.04                             | 1 45                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 05 5 00                                             |                                                       | 1 1 70 7 6 1                                       |                                                       |                                                        |                                                        |                                                             |                                                            |                                      |
|                                         | 09E+04                      | 1.06E+06                                        | 3.77 <b>E</b> -04                    | 15                                  | 8,544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.05E-03                                              | 2.17E-01                                              | 1.76E-04                                           | 5.20E-03                                              | 0.00E+00                                               | 0.00E+00                                               | 8.83E-06                                                    | 3.34E-05                                                   | 95                                   |
| Co                                      | nvection                    | Source                                          |                                      | Average vapor                       | Crack<br>effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | Exponent of equivalent foundation                     | Infinite<br>source<br>indoor                       | Infinite<br>source                                    | Unit                                                   |                                                        |                                                             |                                                            |                                      |
|                                         | path                        | vapor                                           | Crack                                | flow rate                           | diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Area of                                               | Peclet                                                | attenuation                                        | bldg.                                                 | risk                                                   | Reference                                              |                                                             |                                                            |                                      |
| · le                                    | ength,                      | conc.,                                          | radius,                              | into bldg.,                         | coefficient,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | crack,                                                | number,                                               | coefficient,                                       | conc.,                                                | factor.                                                | conc.,                                                 |                                                             |                                                            |                                      |
|                                         | $L_p$                       | Csource                                         | r <sub>crack</sub>                   | $Q_{sol}$                           | D <sup>crack</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A <sub>crack</sub>                                    | exp(Pe <sup>r</sup> )                                 | α                                                  | Coulding                                              | URF                                                    | RfC                                                    |                                                             |                                                            |                                      |
| *************************************** | (cm)                        | (μg/m³)                                         | (cm)                                 | (cm <sup>3</sup> /s)                | (cm²/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (cm²)                                                 | (unitless)                                            | (unitless)                                         | (µg/m³)                                               | (μg/m³) <sup>-1</sup>                                  | (mg/m³)                                                | I                                                           |                                                            |                                      |
|                                         | 15                          | 4.33E+02                                        | 0.10                                 | 8.33E+01                            | 5.20E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00E+02                                              | 8.41E+173                                             | 2.19E-Q5                                           | 9.48E-03                                              | 2.0E-06                                                | 6.0E-01                                                | ,                                                           |                                                            | •                                    |

**RESULTS SHEET** 

# **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final indoor exposure groundwater conc., (µg/L) |         | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|---------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA NA                                                | NA NA                                                   | NA                                                   | 1.47E+06                                                 | NA                                              | :<br>]: | 7.8E-09                                                                    | 1.5E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2.57E+02                                                            | 1.32E+05                                                               | 2.57E+02                                                            | 1.47E+06                                                 | 2.57E+02                                        | NA                                                                         | NA                                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

| GW-ADV<br>rsion 3.1; 02/0 |                             | K-BASED GROU                           | JNDWATER CONC                  | ENTRATION (e                            | nter "X" in "YES" bo             | ) (X)                            |                                         |                                        |                                       |                      |                             |                                     |
|---------------------------|-----------------------------|----------------------------------------|--------------------------------|-----------------------------------------|----------------------------------|----------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|----------------------|-----------------------------|-------------------------------------|
| 151011 3. 1, 02/0         | <del>"</del>                | YES                                    |                                | ٠                                       |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
| Reset to                  |                             | 123                                    | OR                             | _                                       |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
| Defaults                  | CALCUS ATE INC              | PEMENTAL DIC                           |                                | CBOLINDWA.                              | TED CONCENTRAT                   | ON (anter "Y" in "YE             | S" box and initial grou                 | ndwater conc. he                       | low)                                  |                      |                             |                                     |
|                           | CAECOLATE                   | MEMENIAL NIS                           | NO FROM ACTUAL                 | GROUNDWA                                | IER CONCENTRAT                   | ION (BINE) X III 1E              | .S DOX and midal grou                   | nowater conc. De                       | low)                                  |                      | •                           |                                     |
|                           |                             | YES                                    | X                              | 7                                       |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           |                             |                                        |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | ENTER                       | ENTER                                  |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | Chemical                    | Initial<br>groundwater                 |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | CAS No.                     | conc.,                                 |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | (numbers only,              | Cw                                     |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | no dashes)                  | (μg/L)                                 | _                              |                                         | Chemical                         |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | 79016                       | 2.00E+00                               | <del>-</del> 1                 |                                         | T-1-51                           |                                  | 1                                       |                                        |                                       |                      |                             |                                     |
|                           | 79010                       | 2.002+00                               |                                | L                                       | Trichloroethyle                  | ene                              | j                                       |                                        |                                       |                      |                             |                                     |
|                           | ENTER                       | ENTER                                  | ENTER                          | ENTER                                   | ENTER                            | ENTER                            | ] ENTER                                 | ENTER                                  | ENTER                                 |                      | ENTER                       | <u>'</u>                            |
|                           |                             | Depth                                  |                                |                                         | ust add up to value o            |                                  |                                         |                                        | Soil                                  |                      |                             |                                     |
| MORE                      | Average                     | below grade                            |                                |                                         | Thickness                        | Thickness                        |                                         |                                        | stratum A                             |                      | User-defined                |                                     |
| <u> </u>                  | soil/                       | to bottom                              | Depth                          | Thickness                               | of soil_                         | of soil                          | Soil                                    |                                        | SCS                                   |                      | stratum A                   |                                     |
|                           | groundwater<br>temperature, | of enclosed<br>space floor,            | below grade<br>to water table, | of soil stratum A,                      | stratum B,<br>(Enter value or 0) | stratum C,<br>(Enter value or 0) | stratum<br>directly above               | SCS<br>soil type                       | soil type<br>(used to estimate        | OR                   | soil vapor<br>permeability, |                                     |
|                           | T <sub>S</sub>              | L <sub>F</sub>                         | Lwr                            | h <sub>A</sub>                          | h <sub>B</sub>                   | h <sub>c</sub>                   | water table,                            | directly above                         | soil vapor                            | OK                   | k <sub>v</sub>              |                                     |
|                           | (°C)                        | (cm)                                   | (cm)                           | (cm)                                    | (cm)                             | (cm)                             | (Enter A, B, or C)                      | water table                            | permeability)                         |                      | (cm²)                       |                                     |
|                           |                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                | 1                                       | (0)                              |                                  | 1                                       |                                        |                                       | •                    |                             | 1                                   |
|                           | 11                          | 15                                     | 110                            | 110                                     | 0                                | 0                                | A                                       | SL                                     | SL                                    |                      |                             | ] .                                 |
|                           |                             |                                        |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |
|                           | ENTER                       | ENTER                                  | ENTER                          | ENTER                                   | ENTER                            | ENTER                            | ENTER                                   | ENTER                                  | ENTER                                 | ENTER                | ENTER                       | ENTER                               |
| MORE                      | Stratum A                   | Stratum A                              | Stratum A                      | Stratum A                               | Stratum B                        | Stratum B                        | Stratum B                               | Stratum B                              | Stratum C                             | Stratum C            | Stratum C                   | Stratum C                           |
| <u> </u>                  | _l scs                      | soil dry                               | soil total                     | soil water-filled                       |                                  | soil dry                         | soil total                              | soil water-filled                      | SCS                                   | soil dry             | soil total                  | soil water-filled                   |
|                           | soil type                   | bulk density,                          | porosity,                      | porosity,                               | soil type                        | bulk density,                    | _porosity,                              | porosity,                              | soil type                             | bulk density,        | porosity,                   | porosity,                           |
|                           | Lookup Soil<br>Parameters   | $\rho_b^A$                             | n^                             | θ"^                                     | Lookup Soil<br>Parameters        | ρ <sub>δ</sub> <sup>8</sup>      | ΄υ <sub>Β</sub>                         | θ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Lookup Soil<br>Parameters             | ρ <sub>ь</sub> C     | n <sup>C</sup>              | θ <sub>w</sub> C                    |
|                           |                             | (g/cm <sup>3</sup> )                   | (unitless)                     | (cm <sup>3</sup> /cm <sup>3</sup> )     | (1000000                         | (g/cm <sup>3</sup> )             | (unitless)                              | (cm <sup>3</sup> /cm <sup>3</sup> )    |                                       | (g/cm <sup>3</sup> ) | (unitless)                  | (cm <sup>3</sup> /cm <sup>3</sup> ) |
|                           | SL                          | 1.80                                   | 0.330                          | 0.103                                   | s                                | 1.66                             | 0.375                                   | 0.054                                  | S                                     | 1.66                 | 0.375                       | 0.054                               |
|                           |                             |                                        |                                | *************************************** |                                  |                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                        |                                       |                      |                             | ,                                   |
|                           | ENTER                       | ENTER                                  | ENTER                          | ENTER                                   | ENTER                            | ENTER                            | ENTER                                   |                                        | ENTER                                 |                      |                             |                                     |
| MORE.                     | Enclosed space              | Soil-bldg.                             | Enclosed<br>space              | Enclosed<br>space                       | Enclosed                         | Floor-wall                       | Indoor                                  |                                        | Average vapor<br>flow rate into bidg. |                      |                             |                                     |
| <u> </u>                  | floor                       | pressure                               | floor                          | floor                                   | space                            | seam crack                       | air exchange                            |                                        | OR                                    |                      |                             |                                     |
|                           | thickness,                  | differential,                          | length,                        | width,                                  | height,                          | width,                           | rate,                                   | . L                                    | eave blank to calcula                 | te                   |                             |                                     |
|                           | L <sub>crack</sub>          | ΔΡ                                     | L <sub>B</sub>                 | WB                                      | H <sub>B</sub>                   | w .                              | ER                                      |                                        | Q <sub>soil</sub>                     |                      |                             |                                     |
|                           | (cm)                        | (g/cm-s <sup>2</sup> )                 | (cm)                           | (cm)                                    | (cm)                             | (cm)                             | (1/h)                                   |                                        | (L/m)                                 | i                    |                             |                                     |
|                           | 10                          | 40                                     | 1000                           | 1000                                    | 300                              | 0.1                              | 0.83                                    | 1 .                                    | 5                                     | I .                  |                             |                                     |
|                           |                             | 40                                     | 1000                           | 1000                                    | 1 300                            | <u> </u>                         | 0.63                                    |                                        |                                       |                      |                             |                                     |
| MORE                      | ENTER                       | ENTER                                  | ENTER                          | ENTER                                   | ENTER                            | ENTER                            |                                         |                                        |                                       |                      |                             |                                     |
| <u> </u>                  | Averaging                   | Averaging                              | *                              |                                         | Target                           | Target hazard                    |                                         |                                        |                                       |                      |                             |                                     |
|                           | time for                    | time for                               | Exposure                       | Exposure                                | risk for                         | quotient for                     |                                         |                                        |                                       |                      |                             |                                     |
|                           | carcinogens,                | noncarcinogens<br>AT <sub>NC</sub>     | , duration,<br>ED              | frequency,<br>EF                        | carcinogens,<br>TR               | noncarcinogens,<br>THQ           |                                         |                                        |                                       |                      |                             |                                     |
|                           | (yrs)                       | (yrs)                                  | (yrs)                          | (days/yr)                               | (unitless)                       | (unitless)                       |                                         |                                        |                                       |                      |                             |                                     |
|                           |                             | ····                                   |                                |                                         |                                  |                                  | •                                       |                                        |                                       |                      |                             |                                     |
|                           | 70                          | 25                                     | 25                             | 250                                     | 1.0E-06                          | 1                                |                                         |                                        |                                       |                      |                             |                                     |
|                           |                             |                                        |                                |                                         | Used to calcu                    | late risk-based                  |                                         |                                        |                                       |                      |                             |                                     |
| END                       | ]                           |                                        |                                |                                         |                                  | concentration.                   |                                         |                                        |                                       |                      |                             |                                     |
|                           |                             |                                        |                                |                                         |                                  |                                  |                                         |                                        |                                       |                      |                             |                                     |

| in   | usivity<br>air,<br>D <sub>a</sub> | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic carbon partition coefficient, $K_{oc}$ $(cm^3/g)$ | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------|-----------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90 | E-02                              | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.00                                             |                                                           |                                                          |                                                         |                                       |
| E    | ND                                |                                                                    |                                                                              |                                                                                | 7,000                                                                             | 300.36                                                | 544.20                                             | 1.66E+02                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

|   | Exposure duration,                                                             | Source-<br>building<br>separation,<br>L <sub>T</sub>                                    | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$ | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$                | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ C}$                      | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub>                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub>     | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub> | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub>   | Thickness of capillary zone,                                                                  | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub>                      | Air-filled porosity in capillary zone, θ <sub>a,cz</sub>        | Water-filled porosity in capillary zone, θ <sub>w,cz</sub>                                        | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|---|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|   | (sec)                                                                          | (cm)                                                                                    | (cm³/cm³)                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                                         | (cm³/cm³)                                                                             | (cm³/cm³)                                                                                        | (cm²)                                                                 | (cm²)                                                                 | (cm²)                                                                     | (cm)                                                                                          | (cm <sup>3</sup> /cm <sup>3</sup> )                                                | (cm³/cm³)                                                       | (cm <sup>3</sup> /cm <sup>3</sup> )                                                               | (cm)                                                       |
| _ | 7.005.00                                                                       | 95                                                                                      | 0.007                                                        | 0.321                                                                       | 0.321                                                                                 | 0.220                                                                                            | 5.94E-09                                                              | 0.879                                                                 | 5.22E-09                                                                  | 25.00                                                                                         | 0.33                                                                               | 0.010                                                           | 0.320                                                                                             | 4,000                                                      |
| L | 7.88E+08                                                                       | 1 95                                                                                    | 0.227                                                        | 0.321                                                                       | 0.321                                                                                 | 0.220                                                                                            | 3.94E-09                                                              | 0.079                                                                 | 3.22E-09                                                                  | 25.00                                                                                         | 1 0.55                                                                             | 0.010                                                           | 0.020                                                                                             | 1 4,000                                                    |
|   | Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)      | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)             | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,rs}$ (cal/mol) | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H'TS (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s) | Stratum A effective diffusion coefficient, Deff (cm²/s)                   | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, Deffect (cm²/s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)     |
| Г | 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                     | 15                                                                          | 8,544                                                                                 | 5.05E-03                                                                                         | 2.17E-01                                                              | 1.76E-04                                                              | 5.20E-03                                                                  | 0.00E+00                                                                                      | 0.00E+00                                                                           | 8.83E-06                                                        | 3.34E-05                                                                                          | 95                                                         |
|   | Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)               | Average vapor flow rate into bldg.,  Q <sub>soll</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s)        | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                    | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)  | Infinite source indoor attenuation coefficient, $\alpha$ (unitless)   | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³)-1                                                   | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                 |                                                                                                   | • .                                                        |
| ſ | 15                                                                             | 4.33E+02                                                                                | 0.10                                                         | 8.33E+01                                                                    | 5.20E-03                                                                              | 4.00E+02                                                                                         | 8.41E+173                                                             | 5.36E-06                                                              | 2.32E-03                                                                  | 1.1E-04                                                                                       | 3.5E-02                                                                            | J                                                               |                                                                                                   |                                                            |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                                     | NA                                                   | 1.47E+06                                                 | NA                                                             | Ī | 6.3E-08                                                                    | 4.5E-05                                                                      |
|                                                                     |                                                                        |                                                      |                                                          |                                                                | L |                                                                            | 1 1.0E-00                                                                    |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

#### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final indoor exposure groundwater conc., | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 3.20E+01                                                            | 4.40E+04                                                | 3.20E+01                                             | 1.47E+06                                                 | 3.20E+01                                 | NA NA                                                                      | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| Ver | GW-ADV<br>sion 3.1; 02/04 | CALCULATE RI                                                                                                                                               | SK-BASED GROU                                                                                                                                                                  | JNDWATER CON                                                                                                                              | CENTRATION (e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | enter "X" in "YES" bo                                                                                                                         | )×)                                                                                                                                                                               |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|-----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|
|     | Reset to<br>Defaults      | CALCULATE INI                                                                                                                                              | YES                                                                                                                                                                            | OR                                                                                                                                        | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
| _   |                           | CALCOLA IE IIV                                                                                                                                             | CREMENTAL RISI                                                                                                                                                                 | KS FROM ACTUA                                                                                                                             | L GROUNDWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TER CONCENTRAT                                                                                                                                | ION (enter "X" in "YE                                                                                                                                                             | S" box and initial grou                                                                                         | undwater conc. be                                                                 | elow)                                                                                                                                              |                                                                                               |                                                                      |                                                                                |
|     |                           |                                                                                                                                                            | YES                                                                                                                                                                            | X                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | ENTER                                                                                                                                                      |                                                                                                                                                                                | -                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                   | •                                                                                                               |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | ENIER                                                                                                                                                      | ENTER                                                                                                                                                                          |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | Chemical                                                                                                                                                   | groundwater                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | CAS No.                                                                                                                                                    | conc.,                                                                                                                                                                         |                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | (numbers only,<br>no dashes)                                                                                                                               | C <sub>w</sub><br>(μg/L)                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>.</b>                                                                                                                                      |                                                                                                                                                                                   |                                                                                                                 | •                                                                                 |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           |                                                                                                                                                            | (A9/2)                                                                                                                                                                         | -                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chemical                                                                                                                                      |                                                                                                                                                                                   | •                                                                                                               |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | 79016                                                                                                                                                      | 2.00E+00                                                                                                                                                                       | ]                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trichloroethyle                                                                                                                               | ene                                                                                                                                                                               |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               |                                                                      |                                                                                |
|     |                           | ENTER                                                                                                                                                      | ENTER                                                                                                                                                                          | ENTER                                                                                                                                     | ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENTER                                                                                                                                         | ENTER                                                                                                                                                                             | ENTER                                                                                                           | ENTER                                                                             | ENTER                                                                                                                                              | <del></del>                                                                                   |                                                                      |                                                                                |
|     | MORE                      | A                                                                                                                                                          | Depth                                                                                                                                                                          |                                                                                                                                           | Totals mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ist add up to value o                                                                                                                         | f L <sub>wT</sub> (cell G28)                                                                                                                                                      | 277127                                                                                                          | LITTER                                                                            | Soil                                                                                                                                               |                                                                                               | ENTER                                                                |                                                                                |
|     | ₩ORE                      | Average<br>soil/                                                                                                                                           | below grade<br>to bottom                                                                                                                                                       | Depth                                                                                                                                     | Thistones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thickness                                                                                                                                     | Thickness                                                                                                                                                                         |                                                                                                                 |                                                                                   | stratum A                                                                                                                                          |                                                                                               | User-defined                                                         |                                                                                |
|     |                           | groundwater                                                                                                                                                | of enclosed                                                                                                                                                                    | below grade                                                                                                                               | Thickness<br>of soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of soil<br>stratum B.                                                                                                                         | of soil<br>stratum C                                                                                                                                                              | Soil                                                                                                            |                                                                                   | SCS                                                                                                                                                |                                                                                               | stratum A                                                            |                                                                                |
|     |                           | temperature,                                                                                                                                               | space floor,                                                                                                                                                                   | to water table,                                                                                                                           | stratum A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Enter value or 0)                                                                                                                            | (Enter value or 0)                                                                                                                                                                | stratum<br>directly above                                                                                       | SCS<br>soil type                                                                  | soil type<br>(used to estimate                                                                                                                     |                                                                                               | soil vapor                                                           |                                                                                |
|     |                           | T <sub>s</sub>                                                                                                                                             | LF                                                                                                                                                                             | L <sub>wt</sub>                                                                                                                           | h <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h <sub>B</sub>                                                                                                                                | h <sub>C</sub>                                                                                                                                                                    | water table,                                                                                                    | directly above                                                                    | soil vapor                                                                                                                                         | OR                                                                                            | permeability,<br>k <sub>v</sub>                                      |                                                                                |
|     |                           | (°C)                                                                                                                                                       | (cm)                                                                                                                                                                           | (cm)                                                                                                                                      | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (cm)                                                                                                                                          | (cm)                                                                                                                                                                              | (Enter A, B, or C)                                                                                              | water table                                                                       | permeability)                                                                                                                                      |                                                                                               | (cm²)                                                                |                                                                                |
|     |                           | 11                                                                                                                                                         | 15                                                                                                                                                                             | 110                                                                                                                                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    |                                                                                               | (31.7.7.                                                             |                                                                                |
|     |                           |                                                                                                                                                            |                                                                                                                                                                                | 1                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               | 0                                                                                                                                                                                 | Α                                                                                                               | SL                                                                                | SL                                                                                                                                                 | 1                                                                                             |                                                                      |                                                                                |
|     |                           |                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   | <u> </u>                                                                                                                                           |                                                                                               |                                                                      |                                                                                |
|     |                           | ENTED                                                                                                                                                      | CHIPCO                                                                                                                                                                         |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                 |                                                                                   |                                                                                                                                                    | <del></del>                                                                                   |                                                                      |                                                                                |
|     | MORE                      | ENTER<br>Stratum A                                                                                                                                         | ENTER<br>Stratum A                                                                                                                                                             | ENTER<br>Stratum A                                                                                                                        | ENTER<br>Statum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENTER<br>Stratus D                                                                                                                            | ENTER                                                                                                                                                                             | ENTER                                                                                                           | ENTER                                                                             | ENTER                                                                                                                                              | ENTER                                                                                         | ENTER                                                                | ENTER                                                                          |
|     | MORE ¥                    | Stratum A<br>SCS                                                                                                                                           | ENTER<br>Stratum A<br>soil dry                                                                                                                                                 | ENTER<br>Stratum A<br>soil total                                                                                                          | Stratum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stratum B                                                                                                                                     | Stratum B                                                                                                                                                                         | ENTER<br>Stratum B                                                                                              | ENTER<br>Stratum B                                                                | ENTER<br>Stratum C                                                                                                                                 | Stratum C                                                                                     | Stratum C                                                            | ENTER<br>Stratum C                                                             |
|     |                           | Stratum A<br>SCS<br>soil type                                                                                                                              | Stratum A<br>soil dry<br>bulk density,                                                                                                                                         | Stratum A<br>soil total<br>porosity,                                                                                                      | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                               |                                                                                                                                                                                   | ENTER<br>Stratum B<br>soil total                                                                                | ENTER<br>Stratum B<br>soil water-filled                                           | ENTER<br>Stratum C<br>SCS                                                                                                                          | Stratum C<br>soil dry                                                                         | Stratum C<br>soil total                                              | Stratum C soil water-filled                                                    |
|     |                           | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                               | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> ^                                                                                                                     | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                    | Stratum A soil water-filled porosity, $\theta_{w}^{\ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stratum B SCS soil type Lookup Soil                                                                                                           | Stratum B soil dry                                                                                                                                                                | ENTER<br>Stratum B                                                                                              | ENTER<br>Stratum B<br>soil water-filled<br>porosity,                              | ENTER<br>Stratum C<br>SCS<br>soil type                                                                                                             | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                    |
|     |                           | Stratum A<br>SCS<br>soil type                                                                                                                              | Stratum A<br>soil dry<br>bulk density,                                                                                                                                         | Stratum A<br>soil total<br>porosity,                                                                                                      | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stratum B<br>SCS<br>soil type                                                                                                                 | Stratum B<br>soil dry<br>bulk density,                                                                                                                                            | ENTER<br>Stratum B<br>soil total<br>porosity,                                                                   | ENTER<br>Stratum B<br>soil water-filled                                           | ENTER<br>Stratum C<br>SCS                                                                                                                          | Stratum C<br>soil dry<br>bulk density,<br>PbC                                                 | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$                |
|     |                           | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                               | Stratum A<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>Δ</sup><br>(g/cm <sup>3</sup> )                                                                                  | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                      | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>(cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stratum B SCS soil type Lookup Soil Parameters                                                                                                | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                     | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)                                                  | ENTER Stratum B soil water-filled porosity, θ, B (cm³/cm³)                        | ENTER<br>Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                    |
|     |                           | Stratum A SCS Soil type Lookup Soil Parameters                                                                                                             | Stratum A soll dry bulk density, $\rho_b^A$ (g/cm³)                                                                                                                            | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                      | Stratum A soil water-filled porosity, $\theta_{w}^{\ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stratum B SCS soil type Lookup Soil                                                                                                           | Stratum B soil dry bulk density,                                                                                                                                                  | ENTER<br>Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup>                                                 | ENTER Stratum B soil water-filled porosity, $\theta_w^B$                          | ENTER Stratum C SCS Soil type Lookup Soil                                                                                                          | Stratum C<br>soil dry<br>bulk density,<br>PbC                                                 | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$                |
|     |                           | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER                                                                                                   | Stratum A<br>soil dry<br>bulk density,<br>ρ <sub>b</sub> <sup>Δ</sup><br>(g/cm <sup>3</sup> )                                                                                  | Stratum A soil total porosity, n^ (unitless)                                                                                              | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters                                                                                                | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                     | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)                                                  | ENTER Stratum B soil water-filled porosity, θ, B (cm³/cm³)                        | ENTER<br>Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     |                           | Stratum A SCS Soil type Lookup Soil Parameters                                                                                                             | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER                                                                                             | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed                                                           | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS Soil type Lookup Soil Parameters S ENTER                                                                                        | Stratum B soil dry bulk density, $\rho_b^{ B}$ (g/cm <sup>2</sup> )  1.66                                                                                                         | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER                                      | ENTER Stratum B soil water-filled porosity, θ <sub>w</sub> <sup>8</sup> (cm³/cm³) | ENTER Stratum C SCS Soil type Lookup Soil Perameters S ENTER Average vapor                                                                         | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE                      | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor                                                                             | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure                                                                                                  | Stratum A soil total porosity, n^ (unitless)                                                                                              | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters S ENTER Enclosed                                                                               | Stratum B soil dry bulk density,  \[ \rho_b^B \\ (g/cm^3) \]  1.66  ENTER  Floor-wall                                                                                             | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER                                    | ENTER Stratum B soil water-filled porosity, θ <sub>w</sub> <sup>8</sup> (cm³/cm³) | ENTER Stratum C SCS soil type Lookup Soil Perameters S ENTER Average vapor flow rate into bidg.                                                    | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE                      | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness,                                                                  | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential,                                                                                   | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                   | Stratum A soil water-filled porosity, \$\theta_{\text{w}}^{\text{A}}\$ (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor width,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                | Stratum B soil dry bulk density, $\rho_b^{ B}$ (g/cm <sup>2</sup> )  1.66                                                                                                         | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER                                      | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS Soil type Lookup Soil Perameters  S ENTER Average vapor flow rate Into bidg. OR                                                | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE                      | Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack                                                          | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg pressure differential, ΔP                                                                                  | Stratum A soil total porosity, n^ (unitless)  O.330  ENTER Enclosed space floor length, L <sub>B</sub>                                    | Stratum A soil water-filled porosity, $\theta_w^A$ (cm <sup>3</sup> /cm <sup>3</sup> )  0.103  ENTER Enclosed space floor width, $W_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                 | Stratum B soil dry bulk density, p. 8 (g/cm³)  1.66 ENTER  Floor-wall seam crack                                                                                                  | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless) 0.375 ENTER Indoor air exchange                  | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Perameters S ENTER Average vapor flow rate into bidg.                                                    | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE                      | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness,                                                                  | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential,                                                                                   | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                   | Stratum A soil water-filled porosity, \$\theta_{\text{w}}^{\text{A}}\$ (cm^3/cm^3)\$  0.103  ENTER Enclosed space floor width,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                | Stratum B soil dry bulk density, pb (g/cm²)  1.66  ENTER  Floor-wall seam crack width,                                                                                            | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange rate,            | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor flow rate Into bidg. OR ave blank to calculate                         | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE                      | Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack                                                          | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg pressure differential, ΔP                                                                                  | Stratum A soil total porosity, n^ (unitless)  O.330  ENTER Enclosed space floor length, L <sub>B</sub>                                    | Stratum A soil water-filled porosity, 9c, 4 (cm <sup>3</sup> /cm <sup>3</sup> ) 0.103  ENTER Enclosed space floor width, Ws (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                            | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm³)  1.66  ENTER  Floor-wall seam crack width, \$w\$ (cm)                                                                       | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE ¥                    | Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack (cm)                                                     | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)                                                               | Stratum A soil total porosity, n <sup>A</sup> (unitless)  O.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                   | Stratum A soil water-filled porosity, \$\text{\$\text{\$\emptyred}\$}_{\text{\$\text{\$\chi}\$}}^{\text{\$\chi}\$} (cm^{3}/cm^{3})\$  0.103  ENTER Enclosed space floor width, \$W_{B}\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                            | Stratum B soil dry bulk density, Pb <sup>B</sup> (g/cm <sup>2</sup> )  1.66  ENTER  Floor-walt seam crack width, W (cm)                                                           | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER       | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub>       | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE                      | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lerack (cm)  10 ENTER                                             | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg pressure differential, AP (g/cm-s²)                                                                       | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                               | Stratum A soil water-filled porosity, 9c, 4 (cm <sup>3</sup> /cm <sup>3</sup> ) 0.103  ENTER Enclosed space floor width, Ws (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER                                  | Stratum B soil dry bulk density, p B (g/cm²)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER                                                                        | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE V                    | Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lerack (cm)  10  ENTER Averaging time for                        | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)                                                               | Stratum A soil total porosity, n^ (unitless)  O.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER                              | Stratum A soil water-filled porosity, \$\theta_s^A\$ (cm³/cm³) 0.103  ENTER Enclosed space floor width, \$W\$ (cm) 1000  ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, Hs (cm) 300  ENTER Target                                      | Stratum B soil dry bulk density, pb (g/cm²)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard                                                          | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE V                    | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens,           | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                        | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                  | Stratum A soil water-filled porosity, \$\text{\text{\text{\text{g}}}}^\circ\$ (cm^3/cm^3) \$\text{\$0.103}\$ \$\text{ENTER}\$ Enclosed space floor width, \$\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\texi\texi{\text{\texit{\texit{\texi\text{\texi{\texi{\text{\texi\texit{\texi{\texi{\texitex{\ | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,     | Stratum B soil dry bulk density, pb (g/cm²)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                                             | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE V                    | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for carcinogens, ATc         | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>       | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED       | Stratum A soil water-filled porosity, 9c, 4 (cm <sup>3</sup> /cm <sup>3</sup> ) 0.103  ENTER Enclosed space floor width, We (cm)  1000  ENTER Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stratum B SCS Soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300  ENTER Target risk for carcinogens, TR | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm³)  1.66  ENTER  Floor-wall seam crack width, \$w\$ (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ           | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE V                    | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens,           | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                        | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                  | Stratum A soil water-filled porosity, \$\text{\text{\text{\text{g}}}}^\circ\$ (cm^3/cm^3) \$\text{\$0.103}\$ \$\text{ENTER}\$ Enclosed space floor width, \$\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\texi\texi{\text{\texit{\texit{\texi\text{\texi{\texi{\text{\texi\texit{\texi{\texi{\texitex{\ | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,     | Stratum B soil dry bulk density, p s (g/cm²)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,                            | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE V                    | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for carcinogens, ATc         | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>       | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED       | Stratum A soil water-filled porosity, 9c, 4 (cm <sup>3</sup> /cm <sup>3</sup> ) 0.103  ENTER Enclosed space floor width, We (cm)  1000  ENTER Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stratum B SCS Soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300  ENTER Target risk for carcinogens, TR | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm³)  1.66  ENTER  Floor-wall seam crack width, \$w\$ (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ           | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |
|     | MORE V                    | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs) | Stratum A soil dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs) | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED (yrs) | Stratum A soil water-filled porosity, \$\theta_a^A\$ (cm^3/cm^3)   0.103   ENTER Enclosed space floor width, \$W_a\$ (cm)   1000   ENTER Exposure frequency, \$EF\$ (days/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, Ha (cm) 300  ENTER Target risk for carcinogens, TR (unitless)  | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm²)  1.66  ENTER  Floor-wall seam crack width, \$w\$ (cm)  0.1  ENTER  Target hazard quotient for noncarcingens, THQ (unitless) | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ, cm³/cm³)                           | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR ave blank to calculate Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$ |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's law constant at reference temperature, H (atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                      | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure<br>duration,<br>τ                                                    | Source-<br>building<br>separation,<br>L <sub>T</sub>                                    | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$ | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$               | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{ C}$                       | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub>                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k                                 | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub> | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub>          | Thickness of capillary zone,                                                     | Total porosity in capillary zone,                                                  | Air-filled porosity in capillary zone, θ <sub>acz</sub>                                  | Water-filled porosity in capillary zone,                                              | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|
| (sec)                                                                         | (cm)                                                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                          | (cm <sup>3</sup> /cm <sup>3</sup> )                                        | (cm³/cm³)                                                                             | (cm³/cm³)                                                                                        | (cm²)                                                                                | (cm²)                                                                 | (cm²)                                                                            | (cm)                                                                             | (cm³/cm³)                                                                          | (cm³/cm³)                                                                                | (cm <sup>3</sup> /cm <sup>3</sup> )                                                   | (cm)                                                       |
| 7.88E+08                                                                      | 95                                                                                      | 0.227                                                        | 0.321                                                                      | 0.321                                                                                 | 0.220                                                                                            | 5.94E-09                                                                             | 0.879                                                                 | 5.22E-09                                                                         | 25.00                                                                            | 0.33                                                                               | 0.010                                                                                    | 0.320                                                                                 | 4,000                                                      |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>bulding</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>8</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>n<br>(unitless)      | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H'TS<br>(unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µts<br>(g/cm-s) | Stratum A effective diffusion coefficient, D <sup>eff</sup> (cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, Deff <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)     |
| 6.92E+04                                                                      | 1.06E+06                                                                                | 3.77E-04                                                     | 15                                                                         | 8,544                                                                                 | 5.05E-03                                                                                         | 2.17E-01                                                                             | 1.76E-04                                                              | 5.20E-03                                                                         | 0.00E+00                                                                         | 0.00E+00                                                                           | 8.83E-06                                                                                 | 3.34E-05                                                                              | 95                                                         |
| Convection path length, L <sub>p</sub> (cm)                                   | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)               | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm²/s)      | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                    | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                 | Infinite source indoor attenuation coefficient, α (unitless)          | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)        | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup>                          | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                                          |                                                                                       | :                                                          |
| 15                                                                            | 4.33E+02                                                                                | 0.10                                                         | 8.33E+01                                                                   | 5.20E-03                                                                              | 4.00E+02                                                                                         | 8.41E+173                                                                            | 5.36E-06                                                              | 2.32E-03                                                                         | 2.0E-06                                                                          | 6.0E-01                                                                            |                                                                                          |                                                                                       |                                                            |

## **RESULTS SHEET**

## RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

# **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA                                                      | NA                                                   | 1.47E+06                                                 | NA                                                             | [ | 1.1E-09                                                                    | 2.7E-06                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure component water solubility, S (mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.76E+03                                                            | 7.54E+05                                                               | 1.76E+03                                             | 1.47E+06                                  | 1.76E+03                                                       | . [ | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 2
AREA A WETLANDS

RESIDENTIAL

#### DATA ENTRY SHEET

| GW-ADV          | CALCULATE RIS        | K-BASED GROUN            | IDWATER CONCI        | ENTRATION (e                | nter "X" in "YES" bo  | x)                            |                         |                                        |                                       |                       |                           |                    |
|-----------------|----------------------|--------------------------|----------------------|-----------------------------|-----------------------|-------------------------------|-------------------------|----------------------------------------|---------------------------------------|-----------------------|---------------------------|--------------------|
| sion 3.1; 02/04 |                      | YES                      |                      | 1                           |                       |                               |                         |                                        |                                       |                       |                           |                    |
| Reset to        |                      |                          | OR                   | •                           |                       |                               |                         |                                        |                                       |                       |                           |                    |
| Defaults        | CALCULATE INC        | REMENTAL RISKS           | S FROM ACTUAL        | GROUNDWA1                   | ER CONCENTRAT         | ION (enter "X" in "YE         | S" box and initial grou | ndwater conc. bel                      | ow)                                   |                       |                           |                    |
|                 |                      | YES                      | X                    | ]                           |                       |                               |                         |                                        |                                       |                       |                           |                    |
|                 | ENTER                | ENTER                    |                      |                             |                       |                               |                         |                                        |                                       |                       |                           |                    |
|                 | ENIER                | Initial                  |                      |                             |                       |                               |                         |                                        |                                       |                       |                           |                    |
|                 | Chemical CAS No.     | groundwater              |                      |                             |                       |                               |                         |                                        |                                       |                       |                           |                    |
|                 | (numbers only,       | conc.,<br>C <sub>w</sub> |                      |                             |                       |                               |                         |                                        |                                       | •                     |                           |                    |
|                 | no dashes)           | (μg/L)                   | •                    |                             | Chemical              |                               | •                       |                                        |                                       |                       |                           |                    |
|                 | 127184               | 1.40E+00                 | ]                    |                             | Tetrachloroethy       | lene                          |                         |                                        |                                       |                       |                           | •                  |
|                 | ENTER                | ENTER                    | ENTER                | ENTER                       | ENTER                 | ENTER                         | ENTER                   | ENTER                                  | ENTER                                 |                       | ENTER                     | 7                  |
|                 | ENTER                | Depth                    | ENTER                |                             | ist add up to value o | of L <sub>wt</sub> (cell G28) | Litter                  | 2                                      | Soil                                  |                       |                           |                    |
| MORE ¥          | Average              | below grade              | Dooth                | Thiskness                   | Thickness<br>of soil  | Thickness<br>of soil          | Soil                    |                                        | stratum A<br>SCS                      |                       | User-defined<br>stratum A | <b>}</b> .         |
|                 | soli/<br>groundwater | to bottom<br>of enclosed | Depth<br>below grade | Thickness<br>of soil        | stratum B,            | stratum C,                    | stratum                 | scs                                    | soil type                             |                       | soil vapor                |                    |
|                 | temperature,         | space floor,             | to water table,      | stratum A,                  | (Enter value or 0)    | (Enter value or 0)            | directly above          | soil type                              | (used to estimate                     | OR                    | permeability,             |                    |
|                 | T <sub>S</sub>       | L <sub>F</sub>           | Lwt                  | h <sub>A</sub>              | h <sub>B</sub>        | h <sub>c</sub>                | water table,            | directly above                         | soil vapor                            |                       | k <sub>v</sub><br>(cm²)   |                    |
|                 | (°C)                 | (cm)                     | (cm)                 | (cm)                        | (cm)                  | (cm)                          | (Enter A, B, or C)      | water table                            | permeability)                         |                       | (Citi )                   | 1                  |
|                 | 11                   | 15                       | 65                   | 65                          | 0                     | 0                             | A                       | CL                                     | CL                                    |                       |                           | 1                  |
|                 |                      |                          |                      |                             |                       |                               |                         |                                        |                                       |                       |                           |                    |
|                 | ENTER                | ENTER                    | ENTER                | ENTER                       | ENTER                 | ENTER                         | ENTER                   | ENTER                                  | ENTER                                 | ENTER                 | ENTER<br>Streeture C      | ENTER<br>Stratum C |
| MORE            | Stratum A<br>SCS     | Stratum A<br>soil dry    | Stratum A soil total | Stratum A soil water-filled | Stratum B<br>SCS      | Stratum B<br>soil dry         | Stratum B<br>soil total | Stratum B soil water-filled            | Stratum C<br>SCS                      | Stratum C<br>soil dry | Stratum C<br>soil total   | soil water-filled  |
|                 | soil type            | bulk density,            | porosity,            | porosity,                   | soil type             | bulk density,                 | porosity,               | porosity,                              | soil type                             | bulk density,         | porosity,                 | porosity,          |
|                 | Lookup Soil          | $\rho_b^{\mathbf{A}}$    | n <sup>A</sup>       | θ., ^                       | Lookup Soil           | ρ <sub>b</sub> B              | ,n <sup>B</sup>         | θ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Lookup Soil                           | $\rho_b^c$            | n <sup>C</sup>            | θ <sub>w</sub> c   |
|                 | Parameters           | (g/cm³)                  | (unitless)           | (cm³/cm³)                   | Parameters            | (g/cm³)                       | (unitless)              | (cm <sup>3</sup> /cm <sup>3</sup> )    | Parameters                            | (g/cm³)               | (unitless)                | (cm³/cm³)          |
|                 | CL                   | 1.48                     | 0.442                | 0.168                       | s                     | 1,66                          | 0.375                   | 0.054                                  | S                                     | 1.66                  | 0.375                     | 0.054              |
|                 | ENTER                | ENTER                    | ENTER                | ENTER                       | ENTER                 | ENTER                         | ENTER                   |                                        | ENTER                                 |                       |                           |                    |
| MORE +          | Enclosed<br>space    | Soil-bldg                | Enclosed<br>space    | Enclosed<br>space           | Enclosed              | Floor-wall                    | Indoor                  |                                        | Average vapor<br>flow rate into bidg. |                       |                           |                    |
|                 | floor                | pressure                 | floor                | floor                       | space                 | seam crack                    | air exchange            |                                        | OR                                    |                       |                           |                    |
|                 | thickness,           | differential,            | length,              | width,                      | height,               | width,                        | rate,                   | L                                      | eave blank to calcula                 | te                    |                           |                    |
|                 | L <sub>crack</sub>   | ΔP                       | Le                   | W <sub>B</sub>              | He                    | W (200)                       | ER<br>(1/h)             |                                        | Q <sub>soi</sub> ;<br>(L/m)           |                       |                           |                    |
|                 | (cm)                 | (g/cm-s²)                | (cm)                 | (cm)                        | (cm)                  | (cm)                          | ( i/it)                 | <b>-</b> , ·                           | (2011)                                | ."                    |                           |                    |
|                 | 10                   | 40                       | 1000                 | 1000                        | 244                   | 0.1                           | 0.25                    | ]                                      | 5                                     |                       |                           |                    |
| MORE            | ENTER                | ENTER                    | ENTER                | ENTER                       | ENTER                 | ENTER                         |                         |                                        |                                       |                       |                           |                    |
| •               | Averaging time for   | Averaging<br>time for    | Exposure             | Exposure                    | Target<br>risk for    | Target hazard<br>quotient for |                         |                                        |                                       |                       |                           |                    |
|                 |                      | noncarcinogens,          | duration,            | frequency,                  | carcinogens,          | noncarcinogens,               |                         |                                        |                                       |                       |                           |                    |
|                 | ATC                  | ATNC                     | ED                   | EF                          | TR                    | THQ                           |                         |                                        |                                       |                       |                           |                    |
|                 | (yrs)                | (yrs)                    | (yrs)                | (days/yr)                   | (unitless)            | (unitless)                    | •                       | -                                      |                                       |                       |                           |                    |
|                 | 70                   | 30                       | 30                   | 350                         | 1.0E-06               | 1                             |                         |                                        |                                       |                       |                           |                    |
|                 |                      |                          |                      |                             | Head to select        | ilate risk-based              |                         |                                        |                                       |                       |                           |                    |
| END             |                      |                          |                      |                             |                       | concentration.                |                         |                                        |                                       |                       |                           |                    |
|                 |                      |                          |                      | •                           | Million Million       |                               |                         |                                        |                                       |                       |                           |                    |

| Diffusi<br>in air<br>D <sub>a</sub><br>(cm²/ | r, in water,<br>D <sub>w</sub> | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|----------------------------------------------|--------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.20E-                                       | -02 8.20E-06                   | 1.84E-02                                                                     | 25                                                                             | 8,288                                                                             | 394.40                                                | 620.20                                             | 1.55E+02                                                                                  | 2.00E+02                                                 | 5.9E-06                                                 | 2.8E-01                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure duration,                                                             | Source-<br>building<br>separation,<br>L <sub>T</sub>                                    | Stratum A soil air-filled porosity,                     | Stratum B soil air-filled porosity,                                       | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^C$                          | Stratum A effective total fluid saturation, Ste                                                  | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub>     | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub> | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub>                            | Thickness of capillary zone,                                                                  | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub>                      | Air-filled porosity in capillary zone,                                                              | Water-filled porosity in capillary zone,                                                                            | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| (sec)                                                                          | (cm)                                                                                    | (cm³/cm³)                                               | (cm <sup>3</sup> /cm <sup>3</sup> )                                       | (cm³/cm³)                                                                             | (cm³/cm³)                                                                                        | (cm²)                                                                 | (cm²)                                                                 | (cm²)                                                                                              | (cm)                                                                                          | (cm³/cm³)                                                                          | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                 | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                                 | (cm)                                                       |
| 9.46E+08                                                                       | 50                                                                                      | 0.274                                                   | 0.321                                                                     | 0.321                                                                                 | 0.245                                                                                            | 1.26E-09                                                              | 0.865                                                                 | 1.09E-09                                                                                           | 46.88                                                                                         | 0.442                                                                              | 0.067                                                                                               | 0.375                                                                                                               | 4,000                                                      |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless) | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)           | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /moi) | Henry's law constant at ave. groundwater temperature, H'TS (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µrs<br>(g/cm-s) | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup><br>(cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total<br>overall<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>T</sub><br>(cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)     |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                | 15                                                                        | 9,543                                                                                 | 8.30E-03                                                                                         | 3.56E-01                                                              | 1.76E-04                                                              | 4.95E-03                                                                                           | 0.00E+00                                                                                      | 0.00E+00                                                                           | 4.97E-05                                                                                            | 5.29E-05                                                                                                            | 50                                                         |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(μg/m <sup>3</sup> )                | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)          | Average vapor flow rate into bldg. Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm²/s)                     | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                    | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)  | Infinite source indoor attenuation coefficient, α (unitless)          | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                          | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                                                     |                                                                                                                     |                                                            |
| 15                                                                             | 4.98E+02                                                                                | 0.10                                                    | 8.33E+01                                                                  | 4.95E-03                                                                              | 4.00E+02                                                                                         | 8.79E+182                                                             | 6.54E-05                                                              | 3.26E-02                                                                                           | 5.9E-06                                                                                       | 2.8E-01                                                                            |                                                                                                     |                                                                                                                     |                                                            |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

|   | Indoor<br>exposure<br>groundwater<br>conc.,<br>carcingen | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc. | Pure<br>component<br>water<br>solubility,<br>S | Final<br>indoor<br>exposure<br>groundwater<br>conc., | Incremental risk from vapor intrusion to indoor air, carcinogen | Hazard quotient from vapor intrusion to indoor air, noncarcinogen |
|---|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| = | (μg/L)                                                   | (μg/L)                                                       | (μg/L)                                                   | (μg/L)                                         | (μg/L)                                               | <br>(unitless)                                                  | (unitless)                                                        |
|   | NA                                                       | NA                                                           | NA                                                       | 2.00E+05                                       | NA                                                   | 7.9E-08                                                         | 1.1E-04                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc., | Pure<br>component<br>water<br>solubility,<br>S | Final indoor exposure groundwater conc., |          | Incremental risk from vapor intrusion to indoor air, carcinogen | Hazard quotient from vapor intrusion to indoor air, noncarcinogen |
|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|------------------------------------------|----------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| (mg/L)                                                    | (mg/L)                                                       | (mg/L)                                                    | (mg/L)                                         | (mg/L)                                   | <b>=</b> | (unitless)                                                      | (unitless)                                                        |
| 1.77E+01                                                  | 1.26E+04                                                     | 1.77E+01                                                  | 2.00E+05                                       | 1.77E+01                                 | ]        | NA                                                              | NA                                                                |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

| GW-ADV<br>Version 3.1; 02/04 | CALCULATE RIS                                                                                                                                                       | SK-BASED GROUI                                                                                                                                                                   | NDWATER CON                                                                                                                                     | CENTRATION (e                                                                                                                                                                                                                                                                                                                              | nter "X" in "YES" bo                                                                                                                                    | <b>x</b> )                                                                                                                                                                             |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Reset to                     |                                                                                                                                                                     | YES                                                                                                                                                                              | OR                                                                                                                                              | ]                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         | •                                                                                                                                                                                      |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
| Defaults                     | CALCULATE INC                                                                                                                                                       | CREMENTAL RISK                                                                                                                                                                   | S FROM ACTUA                                                                                                                                    | L GROUNDWA                                                                                                                                                                                                                                                                                                                                 | TER CONCENTRAT                                                                                                                                          | ION (enter "X" in "YE                                                                                                                                                                  | S" box and initial gro                                                                                    | undwater conc. be                                                                          | low)                                                                                                                                        |                                                                                               |                                                                      |                                                                                  |
|                              |                                                                                                                                                                     | YES                                                                                                                                                                              | X                                                                                                                                               | ]                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|                              | ENTER                                                                                                                                                               | ENTER                                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|                              | Chemical                                                                                                                                                            | Initial<br>groundwater                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|                              | CAS No.<br>(numbers only,                                                                                                                                           | conc.,<br>C <sub>w</sub>                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|                              | no dashes)                                                                                                                                                          | (μg/L)                                                                                                                                                                           | -                                                                                                                                               | ***************************************                                                                                                                                                                                                                                                                                                    | Chemical                                                                                                                                                |                                                                                                                                                                                        | r<br>L                                                                                                    |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|                              | 79016                                                                                                                                                               | 1.40E+00                                                                                                                                                                         | ]                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                            | Trichloroethyle                                                                                                                                         | ene                                                                                                                                                                                    |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
|                              | ENTER                                                                                                                                                               | ENTER<br>Depth                                                                                                                                                                   | ENTER                                                                                                                                           | ENTER<br>Totals mu                                                                                                                                                                                                                                                                                                                         | ENTER<br>ist add up to value o                                                                                                                          | ENTER<br>of Lwt (cell G28)                                                                                                                                                             | ENTER                                                                                                     | ENTER                                                                                      | ENTER<br>Soil                                                                                                                               | <del></del>                                                                                   | ENTER                                                                | ]                                                                                |
| MORE ¥                       | Average soil/                                                                                                                                                       | below grade<br>to bottom                                                                                                                                                         | Depth                                                                                                                                           | Thickness                                                                                                                                                                                                                                                                                                                                  | Thickness<br>of soil                                                                                                                                    | Thickness<br>of soil                                                                                                                                                                   | D-11                                                                                                      |                                                                                            | stratum A                                                                                                                                   |                                                                                               | User-defined                                                         | · ·                                                                              |
|                              | groundwater<br>temperature                                                                                                                                          | of enclosed                                                                                                                                                                      | below grade                                                                                                                                     | of soil                                                                                                                                                                                                                                                                                                                                    | stratum B,                                                                                                                                              | stratum C,                                                                                                                                                                             | Soil<br>stratum                                                                                           | scs                                                                                        | SCS<br>soil type                                                                                                                            |                                                                                               | stratum A<br>soil vapor                                              |                                                                                  |
|                              | T <sub>S</sub>                                                                                                                                                      | space floor,<br>L <sub>F</sub>                                                                                                                                                   | to water table,<br>L <sub>wt</sub>                                                                                                              | stratum A,<br>h <sub>A</sub>                                                                                                                                                                                                                                                                                                               | (Enter value or 0)                                                                                                                                      | (Enter value or 0)                                                                                                                                                                     | directly above<br>water table,                                                                            | soil type<br>directly above                                                                | (used to estimate soil vapor                                                                                                                | OR                                                                                            | permeability,<br>k <sub>v</sub>                                      |                                                                                  |
|                              | · (°C)                                                                                                                                                              | (cm)                                                                                                                                                                             | (cm)                                                                                                                                            | (cm)                                                                                                                                                                                                                                                                                                                                       | (cm)                                                                                                                                                    | (cm)                                                                                                                                                                                   | (Enter A, B, or C)                                                                                        | water table                                                                                | permeability)                                                                                                                               |                                                                                               | (cm²)                                                                |                                                                                  |
|                              | 11                                                                                                                                                                  | 15                                                                                                                                                                               | 65                                                                                                                                              | 65                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                       | 0                                                                                                                                                                                      | Α                                                                                                         | CL                                                                                         | CL                                                                                                                                          | ]                                                                                             |                                                                      |                                                                                  |
|                              |                                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      | •                                                                                |
|                              |                                                                                                                                                                     |                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |                                                                                                                                                                                        |                                                                                                           |                                                                                            |                                                                                                                                             |                                                                                               |                                                                      |                                                                                  |
| MORE                         | ENTER<br>Stratum A                                                                                                                                                  | ENTER<br>Stratum A                                                                                                                                                               | ENTER<br>Stratum A                                                                                                                              | ENTER<br>Stratum A                                                                                                                                                                                                                                                                                                                         | ENTER<br>Stratum B                                                                                                                                      | ENTER<br>Stratum R                                                                                                                                                                     | ENTER<br>Stratum B                                                                                        | ENTER<br>Street on B                                                                       | ENTER                                                                                                                                       | ENTER                                                                                         | ENTER                                                                | ENTER                                                                            |
| MORE ¥                       | Stratum A<br>SCS                                                                                                                                                    | Stratum A soil dry                                                                                                                                                               | Stratum A soil total                                                                                                                            | Stratum A soil water-filled                                                                                                                                                                                                                                                                                                                | Stratum B<br>SCS                                                                                                                                        | Stratum B soil dry                                                                                                                                                                     | ENTER<br>Stratum B<br>soil total                                                                          | ENTER<br>Stratum B<br>soil water-filled                                                    | ENTER<br>Stratum C<br>SCS                                                                                                                   | ENTER<br>Stratum C<br>soil dry                                                                | ENTER<br>Stratum C<br>soil total                                     | Stratum C                                                                        |
|                              | Stratum A                                                                                                                                                           | Stratum A<br>soil dry<br>bulk density,                                                                                                                                           | Stratum A<br>soil total<br>porosity,                                                                                                            | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                | Stratum B<br>SCS<br>soil type                                                                                                                           | Stratum B<br>soil dry<br>bulk density,                                                                                                                                                 | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B soil water-filled porosity,                                                      | Stratum C<br>SCS<br>soil type                                                                                                               | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                      |
|                              | Stratum A<br>SCS<br>soil type                                                                                                                                       | Stratum A soil dry                                                                                                                                                               | Stratum A soil total                                                                                                                            | Stratum A soil water-filled                                                                                                                                                                                                                                                                                                                | Stratum B<br>SCS                                                                                                                                        | Stratum B soil dry                                                                                                                                                                     | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                    | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$                                | Stratum C<br>SCS                                                                                                                            | Stratum C<br>soil dry<br>bulk density,<br>Pb C                                                | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{\ C}$                |
|                              | Stratum A SCS- soil type Lookup Soil                                                                                                                                | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                                | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>$(cm^3/cm^3)$                                                                                                                                                                                                                                                               | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                              | Stratum B<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                          | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitiess)                                      | Stratum B soil water-filled porosity, $\theta_w^B$ (cm <sup>3</sup> /cm <sup>3</sup> )     | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                  | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
|                              | Stratum A SCS- soil type Lookup Soil Parameters                                                                                                                     | Stratum A soil dry bulk density, $\rho_b^A$ (g/cm³)                                                                                                                              | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A soil water-filled porosity, $\theta_w^A$ (cm³/cm³)                                                                                                                                                                                                                                                                               | Stratum B SCS soil type Lookup Soil Parameters                                                                                                          | Stratum B<br>soil dry<br>bulk density,<br>Pb (g/cm³)                                                                                                                                   | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$                                | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                  | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                                     | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{w}^{\ C}$                |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters                                                                                                                      | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm³)                                                                                                                         | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.442  ENTER Enclosed                                                                 | Stratum A soil water-filled porosity, e <sub>w</sub> ^ (cm³/cm³)  0.168  ENTER Enclosed                                                                                                                                                                                                                                                    | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                              | Stratum B<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                          | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitiess)                                      | Stratum B soil water-filled porosity, $\theta_w^B$ (cm <sup>3</sup> /cm <sup>3</sup> )     | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                  | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
|                              | Stratum A SCS soil type Lookup Soil Parameters  CL ENTER Enclosed space                                                                                             | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )  1.48  ENTER  Soil-bldg.                                                                                   | Stratum A soil total porosity, n^A (unitless)  0.442  ENTER Enclosed space                                                                      | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                      | Stratum B SCS soli type Lookup Soil Parameters  S ENTER Enclosed                                                                                        | Stratum B soil dry bulk density, pb (g/cm³)  1.66  ENTER                                                                                                                               | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor                             | Stratum B soil water-filled porosity, $\theta_w^B$ (cm <sup>3</sup> /cm <sup>3</sup> )     | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg.                                                  | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil parameters  CL  ENTER Enclosed space floor thickness,                                                                           | Stratum A soil dry bulk density, PbA (g/cm³)  1.48  ENTER  Soil-bldg, pressure differential,                                                                                     | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.442  ENTER Enclosed space floor length,                                             | Stratum A soil water-filled porosity, 8 % (cm³/cm³)  0.168  ENTER Enclosed space floor width,                                                                                                                                                                                                                                              | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Perameters                                                                                              | Stratum B<br>soil dry<br>bulk density,<br>Pb <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                                      | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER                                      | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters<br>S<br>ENTER<br>Average vapor                                                   | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  CL ENTER Enclosed space floor thickness, L <sub>crack</sub>                                                         | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm³)  1.48  ENTER  Soil-bldg, pressure differential, ΔP                                                                      | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub>                              | Stratum A soil water-filled porosity, e., A (cm³/cm³)  0.168  ENTER Enclosed space floor width, W <sub>8</sub>                                                                                                                                                                                                                             | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                           | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, w                                                                                    | Stratum B soil total porosity, n <sup>8</sup> , (unitless)  0.375  ENTER Indoor air exchange rate, ER     | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters  S  ENTER Average vapor flow rate into bidg. OR                                  | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil parameters  CL ENTER Enclosed space floor thickness, Lerack (cm)                                                                | Stratum A soil dry bulk density, PbA (g/cm³)  1.48  ENTER  Soil-bldg, pressure differential,                                                                                     | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.442  ENTER Enclosed space floor length,                                             | Stratum A soil water-filled porosity, 8 % (cm³/cm³)  0.168  ENTER Enclosed space floor width,                                                                                                                                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                          | Stratum B soil dry bulk density, p <sub>b</sub> <sup>8</sup> (g/cm <sup>3</sup> )  1.66  ENTER  Floor-wall seam crack width,                                                           | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate,          | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR aver blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  CL ENTER Enclosed space floor thickness, L <sub>crack</sub>                                                         | Stratum A soil dry bulk density, PbA (g/cm³)  1.48  ENTER  Soil-bldg. pressure differential, ΔP                                                                                  | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub>                              | Stratum A soil water-filled porosity, e., A (cm³/cm³)  0.168  ENTER Enclosed space floor width, W <sub>8</sub>                                                                                                                                                                                                                             | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                           | Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, w                                                                                    | Stratum B soil total porosity, n <sup>8</sup> , (unitless)  0.375  ENTER Indoor air exchange rate, ER     | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| MORE                         | Stratum A SCS soil type  Lookup Soil Parameters  CL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER                                                   | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.48  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER                                                             | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                     | Stratum A soil water-filled porosity, ew (cm³/cm³) 0.168  ENTER Enclosed space floor width, W8 (cm)                                                                                                                                                                                                                                        | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, He (cm) 244 ENTER                                                        | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER                                                                             | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE \$\psi\$                | Stratum A SCS soil type Lookup Soil Parameters  CL ENTER Enclosed space floor thickness, Lorack (cm)                                                                | Stratum A soil dry bulk density, p. A (g/cm³)  1.48  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging                                                 | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | Stratum A soil water-filled prossition, 4 (cm³/cm³) 0.168  ENTER Enclosed space floor width, W8 (cm)  1000  ENTER                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target                                    | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard                                                              | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type  Lookup Soil Parameters  CL  ENTER Enclosed space floor thickness, Lerack (cm)  10  ENTER Averaging time for carcinogens,                   | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.48  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                         | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | Stratum A soil water-filled porosity, \$\theta_w^{}\$ (cm^3/cm^3)\$  0.168  ENTER Enclosed space floor width, \$                                                                                                                                                                                                                      \tex | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens,               | Stratum B soil dry bulk density, p b (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,                                 | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil parameters  CL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for                                   | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.48  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, $\Delta T_{NC}$ | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porositiv, e, ', (cm³/cm³).  0.168  ENTER Enclosed space floor width, W <sub>8</sub> (cm)  1000  ENTER Exposure frequency, EF                                                                                                                                                                                  | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR           | Stratum B soil dry bulk density, p B (g/cm³)  1.66 I ENTER Floor-wall seam crack width, w (cm)  0.1 ENTER Target hazard quotient for noncarcinogens, THQ                               | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS - Soil type  Lookup Soil parameters  CL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs)       | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.48  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, ATNC (yrs)              | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, La (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, \$\theta_{*}^{A}\$ (cm^3/cm^3)\$  0.168  ENTER Enclosed space floor width, \$W_8\$ (cm)  1000  ENTER Exposure frequency, \$\text{EF}\$ (days/yr)                                                                                                                                                     | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens, TR (unitless) | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless)                   | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$     |
| MORE                         | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  CL ENTER Enclosed space floor thickness, Lerack (cm)  10 ENTER Averaging time for carcinogens, ATc | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.48  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, $\Delta T_{NC}$ | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity, e, ', (cm³/cm³).  0.168  ENTER Enclosed space floor width, W <sub>8</sub> (cm)  1000  ENTER Exposure frequency, EF                                                                                                                                                                                   | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR           | Stratum B soil dry bulk density, p B (g/cm³)  1.66 I ENTER Floor-wall seam crack width, w (cm)  0.1 ENTER Target hazard quotient for noncarcinogens, THQ                               | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |
| MORE                         | Stratum A SCS - Soil type  Lookup Soil parameters  CL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs)       | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.48  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, ATNC (yrs)              | Stratum A soil total porosity, n^ (unitless)  0.442  ENTER Enclosed space floor length, La (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, \$\theta_{*}^{A}\$ (cm^3/cm^3)\$  0.168  ENTER Enclosed space floor width, \$W_8\$ (cm)  1000  ENTER Exposure frequency, \$\text{EF}\$ (days/yr)                                                                                                                                                     | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens, TR (unitless) | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless)  1 ate risk-based | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e, s<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{\ C}$<br>$(cm^3/cm^3)$ |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                              | 3.5E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure<br>duration, | Source-<br>building<br>separation,<br>L <sub>T</sub> | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$ | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^c$ | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub> | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub> | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>ra</sub> | Stratum A<br>soil<br>effective vapor<br>permeability, | Thickness of capillary zone,           | Total porosity in capillary zone,      | Air-filled porosity in capillary zone, $\theta_{acz}$ | Water-filled porosity in capillary zone, θ <sub>w.cz</sub> | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|-----------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| (sec)                 | (cm)                                                 | (cm <sup>3</sup> /cm <sup>3</sup> )                          | (cm³/cm³)                                                    | (cm³/cm³)                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                                     | (cm²)                                                             | (cm²)                                                                 | (cm²)                                                 | L <sub>cz</sub><br>(cm)                | n <sub>cz</sub><br>(cm³/cm³)           | (cm³/cm³)                                             | (cm³/cm³)                                                  | ^crack<br>(cm)                                             |
|                       |                                                      |                                                              |                                                              |                                                              |                                                                         | <u> </u>                                                          |                                                                       |                                                       | (0)                                    |                                        |                                                       |                                                            | \( \)                                                      |
| 9.46E+08              | 50                                                   | 0.274                                                        | 0.321                                                        | 0.321                                                        | 0.245                                                                   | 1.26E-09                                                          | 0.865                                                                 | 1.09E-09                                              | 46.88                                  | 0.442                                  | 0.067                                                 | 0.375                                                      | 4,000                                                      |
|                       |                                                      |                                                              |                                                              |                                                              |                                                                         |                                                                   |                                                                       |                                                       |                                        |                                        |                                                       |                                                            |                                                            |
| Bldg.<br>ventilation  | Area of<br>enclosed<br>space<br>below                | Crack-<br>to-total<br>area                                   | Crack<br>depth<br>below                                      | Enthalpy of vaporization at ave. groundwater                 | Henry's law constant at ave. groundwater                                | Henry's law constant at ave. groundwater                          | Vapor<br>viscosity at<br>ave. soil                                    | Stratum<br>A<br>effective<br>diffusion                | Stratum<br>B<br>effective<br>diffusion | Stratum<br>C<br>effective<br>diffusion | Capillary<br>zone<br>effective<br>diffusion           | Total<br>overall<br>effective<br>diffusion                 | Diffusion<br>path                                          |
| rate,                 | grade,                                               | ratio,                                                       | grade,                                                       | temperature,                                                 | temperature,                                                            | temperature,                                                      | temperature,                                                          | coefficient,                                          | coefficient,                           | coefficient,                           | coefficient,                                          | coefficient,                                               | length,                                                    |
| Q <sub>building</sub> | A <sub>B</sub>                                       | η                                                            | Z <sub>crack</sub>                                           | $\Delta H_{v,TS}$                                            | H <sub>TS</sub>                                                         | H' <sub>TS</sub>                                                  | μτς                                                                   | Deff                                                  | De <sup>#</sup> B                      | Delc                                   | D <sup>eff</sup> cz                                   | D <sup>eff</sup> <sub>T</sub>                              | La                                                         |
| (cm <sup>3</sup> /s)  | (cm²)                                                | (unitless)                                                   | (cm)                                                         | (cal/mol)                                                    | (atm-m³/mol)                                                            | (unitless)                                                        | (g/cm-s)                                                              | (cm²/s)                                               | (cm²/s)                                | (cm²/s)                                | (cm²/s)                                               | (cm²/s)                                                    | (cm)                                                       |
| 1.69E+04              | 1.06E+06                                             | 3.77E-04                                                     | 15                                                           | 8,544                                                        | 5.05E-03                                                                | 2.17E-01                                                          | 1.76E-04                                                              | 5.43E-03                                              | 0.00E+00                               | 0.00E+00                               | 5.78E-05                                              | 6.16E-05                                                   | 50                                                         |
| Convection            | Source                                               |                                                              | Average<br>vapor                                             | Crack<br>effective                                           |                                                                         | Exponent of equivalent foundation                                 | Infinite<br>source<br>indoor                                          | Infinite<br>source                                    | Unit                                   |                                        |                                                       |                                                            |                                                            |
| path                  | vapor                                                | Crack                                                        | flow rate                                                    | diffusion                                                    | Area of                                                                 | Peclet                                                            | attenuation                                                           | bldg.                                                 | risk                                   | Reference                              |                                                       |                                                            |                                                            |
| length,               | conc.,                                               | radius,                                                      | into bldg.,                                                  | coefficient,                                                 | crack,                                                                  | number,                                                           | coefficient,                                                          | conc.,                                                | factor,                                | conc.,                                 |                                                       |                                                            |                                                            |
| L <sub>p</sub>        | C <sub>source</sub>                                  | r <sub>crack</sub>                                           | $Q_{soil}$                                                   | D <sup>crack</sup>                                           | A <sub>crack</sub>                                                      | exp(Pe <sup>r</sup> )                                             | α                                                                     | C <sub>building</sub>                                 | URF                                    | RfC                                    |                                                       |                                                            |                                                            |
| (cm)                  | (μg/m³)                                              | (cm)                                                         | (cm³/s)                                                      | (cm²/s)                                                      | (cm²)                                                                   | (unitless)                                                        | (unitless)                                                            | (μg/m³)                                               | (μg/m³) <sup>-1</sup>                  | (mg/m³)                                |                                                       |                                                            |                                                            |
| 15                    | 3.03E+02                                             | 0.10                                                         | 8.33E+01                                                     | 5.43E-03                                                     | 4.00E+02                                                                | 5.33E+166                                                         | 7.59E-05                                                              | 2.30E-02                                              | 1.1E-04                                | 3.5E-02                                | ]                                                     |                                                            |                                                            |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA NA                                                   | NA                                                   | 1.47E+06                                                 | NA                                                             | 1.0E-06                                                                    | 6.3E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., | Pure<br>component<br>water<br>solubility,<br>S | Final indoor exposure groundwater conc., | ris<br>V<br>intru<br>ind<br>card | emental k from apor usion to oor air, cinogen | Hazard quotient from vapor intrusion to indoor air, noncarcinogen |
|------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------|----------------------------------|-----------------------------------------------|-------------------------------------------------------------------|
| 1.35E+00                                             | 2.22E+03                                                               | (mg/L)<br>1.35E+00                            | (mg/L)<br>1.47E+06                             | (mg/L)<br>1.35E+00                       |                                  | nitless)<br>NA                                | (unitless)                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| GW-ADV<br>ersion 3.1; 02/04 | CALCULATE RIS                    | K-BASED GROUN                    | NOWATER CONC                       | ENTRATION (en                            | ter "X" in "YES" box              | <b>x</b> )                                |                                |                                          |                                             |                                   |                                 |                               |
|-----------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------|---------------------------------|-------------------------------|
|                             |                                  | YES                              |                                    | ]                                        |                                   |                                           |                                |                                          |                                             |                                   |                                 | . •                           |
| Reset to<br>Defaults        | CALCULATE INC                    | DEMENTAL DISK                    | OR<br>S EPOM ACTUAL                | CPOLINDWÁT                               | ED CONCENTRATI                    | ON (enter "Y" in "YE                      | S" box and initial grou        | ndwater conc. hel                        | low)                                        |                                   |                                 |                               |
|                             | CALCULATE INC                    | REWENTAL RISK                    |                                    | - GROUNDWAI                              | ER CONCENTRATI                    | Old (elite) X III 1E                      | S box and initial grou         | nuwater conc. bei                        | iow)                                        |                                   |                                 |                               |
|                             |                                  | YES                              | X                                  | ]                                        |                                   |                                           |                                |                                          |                                             |                                   |                                 |                               |
|                             | ENTER                            | ENTER                            |                                    |                                          |                                   |                                           |                                |                                          |                                             |                                   |                                 |                               |
|                             | Chemical                         | Initial<br>groundwater           |                                    |                                          |                                   |                                           |                                |                                          |                                             |                                   |                                 |                               |
|                             | CAS No.                          | conc.,                           |                                    |                                          |                                   |                                           |                                |                                          |                                             |                                   |                                 |                               |
|                             | (numbers only,<br>no dashes)     | C <sub>w</sub><br>(μg/L)         |                                    |                                          | Chemical                          |                                           |                                |                                          |                                             |                                   |                                 |                               |
|                             |                                  |                                  |                                    |                                          |                                   |                                           |                                |                                          |                                             |                                   |                                 | •                             |
|                             | 79016                            | 1.40E+00                         | }                                  | L.,                                      | Trichloroethyle                   | ene                                       |                                |                                          |                                             |                                   |                                 |                               |
|                             | ENTER                            | ENTER                            | ENTER                              | ENTER                                    | ENTER                             | ENTER                                     | ENTER                          | ENTER                                    | ENTER                                       |                                   | ENTER                           | ].                            |
| MORE                        | Average                          | Depth<br>below grade             |                                    | Totals mu                                | st add up to value o<br>Thickness | f L <sub>w1</sub> (cell G28)<br>Thickness |                                |                                          | Soil<br>stratum A                           |                                   | User-defined                    |                               |
| ₩ OKE                       | soil/                            | to bottom                        | Depth                              | Thickness                                | of soil                           | of soil                                   | Soil                           |                                          | SCS                                         |                                   | stratum A                       |                               |
|                             | groundwater                      | of enclosed                      | below grade                        | of soil                                  | stratum B,                        | stratum C,                                | stratum                        | scs                                      | soil type                                   |                                   | soil vapor                      | İ                             |
|                             | temperature,<br>T <sub>S</sub>   | space floor,<br>L <sub>F</sub>   | to water table,<br>L <sub>w1</sub> | stratum A,<br>h <sub>A</sub>             | (Enter value or 0)                | (Enter value or 0)<br>h <sub>C</sub>      | directly above<br>water table, | soil type<br>directly above              | (used to estimate soil vapor                | OR                                | permeability,<br>k <sub>v</sub> |                               |
|                             | (°C)                             | (cm)                             | (cm)                               | (cm)                                     | (cm)                              | (cm)                                      | (Enter A, B, or C)             | water table                              | permeability)                               |                                   | (cm²)                           |                               |
|                             |                                  |                                  |                                    |                                          | 0                                 | 0                                         |                                | T CL                                     | CL                                          |                                   |                                 |                               |
|                             | 11                               | 15                               | 65                                 | 65                                       |                                   | <u> </u>                                  | Α                              | 1                                        | <u> </u>                                    | ····                              | L                               |                               |
|                             | ENTER                            | ENTER                            | ENTER                              | ENTER                                    | ENTER                             | ENTER                                     | ENTER                          | ENTER                                    | ENTER                                       | ENTER                             | ENTER                           | ENTER                         |
| MORE                        | Stratum A                        | Stratum A                        | Stratum A                          | Stratum A                                | Stratum B                         | Stratum B                                 | Stratum B                      | Stratum B                                | Stratum C                                   | Stratum C                         | Stratum C                       | Stratum C                     |
| <u> </u>                    | scs                              | soil dry                         | soil total                         | soil water-filled                        | SCS                               | soil dry                                  | soil total                     | soil water-filled                        | SCS                                         | soil dry                          | soil total                      | soil water-filled             |
|                             | Soil type  Lookup Soil           | bulk density,<br>Pb <sup>A</sup> | porosity,<br>n <sup>A</sup>        | porosity,<br>θ <sub>w</sub> <sup>A</sup> | soil type                         | bulk density,<br>ρ <sub>ь</sub> 8         | porosity,<br>ກຸ <sup>B</sup>   | porosity,<br>θ <sub>w</sub> <sup>B</sup> | soil type                                   | bulk density,<br>ρ <sub>в</sub> с | porosity<br>n <sup>C</sup>      | porosity.<br>θ <sub>w</sub> C |
|                             | Parameters                       | (g/cm³)                          | (unitless)                         | (cm³/cm³)                                | Parameters                        | (g/cm³)                                   | (unitless)                     | (cm <sup>3</sup> /cm <sup>3</sup> )      | Parameters                                  | (g/cm <sup>3</sup> )              | (unitless)                      | (cm³/cm³)                     |
|                             |                                  |                                  |                                    |                                          |                                   |                                           |                                |                                          |                                             |                                   |                                 | 0.054                         |
|                             | CL                               | 1.48                             | 0.442                              | 0.168                                    | 8                                 | 1.66                                      | 0.375                          | 0.054                                    | S                                           | 1.66                              | 0.375                           | 0.054                         |
| MORE                        | ENTER<br>Enclosed                | ENTER                            | ENTER<br>Enclosed                  | ENTER<br>Enclosed                        | ENTER                             | ENTER                                     | ENTER                          |                                          | ENTER<br>Average vapor                      |                                   |                                 |                               |
| 1170KE                      | space                            | Soil-bldg.                       | space                              | space                                    | Enclosed                          | Floor-wall                                | Indoor                         |                                          | flow rate into bldg.                        |                                   |                                 |                               |
|                             | floor                            | pressure                         | floor                              | floor                                    | space                             | seam crack                                | air exchange                   |                                          | OR                                          |                                   |                                 |                               |
|                             | thickness,<br>L <sub>creck</sub> | differential,<br>ΔP              | length,<br>L <sub>B</sub>          | width,<br>W <sub>B</sub>                 | height,<br>H <sub>B</sub>         | width,<br>w                               | rate,<br>ER                    | L                                        | eave blank to calculat<br>Q <sub>soil</sub> | .e                                |                                 |                               |
|                             | (cm)                             | (g/cm-s²)                        | (cm)                               | (cm)                                     | (cm)                              | (cm)                                      | (1/h)                          |                                          | (L/m)                                       |                                   |                                 | •                             |
|                             | 10                               | 40                               | 1000                               | 1000                                     | 244                               | 0.1                                       | 0.25                           | -<br>1                                   | 5                                           |                                   |                                 |                               |
|                             |                                  | •                                |                                    |                                          |                                   |                                           | 0.25                           | _                                        | L                                           |                                   |                                 |                               |
| MORE ↓                      | ENTER<br>Averaging               | ENTER<br>Averaging               | ENTER                              | ENTER                                    | ENTER<br>Target                   | ENTER Target hazard                       |                                |                                          |                                             |                                   |                                 |                               |
|                             | time for                         | time for                         | Exposure                           | Exposure                                 | risk for                          | quotient for                              |                                |                                          |                                             |                                   |                                 |                               |
|                             | carcinogens,                     | noncarcinogens,                  | duration,                          | frequency,                               | carcinogens,                      | noncarcinogens,                           |                                |                                          |                                             |                                   |                                 |                               |
|                             | AT <sub>C</sub><br>(yrs)         | AT <sub>NC</sub><br>(yrs)        | ED<br>(yrs)                        | EF<br>(days/yr)                          | TR<br>(unitless)                  | THQ<br>(unitless)                         |                                |                                          |                                             |                                   |                                 |                               |
|                             |                                  |                                  |                                    |                                          |                                   |                                           |                                |                                          |                                             |                                   |                                 |                               |
|                             | 70                               | 30                               | 30                                 | 350                                      | 1.0E-06                           | 1                                         |                                | 1 2                                      |                                             |                                   |                                 |                               |
| END                         |                                  |                                  |                                    |                                          |                                   | late risk-based                           |                                |                                          |                                             |                                   |                                 |                               |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure duration, τ (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_e^B$<br>$(cm^3/cm^3)$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>θ <sub>a</sub> <sup>C</sup><br>(cm³/cm³)      | Stratum A effective total fluid saturation, Ste (cm³/cm³)                                                      | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k,<br>(cm²)                    | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm <sup>2</sup> )      | Thickness of capillary zone, L <sub>cz</sub> (cm)                                             | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)         | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> ) | Water-filled porosity in capillary zone, θ <sub>w,cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> ) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 9.46E+08                                                                       | 50                                                                                      | 0.274                                                                     | 0.321                                                                         | 0.321                                                                                         | 0.245                                                                                                          | 1.26E-09                                                                          | 0.865                                                                                       | 1.09E-09                                                                                           | 46.88                                                                                         | 0.442                                                                              | 0.067                                                                                        | 0.375                                                                                          | 4,000                                                              |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)               | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H' <sub>TS</sub> (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µts<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm²/s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s)     | Total overall effective diffusion coefficient, D <sup>eff</sup> T (cm <sup>2</sup> /s)         | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                            | 8,544                                                                                         | 5.05E-03                                                                                                       | 2.17E-01                                                                          | 1.76E-04                                                                                    | 5.43E-03                                                                                           | 0.00E+00                                                                                      | 0.00E+00                                                                           | 5.78E-05                                                                                     | 6.16E-05                                                                                       | 50                                                                 |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s)    | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                                  | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)              | Infinite source indoor attenuation coefficient, $\alpha$ (unitless)                         | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                          | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup>                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                                              |                                                                                                |                                                                    |
| 15                                                                             | 3.03E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                      | 5.43E-03                                                                                      | 4.00E+02                                                                                                       | 5.33E+166                                                                         | 7.59E-05                                                                                    | 2.30E-02                                                                                           | 2.0E-06                                                                                       | 6.0E-01                                                                            | İ                                                                                            |                                                                                                |                                                                    |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                                     | NA                                                   | 1.47E+06                                                 | NA                                                             | 1.9E-08                                                                    | 3.7E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 7.41E+01                                                            | 3.81E+04                                                               | 7.41E+01                                             | 1.47E+06                                                 | 7.41E+01                                                       | . [ | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

#### DATA ENTRY SHEET

|       | V-ADV      | CALCULATE RIS             | K-BASED GROU                  | INDWATER CONC     | ENTRATION (e                        | nter "X" in "YES" bo      | x)                             |                            |                   |                                       |                      |                           |                                     |
|-------|------------|---------------------------|-------------------------------|-------------------|-------------------------------------|---------------------------|--------------------------------|----------------------------|-------------------|---------------------------------------|----------------------|---------------------------|-------------------------------------|
| rsion | 3.1; 02/04 |                           |                               |                   | 1                                   |                           |                                |                            |                   |                                       |                      |                           |                                     |
| Ρ.    | set to     |                           | YES                           | L                 | 1                                   |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       | efaults    |                           |                               | OR                | 00000000000                         |                           | 2011 /                         | Of hair and initial annual |                   |                                       |                      |                           |                                     |
|       |            | CALCULATE INC             | REMENIAL RIS                  | KS FROM ACTUAL    | GROUNDWA                            | IER CONCENTRAT            | ION (enter "X" in "YE          | S" box and initial groui   | nawater conc. bei | ow)                                   |                      |                           |                                     |
|       |            |                           | YES                           | Х                 | 1                                   |                           |                                |                            |                   |                                       |                      | -                         |                                     |
|       |            |                           |                               |                   | •                                   |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | ENTER                     | ENTER                         |                   |                                     |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | Chemical                  | Initial groundwater           |                   |                                     | * *                       |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | CAS No.                   | conc.,                        |                   |                                     |                           |                                | *                          |                   |                                       |                      |                           |                                     |
|       |            | (numbers only,            | Cw                            |                   |                                     |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | no dashes)                | (μg/L)                        | _                 |                                     | Chemical                  | ·····                          |                            |                   |                                       |                      |                           |                                     |
|       |            | 127184                    | 1.40E+00                      | 7                 |                                     | Tetrachloroethy           | /lene                          | ! ·                        |                   |                                       |                      |                           |                                     |
|       |            |                           |                               | ــا               | <del></del>                         |                           |                                |                            |                   |                                       |                      |                           | _                                   |
|       |            | ENTER                     | ENTER                         | ENTER             | ENTER                               | ENTER                     | ENTER                          | ENTER                      | ENTER             | ENTER                                 |                      | ENTER                     | ]                                   |
|       |            |                           | Depth                         |                   | Totals mi                           | ust add up to value o     |                                |                            |                   | Soil                                  |                      |                           |                                     |
|       | MORE       | Average<br>soil/          | below grade<br>to bottom      | Depth             | Thickness                           | Thickness<br>of soil      | Thickness<br>of soil           | Soil                       |                   | stratum A<br>SCS                      |                      | User-defined<br>stratum A |                                     |
|       |            | groundwater               | of enclosed                   | below grade       | of soil                             | stratum B.                | stratum C,                     | stratum                    | scs               | soil type                             |                      | soil vapor                |                                     |
|       |            | temperature,              | space floor,                  | to water table,   | stratum A,                          | (Enter value or 0)        |                                | directly above             | soil type         | (used to estimate                     | OR                   | permeability,             |                                     |
|       |            | Ts                        | L <sub>F</sub>                | Lwt               | h <sub>A</sub>                      | ` h <sub>B</sub>          | h <sub>c</sub>                 | water table,               | directly above    | soil vapor                            |                      | k,                        |                                     |
|       |            | (°C)                      | (cm)                          | (cm)              | (cm)                                | (cm)                      | (cm)                           | (Enter A, B, or C)         | water table       | permeability)                         |                      | (cm²)                     |                                     |
|       |            |                           |                               |                   |                                     |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | 11                        | 15                            | 65                | 65                                  | 0                         | 0                              | Α                          | CL                | Cr                                    |                      |                           | J                                   |
|       |            |                           |                               |                   |                                     |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | ENTER                     | ENTER                         | ENTER             | ENTER                               | ENTER                     | ENTER                          | ENTER                      | ENTER             | ENTER                                 | ENTER                | ENTER                     | ENTER                               |
|       | MORE       | Stratum A                 | Stratum A                     | Stratum A         | Stratum A                           | Stratum B                 | Stratum B                      | Stratum B                  | Stratum B         | Stratum C                             | Stratum C            | Stratum C                 | Stratum C                           |
|       | <b>4</b>   | SCS                       | soil dry                      | soil total        | soil water-filled                   |                           | soil dry                       | soil total                 | soil water-filled | SCS                                   | soil dry             | soil total                | soil water-filled                   |
|       |            | soil type                 | bulk density,                 | porosity,         | porosity,                           | soil type                 | bulk density,                  | porosity,                  | porosity,         | soil type                             | bulk density,        | porosity,                 | porosity,                           |
|       |            | Lookup Soil<br>Parameters | ρ <sub>6</sub> <sup>A</sup> . | n <sup>A</sup>    | θ^                                  | Lookup Soil<br>Parameters | ρь <sup>B</sup>                | n <sup>B</sup>             | 6″ <sub>B</sub>   | Lookup Soil<br>Parameters             | ρ <sub>ν</sub> ς     | n <sup>C</sup>            | θ <b>"</b> C                        |
|       |            | Parameters                | (g/cm³)                       | (unitless)        | (cm <sup>3</sup> /cm <sup>3</sup> ) | Parameters                | (g/cm³)                        | (unitless)                 | (cm³/cm³)         | Talameters                            | (g/cm <sup>3</sup> ) | (unitless)                | (cm <sup>3</sup> /cm <sup>3</sup> ) |
|       |            | CL                        | 1.48                          | 0.442             | 0.168                               | S                         | 1.66                           | 0.375                      | 0.054             | s                                     | 1.66                 | 0.375                     | 0.054                               |
|       |            | <u></u>                   |                               |                   | 10.100                              |                           |                                |                            |                   |                                       |                      |                           |                                     |
|       |            | ENTER                     | ENTER                         | ENTER             | ENTER                               | ENTER                     | ENTER                          | ENTER                      |                   | ENTER                                 |                      |                           |                                     |
|       | MORE .     | Enclosed                  | Soil-bldg.                    | Enclosed<br>space | Enclosed                            | Enclosed                  | Floor-wall                     | Indoor                     |                   | Average vapor<br>flow rate into bldg. |                      |                           |                                     |
|       |            | space                     | pressure                      | floor             | space<br>floor                      | space                     | seam crack                     | air exchange               |                   | OR                                    |                      |                           |                                     |
|       |            | thickness,                | differential,                 | length,           | width,                              | height,                   | width,                         | rate,                      | L                 | eave blank to calcula                 | ite                  |                           |                                     |
|       |            | L <sub>crack</sub>        | ΔΡ                            | LB                | WB                                  | H <sub>B</sub>            | w                              | ER                         |                   | Q <sub>soil</sub>                     |                      |                           |                                     |
|       | ٠ .        | (cm)                      | (g/cm-s <sup>2</sup> )        | (cm)              | (cm)                                | (cm)                      | (cm)                           | (1/h)                      | •                 | (L/m)                                 |                      |                           |                                     |
|       |            |                           |                               | 7                 | 1                                   |                           |                                |                            | -                 |                                       | 1                    |                           |                                     |
|       |            | 10                        | 40                            | 1000              | 1000                                | 300                       | 0,1                            | 0.83                       | J                 | 5                                     | l .                  |                           |                                     |
|       | MORE       | ENTER                     | ENTER                         | ENTER             | ENTER                               | ENTER                     | ENTER                          |                            |                   |                                       | • .                  |                           |                                     |
|       | <u> </u>   | Averaging                 | Averaging                     |                   |                                     | Target                    | Target hazard                  |                            |                   |                                       |                      |                           |                                     |
|       |            | time for                  | time for                      | Exposure          | Exposure                            | risk for                  | quotient for                   |                            |                   |                                       |                      |                           |                                     |
|       |            | carcinogens,              | noncarcinogens                | , duration,<br>ED | frequency,<br>EF                    | carcinogens,<br>TR        | noncarcinogens,<br>THQ         |                            |                   |                                       |                      |                           |                                     |
|       |            | AT <sub>C</sub><br>(yrs)  | AT <sub>NC</sub><br>(yrs)     | (yrs)             | (days/yr)                           | (unitiess)                | (unitless)                     |                            |                   |                                       |                      |                           |                                     |
|       |            | (913)                     | (319)                         | 71,21             | (daysiyi)                           | (dinacco)                 | (01111000)                     |                            |                   |                                       |                      |                           |                                     |
|       |            | 70                        | 25                            | 25                | 250                                 | 1.0E-06                   | 1                              |                            |                   |                                       |                      |                           |                                     |
|       |            |                           |                               | · ·               |                                     |                           | data dalah seser               |                            |                   |                                       |                      |                           |                                     |
|       | END        |                           |                               |                   |                                     |                           | late risk-based concentration. |                            |                   |                                       |                      |                           |                                     |
|       | CIAD       |                           |                               |                   |                                     | <u> </u>                  | CONCORREGION.                  |                            |                   |                                       |                      |                           |                                     |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.20E-02                                                         | 9 20E 06                                                           | 4 045 00                                                                     | 05 1                                                                           |                                                       |                                                       |                                                    |                                                                                           |                                                          |                                                         |                                       |
| 7.20E-02                                                         | 8.20E-06                                                           | 1.84E-02                                                                     | 25                                                                             | 8,288                                                 | 394.40                                                | 620.20                                             | 1.55E+02                                                                                  | 2.00E+02                                                 | 5.9E-06                                                 | 2.8E-01                               |

| Exposure<br>duration,<br>τ                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub>                                    | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$ | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$               | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ C}$                              | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub>                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub>     | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub> | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub>                 | Thickness of capillary zone,                                                                  | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub>                                        | Air-filled porosity in capillary zone, θ <sub>a,cz</sub>                                                   | Water-filled porosity in capillary zone, θ <sub>w,cz</sub>                             | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|
| (sec)                                                                          | (cm)                                                                                    | (cm³/cm³)                                                    | (cm³/cm³)                                                                  | (cm³/cm³)                                                                                     | (cm³/cm³)                                                                                        | (cm²)                                                                 | (cm²)                                                                 | (cm²)                                                                                   | (cm)                                                                                          | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                  | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                        | (cm³/cm³)                                                                              | (cm)                                                       |
| 7.88E+08                                                                       | 50                                                                                      | 0.274                                                        | 0.321                                                                      | 0.321                                                                                         | 0.245                                                                                            | 1.26E-09                                                              | 0.865                                                                 | 1.09E-09                                                                                | 46.88                                                                                         | 0.442                                                                                                | 0.067                                                                                                      | 0.375                                                                                  | 4,000                                                      |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)      | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H'TS (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s) | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> A<br>(cm²/s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary<br>zone<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> cz<br>(cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> T (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)     |
| 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                     | 15                                                                         | 9,543                                                                                         | 8.30E-03                                                                                         | 3.56E-01                                                              | 1.76E-04                                                              | 4.95E-03                                                                                | 0.00E+00                                                                                      | 0.00E+00                                                                                             | 4.97E-05                                                                                                   | 5.29E-05                                                                               | 50                                                         |
| Convection path length,                                                        | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br><sup>r</sup> <sub>crack</sub><br>(cm)    | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                    | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)  | Infinite source indoor attenuation coefficient, α (unitless)          | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)               | Unit<br>risk<br>factor,<br>URF<br>(μg/m³)·1                                                   | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                |                                                                                                            |                                                                                        |                                                            |
| 15                                                                             | 4.98E+02                                                                                | 0.10                                                         | 8.33E+01                                                                   | 4.95E-03                                                                                      | 4.00E+02                                                                                         | 8.79E+182                                                             | 1.60E-05                                                              | 7.98E-03                                                                                | 5.9E-06                                                                                       | 2.8E-01                                                                                              | ]                                                                                                          |                                                                                        |                                                            |

**RESULTS SHEET** 

# **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure                            | Indoor<br>exposure                               | Risk-based indoor                           | Pure component                      | Final<br>indoor                             | Incremental Hazard<br>risk from quotient<br>vapor from vapor                          |
|-----------------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------|
| groundwater<br>conc.,<br>carcinogen<br>(μg/L) | groundwater<br>conc.,<br>noncarcinogen<br>(μg/L) | exposure<br>groundwater<br>conc.,<br>(µg/L) | water<br>solubility,<br>S<br>(μg/L) | exposure<br>groundwater<br>conc.,<br>(µg/L) | intrusion to intrusion to indoor air, indoor air, carcinogen noncarcinogen (unitless) |
| NA                                            | NA NA                                            | NA                                          | 2.00E+05                            | NA                                          | 1.2E-08 2.0E-05                                                                       |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

### **INCREMENTAL RISK CALCULATIONS:**

| groundwater groundwater conc., conc., carcinogen noncarcinogen (mg/L) (mg/L) | exposure<br>groundwater<br>conc.,<br>(mg/L) | component water solubility, S (mg/L) | indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | vapor<br>intrusion to<br>indoor air,<br>carcinogen<br>(unitless) | from vapor<br>intrusion to<br>indoor air,<br>noncarcinogen<br>(unitless) |
|------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|
|------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

| GW-ADV               | CALCULATE R                 | ISK-BASED GROU              | INDWATER CONC                  | CENTRATION (e                           | nter "X" in "YES" b              | ox)                                     |                           |                             |                              |                           |                                 |                                |
|----------------------|-----------------------------|-----------------------------|--------------------------------|-----------------------------------------|----------------------------------|-----------------------------------------|---------------------------|-----------------------------|------------------------------|---------------------------|---------------------------------|--------------------------------|
| ersion 3.1; 02/04    |                             | YES                         |                                | 7                                       |                                  |                                         |                           |                             |                              |                           |                                 |                                |
| Reset to<br>Defaults |                             |                             | OR                             | <b></b>                                 |                                  |                                         |                           |                             |                              |                           |                                 |                                |
| Jointo               | CALCULATE IN                | ICREMENTAL RISI             | KS FROM ACTUA                  | L GROUNDWAT                             | ER CONCENTRA                     | TION (enter "X" in "YE                  | S" box and initial grou   | undwater conc. be           | elow)                        |                           |                                 |                                |
|                      |                             | YES                         | X                              | ]                                       |                                  |                                         |                           |                             |                              |                           |                                 |                                |
| •                    | ENTER                       | ENTER                       |                                |                                         |                                  |                                         |                           |                             |                              |                           |                                 |                                |
|                      | Chemical                    | Initial<br>groundwater      |                                |                                         |                                  |                                         |                           |                             |                              |                           |                                 |                                |
|                      | CAS No. (numbers only,      | conc.,<br>C <sub>w</sub>    |                                |                                         |                                  |                                         |                           |                             |                              |                           |                                 |                                |
|                      | no dashes)                  | (μg/ <b>L</b> )             | _                              | **************                          | Chemical                         |                                         | •                         |                             |                              |                           |                                 |                                |
|                      | 79016                       | 1.40E+00                    | ].                             |                                         | Trichloroethyl                   | ene                                     |                           |                             |                              |                           |                                 |                                |
|                      | ENTER                       | ENTER                       | ENTER                          | ENTER                                   | ENTER                            | ENTER                                   | ENTER                     | ENTER                       | ENTER                        |                           | ENTER                           | 1                              |
| MORE                 | Average                     | Depth<br>below grade        |                                | Totals mu                               | st add up to value<br>Thickness  | of L <sub>wt</sub> (cell G28) Thickness |                           |                             | Soil<br>stratum A            |                           | User-defined                    |                                |
| <u> </u>             | soil/                       | to bottom                   | Depth                          | Thickness                               | of soil                          | of soil                                 | Soil                      |                             | scs                          |                           | stratum A                       | }                              |
|                      | groundwater<br>temperature, | of enclosed<br>space floor, | below grade<br>to water table, | of soil<br>stratum A,                   | stratum B.<br>(Enter value or 0) | stratum C,<br>(Enter value or 0)        | stratum<br>directly above | SCS<br>soil type            | soil type                    | 0.0                       | soil vapor                      |                                |
|                      | Ts                          | L <sub>F</sub>              | L <sub>wt</sub>                | h <sub>A</sub>                          | h <sub>B</sub>                   | h <sub>C</sub>                          | water table,              | directly above              | (used to estimate soil vapor | OR                        | permeability,<br>k <sub>v</sub> | ł                              |
|                      | (°C)                        | (cm)                        | (cm)                           | (cm)                                    | (cm)                             | (cm)                                    | (Enter A, B, or C)        | water table                 | permeability)                |                           | (cm²)                           |                                |
|                      | 11                          | 15                          | 65                             | 65                                      | 0                                | 0                                       | A                         | CL                          | CL                           |                           | F                               |                                |
|                      | -                           |                             |                                | *************************************** |                                  |                                         |                           |                             | <u> </u>                     |                           | <del></del>                     | 1                              |
|                      | ENTER                       | ENTER                       | ENTER                          | ENTER                                   | ENTER                            | ENTER                                   | ENTER                     | ENTER                       | ENTER                        | ENTER                     | ENTER                           | ENTER                          |
| MORE .               | Stratum A<br>SCS            | Stratum A                   | Stratum A                      | Stratum A                               | Stratum B                        | Stratum B                               | Stratum B                 | Stratum B                   | Stratum C                    | Stratum C                 | Stratum C                       | Stratum C                      |
|                      | soil type                   | soil dry<br>bulk density,   | soil total<br>porosity,        | soil water-filled<br>porosity,          | SCS<br>soil type                 | soil dry<br>bulk density,               | soil total porosity,      | soil water-filled porosity, | SCS<br>soil type             | soil dry<br>bulk density, | soil total porosity,            | soil water-filled<br>porosity, |
|                      | Lookup Soil                 | PbA                         | n <sup>A</sup>                 | θ,,,                                    | Lookup Soil                      | ρ <sub>b</sub> <sup>B</sup>             | n <sup>B</sup>            | θ <sub>w</sub> <sup>B</sup> | Lookup Soil                  | ρ <sub>b</sub> C          | n <sup>C</sup>                  | $\theta_{\mathbf{w}}^{C}$      |
|                      | Parameters                  | (g/cm³)                     | (unitless)                     | (cm³/cm³)                               | Parameters                       | (g/cm³)                                 | (unitless)                | (cm³/cm³)                   | Parameters                   | (g/cm³)                   | (unitless)                      | (cm³/cm³)                      |
|                      | CL_                         | 1.48                        | 0.442                          | 0.168                                   | S                                | 1.66                                    | 0.375                     | 0.054                       | s I                          | 1.66                      | 0.375                           | 0.054                          |
|                      | ENTER                       | ENTER                       | ENTER                          | ENTER                                   | ENTER                            | ENTER                                   | ENTER                     |                             | ENTER                        |                           |                                 |                                |
| MORE                 | Enclosed                    |                             | Enclosed                       | Enclosed                                | <b>2</b> (1)                     | LIVILA                                  | LNIEN                     |                             | Average vapor                |                           |                                 |                                |
| <u> </u>             | space<br>floor              | Soil-bldg.<br>pressure      | space<br>floor                 | space                                   | Enclosed                         | Floor-wall                              | Indoor                    |                             | flow rate into bldg.         |                           |                                 |                                |
|                      | thickness,                  | differential,               | length,                        | floor<br>width,                         | space<br>height,                 | seam crack<br>width,                    | air exchange<br>rate,     | f o                         | OR<br>eave blank to calculat |                           |                                 |                                |
|                      | L <sub>crack</sub>          | ΔΡ                          | Le                             | WB                                      | Нв                               | w                                       | ER                        | _,                          | Q <sub>soil</sub>            | •                         |                                 |                                |
|                      | (cm)                        | (g/cm-s <sup>2</sup> )      | (cm)                           | (cm)                                    | (cm)                             | (cm)                                    | (1/h)                     | •                           | (L/m)                        |                           |                                 |                                |
|                      | 10                          | 40                          | 1000                           | 1000                                    | 300                              | 0.1                                     | 0.83                      | ]                           | 5                            |                           |                                 |                                |
| MORE                 | ENTER                       | ENTER                       | ENTER                          | ENTER                                   | ENTER                            | ENTER                                   |                           |                             |                              |                           |                                 |                                |
|                      | Averaging time for          | Averaging                   | Evenenue                       | Sum alasses                             | Target                           | Target hazard                           |                           |                             |                              |                           |                                 |                                |
|                      | carcinogens,                | time for<br>noncarcinogens, | Exposure duration,             | Exposure<br>frequency,                  | risk for<br>carcinogens,         | quotient for<br>noncarcinogens,         |                           |                             |                              |                           |                                 |                                |
|                      | ATc                         | AT <sub>NC</sub>            | ED                             | EF                                      | TR                               | THQ                                     |                           |                             |                              |                           |                                 |                                |
|                      | (yrs)                       | (yrs)                       | (yrs)                          | (days/yr)                               | (unitless)                       | (unitless)                              |                           |                             |                              |                           |                                 |                                |
|                      | 70                          | 25                          | 25                             | 250                                     | 1.0E-06                          | 1                                       |                           |                             | •                            |                           |                                 |                                |
|                      |                             |                             |                                |                                         | Used to calcu                    | late risk-based                         |                           |                             |                              |                           |                                 |                                |
| END                  |                             |                             |                                | 1                                       |                                  | concentration.                          |                           |                             |                              |                           |                                 |                                |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm²/s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|-----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                            | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

| Exposure<br>duration,<br>τ    | Source-<br>building<br>separation,<br>L <sub>T</sub> | Stratum A soil air-filled porosity, $\theta_a^A$ | Stratum B soil air-filled porosity, | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c   | Stratum A effective total fluid saturation, Ste       | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k           | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub> | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k, | Thickness of capillary zone,               | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub> | Air-filled porosity in capillary zone,                      | Water-filled porosity in capillary zone,                   | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|-------------------------------|------------------------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| (sec)                         | (cm)                                                 | (cm³/cm³)                                        | (cm³/cm³)                           | (cm³/cm³)                                                          | (cm³/cm³)                                             | (cm²)                                                          | (cm²)                                                                 | (cm²)                                                       | (cm)                                       | (cm <sup>3</sup> /cm <sup>3</sup> )                           | (cm <sup>3</sup> /cm <sup>3</sup> )                         | (cm <sup>3</sup> /cm <sup>3</sup> )                        | (cm)                                                       |
| 7.88E+08                      | 50                                                   | 0.274                                            | 0.321                               | 0.321                                                              | 0.245                                                 | 1.26E-09                                                       | 0.865                                                                 | 1.09E-09                                                    | 46.88                                      | 0.442                                                         | 0.067                                                       | 0.375                                                      | 4,000                                                      |
|                               |                                                      |                                                  |                                     |                                                                    |                                                       |                                                                |                                                                       |                                                             |                                            |                                                               | <u> </u>                                                    |                                                            | 1,1222                                                     |
| Bidg.<br>ventilation<br>rate, | Area of<br>enclosed<br>space<br>below<br>grade,      | Crack-<br>to-total<br>area<br>ratio,             | Crack<br>depth<br>below<br>grade,   | Enthalpy of<br>vaporization at<br>ave. groundwater<br>temperature, | Henry's law constant at ave, groundwater temperature, | Henry's law<br>constant at<br>ave. groundwater<br>temperature, | Vapor<br>viscosity at<br>ave. soil<br>temperature,                    | Stratum A effective diffusion coefficient,                  | Stratum B effective diffusion coefficient, | Stratum<br>C<br>effective<br>diffusion<br>coefficient,        | Capillary<br>zone<br>effective<br>diffusion<br>coefficient, | Total<br>overall<br>effective<br>diffusion<br>coefficient, | Diffusion path length.                                     |
| Q <sub>building</sub>         | A <sub>B</sub>                                       | η                                                | Z <sub>crack</sub>                  | $\Delta H_{v,TS}$                                                  | H <sub>TS</sub>                                       | H' <sub>TS</sub>                                               | $\mu_{TS}$                                                            | Deff                                                        | D <sup>eff</sup> B                         | D <sup>eff</sup> c                                            | D <sup>eff</sup> cz                                         | D <sup>eff</sup> <sub>T</sub>                              | $L_d$                                                      |
| (cm <sup>3</sup> /s)          | (cm²)                                                | (unitless)                                       | (cm)                                | (cal/mol)                                                          | (atm-m³/mol)                                          | (unitless)                                                     | (g/cm-s)                                                              | (cm²/s)                                                     | (cm²/s)                                    | . (cm²/s)                                                     | (cm²/s)                                                     | (cm²/s)                                                    | (cm)                                                       |
| 6.92E+04                      | 1.06E+06                                             | 3.77E-04                                         | 15                                  | 8,544                                                              | 5.05E-03                                              | 2.17E-01                                                       | 1.76E-04                                                              | 5.43E-03                                                    | 0.00E+00                                   | 0.00E+00                                                      | 5.78E-05                                                    | 6.16E-05                                                   | 50                                                         |
| Convection path               | Source<br>vapor                                      | Crack                                            | Average<br>vapor<br>flow rate       | Crack<br>effective<br>diffusion                                    | Area of                                               | Exponent of equivalent foundation Peclet                       | Infinite<br>source<br>indoor                                          | Infinite<br>source                                          | Unit                                       | Deference                                                     |                                                             |                                                            |                                                            |
| length,                       | conc.,                                               | radius.                                          | into bldg.,                         | coefficient,                                                       | crack,                                                | number,                                                        | attenuation<br>coefficient.                                           | bidg.<br>conc.,                                             | risk<br>factor.                            | Reference conc.,                                              | •                                                           |                                                            |                                                            |
| L <sub>p</sub>                | C <sub>source</sub>                                  | r <sub>crack</sub>                               | $Q_{soil}$                          | D <sup>crack</sup>                                                 | A <sub>crack</sub>                                    | exp(Pe <sup>f</sup> )                                          | α                                                                     | C <sub>building</sub>                                       | URF                                        | RfC                                                           |                                                             |                                                            | •                                                          |
| (cm)                          | (μg/m³)                                              | (cm)                                             | (cm <sup>3</sup> /s)                | (cm²/s)                                                            | (cm²)                                                 | (unitless)                                                     | (unitless)                                                            | (µg/m³)                                                     | (μg/m³) <sup>-1</sup>                      | (mg/m³)                                                       |                                                             |                                                            |                                                            |
| 15                            | 3.03E+02                                             | 0.10                                             | 8.33E+01                            | 5.43E-03                                                           | 4.00E+02                                              | 5.33E+166                                                      | 1.86E-05                                                              | 5.63E-03                                                    | 1.1E-04                                    | 3.5E-02                                                       | ·<br>}                                                      |                                                            |                                                            |

# **RESULTS SHEET**

# RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

### **INCREMENTAL RISK CALCULATIONS:**

| Indoor               | Indoor                  | Risk-based              | Pure              | Final                   | Incremental risk from    | Hazard<br>quotient       |
|----------------------|-------------------------|-------------------------|-------------------|-------------------------|--------------------------|--------------------------|
| exposure             | exposure                | indoor                  | component         | indoor                  | vapor                    | from vapor               |
| groundwater conc.,   | groundwater conc.,      | exposure<br>groundwater | water solubility, | exposure<br>groundwater | intrusion to indoor air, | intrusion to indoor air, |
| carcinogen<br>(μg/L) | noncarcinogen<br>(μg/L) | conc.,<br>(μg/L)        | S<br>(μg/L)       | conc.,<br>(μg/L)        | carcinogen<br>(unitless) | noncarcinogen (unitless) |
|                      |                         |                         |                   |                         |                          |                          |
| NA                   | NA                      | NA                      | 1.47E+06          | NA                      | <br>1.5E-07              | 1.1E-04                  |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 9.24E+00                                                            | 1.27E+04                                                               | 9.24E+00                                                            | 1.47E+06                                                 | 9.24E+00                                                       | [ | NA                                                                         | NA                                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

| GW-ADV   | CALCULATE RIS                | K-BASED GROUN               | DWATER CONCE                 | ENTRATION (e                             | nter "X" in "YES" bo          | x)                                     |                             |                                          |                              |                                   |                                 |                                          |
|----------|------------------------------|-----------------------------|------------------------------|------------------------------------------|-------------------------------|----------------------------------------|-----------------------------|------------------------------------------|------------------------------|-----------------------------------|---------------------------------|------------------------------------------|
| Reset to |                              | YES                         | OD                           | ]                                        |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |
| Defaults | CALCULATE INC                | CREMENTAL RISKS             | OR<br>S FROM ACTUAL          | GROUNDWAT                                | ER CONCENTRAT                 | ION (enter "X" in "YE                  | S" box and initial groun    | ndwater conc. be                         | iow)                         |                                   |                                 |                                          |
|          |                              | YES                         | Х                            | ]                                        |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |
|          | ENTER                        | ENTER                       |                              |                                          |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |
|          |                              | Initial<br>groundwater      |                              |                                          |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |
|          | Chemical<br>CAS No.          | conc.,                      |                              |                                          |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |
|          | (numbers only,<br>no dashes) | C <sub>w</sub><br>(μg/L)    |                              |                                          | Chemical                      |                                        |                             |                                          |                              |                                   |                                 |                                          |
|          | 79016                        | 1.40E+00                    |                              |                                          | Trichloroethyle               | ene                                    | I                           |                                          |                              |                                   |                                 | •                                        |
|          |                              | 1                           | ļ                            |                                          |                               |                                        |                             |                                          |                              |                                   | FAITE                           |                                          |
|          | ENTER                        | ENTER<br>Depth              | ENTER                        | ENTER<br>Totals mu                       | ENTER<br>st add up to value o | ENTER<br>of L <sub>wt</sub> (cell G28) | ENTER                       | ENTER                                    | ENTER<br>Soil                |                                   | ENTER                           |                                          |
| MORE .   | Average                      | below grade                 | Depth                        | Thickness                                | Thickness<br>of soil          | Thickness<br>of soil                   | Soil                        |                                          | stratum A<br>SCS             |                                   | User-defined<br>stratum A       | *                                        |
|          | soil/<br>groundwater         | to bottom<br>of enclosed    | below grade                  | of soil                                  | stratum B,                    | stratum C,                             | stratum                     | scs                                      | soil type                    |                                   | soil vapor                      |                                          |
|          | temperature,                 | space floor,                | to water table,              | stratum A,                               | (Enter value or 0)            |                                        | directly above water table, | soil type<br>directly above              | (used to estimate soil vapor | OR                                | permeability,<br>k <sub>v</sub> |                                          |
|          | T <sub>s</sub><br>(℃)        | L <sub>F</sub><br>(cm)      | L <sub>W1</sub><br>(cm)      | h <sub>A</sub> .<br>(cm)                 | h <sub>e</sub><br>(cm)        | h <sub>C</sub><br>(cm)                 | (Enter A, B, or C)          | water table                              | permeability)                |                                   | (cm²)                           |                                          |
|          |                              | (CIII)                      |                              |                                          |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |
| *        | 11                           | 15                          | 65                           | 65                                       | 0                             | 0                                      | Α                           | CL                                       | ĊL                           | l                                 | L                               | J                                        |
|          |                              |                             |                              |                                          |                               | ENTER                                  | ENTER                       | ENTER                                    | ENTER                        | ENTER                             | ENTER                           | ENTER                                    |
| MORE     | ENTER<br>Stratum A           | ENTER<br>Stratum A          | ENTER<br>Stratum A           | ENTER<br>Stratum A                       | ENTER<br>Stratum B            | Stratum B                              | Stratum B                   | Stratum B                                | Stratum C                    | Stratum C                         | Stratum C                       | Stratum C                                |
| <u>+</u> | SCS                          | soil dry                    |                              | soil water-filled                        | scs                           | soil dry                               | soil total                  | soil water-filled                        |                              | soil dry                          | soli total                      | soil water-filled                        |
|          | soil type                    | bulk density,               | porosity,                    | porosity,                                | soil type                     | bulk density,                          | porosity,<br>n <sup>8</sup> | porosity,<br>θ <sub>w</sub> <sup>B</sup> | Soil type  Lookup Soil       | bulk density,<br>ρ <sub>ε</sub> c | porosity,<br>n <sup>C</sup>     | porosity,<br>θ <sub>w</sub> <sup>C</sup> |
|          | Lookup Soil<br>Parameters    | ρ <sub>ь</sub> ^<br>(g/cm³) | n <sup>A</sup><br>(unitless) | θ <sub>w</sub> <sup>A</sup><br>(cm³/cm³) | Lookup Soil<br>Parameters     | ρ <sub>ь</sub> <sup>B</sup><br>(g/cm³) | (unitless)                  | (cm³/cm³)                                | Parameters                   | (g/cm <sup>3</sup> )              | (unitless)                      | (cm³/cm³)                                |
|          |                              |                             |                              |                                          |                               |                                        |                             |                                          |                              |                                   |                                 | 0.054                                    |
|          | CL                           | 1.48                        | 0.442                        | 0.168                                    | S                             | 1.66                                   | 0.375                       | 0.054                                    | <u> </u>                     | 1.66                              | 0.375                           | 1 0.054                                  |
| MORE     | ENTER<br>Enclosed            | ENTER                       | ENTER<br>Enclosed            | ENTER<br>Enclosed                        | ENTER                         | ENTER                                  | ENTER                       |                                          | ENTER Average vapor          |                                   |                                 |                                          |
| Ψ        | space                        | Soil-bldg.                  | space                        | space                                    | Enclosed                      | Floor-wall                             | Indoor                      |                                          | flow rate into bidg.<br>OR   |                                   |                                 |                                          |
|          | floor<br>thickness,          | pressure<br>differential,   | floor<br>length,             | floor<br>width,                          | space<br>height,              | seam crack<br>width,                   | air exchange<br>rate,       | L                                        | eave blank to calcula        | ate                               |                                 |                                          |
|          | L <sub>crack</sub>           | ΔΡ                          | L <sub>B</sub>               | Wa                                       | He                            | w                                      | ER                          |                                          | Q <sub>soil</sub>            |                                   |                                 |                                          |
|          | (cm)                         | (g/cm-s <sup>2</sup> )      | (cm)                         | (cm)                                     | (cm)                          | (cm)                                   | (1/h)                       |                                          | (L/m)                        | •                                 |                                 |                                          |
|          | 10                           | 40                          | 1000                         | 1000                                     | 300                           | 0.1                                    | 0.83                        | ]                                        | 5                            | ]                                 |                                 |                                          |
| MORE     | ENTER                        | ENTER                       | ENTER                        | ENTER                                    | ENTER                         | ENTER                                  |                             |                                          |                              |                                   |                                 |                                          |
|          | Averaging                    | Averaging                   | Exposure                     | Evocure                                  | Target risk for               | Target hazard<br>quotient for          |                             |                                          |                              |                                   |                                 |                                          |
|          | time for<br>carcinogens,     | time for noncarcinogens,    | Exposure duration,           | Exposure frequency,                      | carcinogens,                  | noncarcinogens,                        |                             |                                          |                              |                                   |                                 |                                          |
|          | ATc                          | AT <sub>NC</sub>            | ED                           | EF                                       | TR                            | THQ                                    |                             |                                          |                              |                                   |                                 |                                          |
|          | (yrs)                        | (yrs)                       | (yrs)                        | (days/yr)                                | (unitless)                    | (unitless)                             | •                           |                                          |                              |                                   |                                 |                                          |
|          | 70                           | 25                          | 25                           | 250                                      | 1.0E-06                       | 1                                      |                             |                                          |                              |                                   |                                 |                                          |
|          |                              |                             |                              |                                          |                               | ulate risk-based                       |                             |                                          |                              |                                   |                                 |                                          |
| END      |                              |                             |                              |                                          | groundwater                   | concentration.                         | ]                           |                                          |                              |                                   |                                 |                                          |
|          |                              |                             |                              |                                          |                               |                                        |                             |                                          |                              |                                   |                                 |                                          |

# CHEMICAL PROPERTIES SHEET

|   | Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|---|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7 | .90E-02                                                          | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zone, zone, perimeter,                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $	au$ L <sub>T</sub> $	heta_a^A$ $	heta_a^B$ $	heta_a^C$ S <sub>1e</sub> k <sub>1</sub> k <sub>70</sub> k <sub>2</sub> L <sub>cz</sub> $	extstyle 	heta_{cz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\theta_{a,cz}$ $\theta_{w,cz}$ $X_{crack}$                                                                           |
| (sec) (cm) $(cm^3/cm^3)$ $(cm^3/cm^3)$ $(cm^3/cm^3)$ $(cm^3/cm^3)$ $(cm^2)$ $(cm^2)$ $(cm^2)$ $(cm)$ $(cm)$ $(cm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (cm <sup>3</sup> /cm <sup>3</sup> ) (cm <sup>3</sup> /cm <sup>3</sup> ) (cm)                                          |
| 7.88E+08 50 0.274 0.321 0.321 0.245 1.26E-09 0.865 1.09E-09 46.88 0.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.067 0.375 4,000                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |
| enclosed Crack- Crack Enthalpy of Henry's law Henry's law Vapor A B C Bldg. space to-total depth vaporization at constant at constant at viscosity at effective effective effective e ventilation below area below ave. groundwater ave. groundwater ave. groundwater ave. soil diffusion diffusion d rate, grade, ratio, grade, temperature, temperature, temperature, temperature, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficie | Capillary Total zone overall effective effective Diffusion diffusion diffusion path coefficient, coefficient, length, |
| $Q_{	ext{building}}$ $A_{	heta}$ $\eta$ $Z_{	ext{crack}}$ $\Delta H_{	ext{v,TS}}$ $H_{	ext{TS}}$ $H'_{	ext{TS}}$ $H'_{	ext{TS}}$ $\mu_{	ext{TS}}$ $D^{	ext{eff}}$ $D^{	ext{eff}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $D^{eff}_{cz}$ $D^{eff}_{T}$ $L_d$                                                                                    |
| $(cm^3/s)$ $(cm^2)$ $(unitless)$ $(cm)$ $(cal/mol)$ $(atm-m^3/mol)$ $(unitless)$ $(g/cm-s)$ $(cm^2/s)$ $(cm^2/s)$ $(cm^2/s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (cm <sup>2</sup> /s) (cm <sup>2</sup> /s) (cm)                                                                        |
| 6.92E+04 1.06E+06 3.77E-04 15 8,544 5.05E-03 2.17E-01 1.76E-04 5.43E-03 0.00E+00 0.00E+00 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.78E-05 6.16E-05 50                                                                                                  |
| Exponent of Infinite  Average Crack equivalent source Infinite  Convection Source vapor effective foundation indoor source Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |
| path vapor Crack flow rate diffusion Area of Peclet attenuation bldg. risk Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                       |
| length, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., factor, conc.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |
| $L_p$ $C_source$ $r_crack$ $Q_soil$ $D^crack$ $A_crack$ $exp(Pe^f)$ $\alpha$ $C_building$ URF RfC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |
| (cm) ( $\mu$ g/m³) (cm) (cm³/s) (cm²/s) (cm²) (unitless) ( $\mu$ g/m³) ( $\mu$ g/m³) (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |
| 15 3.03E+02 0.10 8.33E+01 5.43E-03 4.00E+02 5.33E+166 1.86E-05 5.63E-03 2.0E-06 6.0E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |

# RESULTS SHEET

# RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final indoor exposure groundwater conc., (µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                      | NA                                                   | 1.47E+06                                                 | NA                                              | 2.8E-09                                                                    | 6.4E-06                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 5.08E+02                                                            | 2.18E+05                                                               | 5.08E+02                                                            | 1.47E+06                                                 | 5.08E+02                                                       | ] | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 3

RESIDENTIAL

#### DATA ENTRY SHEET

| W-ADV         | CALCULATE R                  | ISK-BASED GROU              | NOWATER CONC                   | ENTRATION (e          | nter "X" in "YES" bo             | ox)                              |                                |                             |                              |                 |                                 |                   |
|---------------|------------------------------|-----------------------------|--------------------------------|-----------------------|----------------------------------|----------------------------------|--------------------------------|-----------------------------|------------------------------|-----------------|---------------------------------|-------------------|
| on 3.1; 02/04 |                              |                             |                                | -                     |                                  |                                  |                                |                             |                              |                 |                                 |                   |
| Reset to      |                              | YES                         | L                              | J                     |                                  |                                  |                                |                             |                              |                 |                                 |                   |
| Defaults      |                              |                             | OR                             |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
| Delaults      | CALCULATE IN                 | ICREMENTAL RISH             | KS FROM ACTUAL                 | . GROUNDWA            | TER CONCENTRAT                   | TON (enter "X" in "YE            | S" box and initial grou        | ndwater conc. be            | elow)                        |                 |                                 |                   |
|               |                              | VEC                         | □ X                            | ٠ .                   |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               |                              | YES                         |                                | J                     |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               | ENTER                        | ENTER                       |                                |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               |                              | Initial                     |                                |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               | Chemical                     | groundwater                 |                                |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               | CAS No.                      | conc.,                      |                                |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               | (numbers only,<br>no dashes) | C <sub>w</sub><br>(μg/L)    |                                |                       | Charaters.                       |                                  |                                |                             |                              |                 |                                 |                   |
|               | no dasnes)                   | (μg/ε/                      |                                |                       | Chemical                         |                                  | •                              |                             |                              |                 |                                 |                   |
|               | 67663                        | 1.50E+01                    | ٦                              | <u> </u>              | Chloroform                       |                                  | •                              |                             |                              |                 |                                 |                   |
|               |                              | . I.,                       | J                              |                       | O THO TO TO THE                  |                                  |                                | 7                           | •                            |                 |                                 |                   |
|               | ENTER                        | ENTER                       | ENTER                          | ENTER                 | ENTER                            | ENTER                            | ENTER                          | ENTER                       | ENTER                        |                 | ENTER                           | 7                 |
|               |                              | Depth                       |                                | Totals mu             | st add up to value o             |                                  |                                |                             | Soil                         |                 |                                 |                   |
| MORE          | Average                      | below grade                 |                                |                       | Thickness                        | Thickness                        | -                              |                             | stratum A                    |                 | User-defined                    |                   |
| •             | soil/                        | to bottom                   | Depth                          | Thickness             | of soil                          | of soil                          | Soil                           |                             | SCS                          |                 | stratum A                       |                   |
|               | groundwater<br>temperature,  | of enclosed<br>space floor, | below grade<br>to water table, | of soil<br>stratum A, | stratum B,<br>(Enter value or 0) | stratum C,<br>(Enter value or 0) | stratum                        | SCS                         | soil type                    |                 | soil vapor                      | 1                 |
|               | Ts                           | L <sub>F</sub>              | L <sub>wT</sub>                | h <sub>A</sub>        | . h <sub>B</sub>                 | h <sub>c</sub>                   | directly above<br>water table, | soil type<br>directly above | (used to estimate soil vapor | OR              | permeability,<br>k <sub>v</sub> |                   |
|               | (°C)                         | (cm)                        | (cm)                           | (cm)                  | (cm)                             | (cm)                             | (Enter A, B, or C)             | water table                 | permeability)                |                 | (cm²)                           |                   |
|               |                              |                             |                                |                       |                                  |                                  | 12                             | Water table                 | Doint Cability/              | •               | (0.11)                          | 1                 |
|               | 11                           | 15                          | 110                            | 110                   | 0                                | 0                                | A                              | S                           | S                            |                 |                                 | 1                 |
|               |                              |                             |                                |                       |                                  |                                  |                                |                             | ,                            |                 |                                 | -                 |
|               | ENTER                        | ENTER                       | ENTER                          | ENTER                 | ENTER                            | ENTER                            | ENTER                          | ENTER                       | ENTER                        | ENTER           | ENTER                           | ENTER             |
| MORE          | Stratum A                    | Stratum A                   | Stratum A                      | Stratum A             | Stratum B                        | Stratum B                        | Stratum B                      | Stratum B                   | Stratum C                    | Stratum C       | Stratum C                       | Stratum C         |
| <u> </u>      | SCS                          | soil dry                    |                                | soil water-filled     |                                  | soil dry                         | soil total                     | soil water-filled           |                              | soil dry        | soil total                      | soil water-filled |
|               | soil type                    | bulk density,               | porosity,                      | porosity              | soil type                        | bulk density,                    | porosity,                      | porosity,                   | soil type                    | bulk density,   | porosity.                       | porosity,         |
|               | Lookup Soil<br>Parameters    | ρ <sub>δ</sub>              | n <sup>A</sup>                 | θ"^                   | Lookup Soil<br>Parameters        | $\rho_b^B$                       | n <sup>B</sup>                 | θ <sub>w</sub> <sup>8</sup> | Lookup Soil                  | Pb <sup>C</sup> | n <sup>c</sup>                  | . θ <b>"</b> C    |
|               |                              | (g/cm <sup>3</sup> )        | (unitless)                     | (cm³/cm³)             | Parameters                       | (g/cm³)                          | (unitless)                     | (cm³/cm³)                   | Parameters                   | (g/cm³)         | (unitless)                      | (cm³/cm³)         |
|               | S                            | 1.80                        | 0.330                          | 0.054                 | S                                | 1.66                             | 0.375                          | 0.054                       | T s                          | 100             |                                 |                   |
|               | <u></u>                      | 1.00                        | 0.000                          | 0.034                 | 3                                | 1,00                             | 0.375                          | 0.054                       | 1 8                          | 1.66            | 0.375                           | 0.054             |
|               | ENTER                        | ENTER                       | ENTER                          | ENTER                 | ENTER                            | ENTER                            | ENTER                          |                             | ENTER                        |                 |                                 |                   |
| MORE          | Enclosed                     |                             | Enclosed                       | Enclosed              | _                                |                                  |                                |                             | Average vapor                |                 |                                 |                   |
|               | space<br>floor               | Soil-bldg.<br>pressure      | space<br>floor                 | space<br>floor        | Enclosed                         | Floor-wall                       | Indoor                         |                             | flow rate into bldg.         |                 |                                 |                   |
|               | thickness.                   | differential,               | length,                        | width,                | space<br>height,                 | seam crack<br>width,             | air exchange<br>rate,          | 1                           | OR<br>eave blank to calcula. | 10              |                                 |                   |
|               | L <sub>crack</sub>           | ΔΡ                          | L <sub>B</sub>                 | W <sub>B</sub>        | H <sub>B</sub>                   | w                                | ER                             | •                           | Q <sub>soil</sub>            |                 |                                 |                   |
|               | (cm)                         | (g/cm-s <sup>2</sup> )      | (cm)                           | (cm)                  | (cm)                             | (cm)                             | (1/h)                          |                             | (L/m)                        |                 |                                 |                   |
|               |                              |                             |                                |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
|               | 10                           | 40                          | 1000                           | 1000                  | 244                              | 0.1                              | 0.25                           |                             | 5                            |                 |                                 |                   |
| MORE          | ENTER                        | ENTER                       | ENTER                          | ENTER                 | ENTER                            | ENTER                            |                                |                             |                              |                 |                                 |                   |
| Ψ             | Averaging                    | Averaging                   |                                |                       | Target                           | Target hazard                    |                                |                             |                              |                 |                                 |                   |
|               | time for                     | time for                    | Exposure                       | Exposure              | risk for                         | quotient for                     |                                |                             |                              |                 |                                 |                   |
|               | carcinogens,                 | noncarcinogens,             | duration,                      | frequency,            | carcinogens,                     | noncarcinogens,                  |                                |                             |                              |                 |                                 |                   |
|               | AT <sub>C</sub>              | AT <sub>NC</sub>            | ED (ven)                       | EF<br>(dougle)        | TR                               | THQ                              | •                              |                             |                              |                 |                                 |                   |
|               | (yrs)                        | (yrs)                       | (yrs)                          | (days/yr)             | (unitless)                       | (unitless)                       |                                |                             |                              |                 |                                 |                   |
|               | 70                           | 30                          | 30                             | 350                   | 1.0E-06                          | 1                                |                                |                             |                              |                 |                                 |                   |
|               |                              |                             |                                |                       |                                  |                                  |                                |                             |                              |                 |                                 |                   |
| END           |                              |                             |                                |                       |                                  | late risk-based                  |                                |                             |                              |                 |                                 |                   |
| ENU           |                              |                             |                                | į                     | groundwater                      | concentration.                   |                                |                             |                              |                 |                                 |                   |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m <sup>3</sup> /mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|
| 1.04E-01                                                         | 1.00E-05                                                           | 3.66E-03                                                                                  | 25                                                                             | 6,988                                                                             | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                              | 4.9E-02                                            |

| Exposure duration, τ (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>1</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B soil air-filled porosity, $\theta_a^{\ B}$ (cm³/cm³)            | Stratum C<br>soil<br>air-filled<br>porosity,<br>θ <sub>a</sub> <sup>C</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum A effective total fluid saturation, S <sub>te</sub> (cm³/cm³)                                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm <sup>2</sup> ) | Thickness of capillary zone,  L <sub>cz</sub> (cm)                                | Total porosity in capillary zone, n <sub>cz</sub> (cm³/cm³)                                          | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> )               | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm <sup>3</sup> /cm <sup>3</sup> )      | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 9.46E+08                                                                       | 95                                                                                      | 0.276                                                                     | 0.321                                                                     | 0.321                                                                                                              | 0.004                                                                                                          | 9.94E-08                                                                                | 0.998                                                                                       | 9.92E-08                                                                                      | 17.05                                                                             | 0.33                                                                                                 | 0.077                                                                                                      | 0.253                                                                                             | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)           | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)                              | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H'TS (unitless)                   | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> A<br>(cm²/s)       | Stratum B effective diffusion coefficient, Deff <sub>8</sub> (cm <sup>2</sup> /s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary<br>zone<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> cz<br>(cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                        | 7,544                                                                                                              | 1.95E-03                                                                                                       | 8.38E-02                                                                                | 1.76E-04                                                                                    | 1.31E-02                                                                                      | 0.00E+00                                                                          | 0.00E+00                                                                                             | 1.96E-04                                                                                                   | 1.02E-03                                                                                          | 95                                                                 |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soi</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm²/s)                                   | Area of<br>crack,<br>A <sub>crack</sub><br>(cm²)                                                               | Exponent of equivalent foundation Peclet number, exp(Pe <sup>t</sup> ) (unitless)       | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                     | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                           | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                |                                                                                                            |                                                                                                   |                                                                    |
| 15                                                                             | 1.26E+03                                                                                | 0.10                                                                      | 8.33E+01                                                                  | 1.31E-02                                                                                                           | 4.00E+02                                                                                                       | 8.21E+68                                                                                | 5.93E-04、                                                                                   | 7.46E-01                                                                                      | 2.3E-05                                                                           | 4.9E-02                                                                                              |                                                                                                            |                                                                                                   | •                                                                  |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc., | Pure<br>component<br>water<br>solubility,<br>S | Final indoor exposure groundwater conc., | Incremental<br>risk from<br>vapor<br>intrusion to<br>indoor air,<br>carcinogen | Hazard quotient from vapor intrusion to indoor air, noncarcinogen |
|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|
| (μg/L)                                                    | μg/L)                                                        | (μg/L)                                                    | (μg/L)                                         | conc.,<br>(μg/L)                         | (unitless)                                                                     | (unitless)                                                        |
| NA                                                        | NA                                                           | NA                                                        | 7.92E+06                                       | NA                                       | 7.0E-06                                                                        | 1.5E-02                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final indoor exposure groundwater conc., (µg/L) |        | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2.13E+00                                                            | 1.03E+03                                                               | 2.13E+00                                             | 7.92E+06                                                 | 2.13E+00                                        | -<br>[ | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

|        | /-ADV      | CALCULATE RIS                | SK-BASED GROU               | NDWATER CONC         | ENTRATION (er                       | nter "X" in "YES" bo               | x)                            |                         |                                     |                                             |                       |                         |                                     |
|--------|------------|------------------------------|-----------------------------|----------------------|-------------------------------------|------------------------------------|-------------------------------|-------------------------|-------------------------------------|---------------------------------------------|-----------------------|-------------------------|-------------------------------------|
| ersion | 3.1; 02/04 |                              |                             |                      | -                                   |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              | YES                         | L                    | J                                   |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        | set to     |                              |                             | OR                   |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
| De     | faults     | CALCULATE IN                 | CREMENTAL RISK              | S FROM ACTUAL        | _ GROUNDWAT                         | ER CONCENTRAT                      | ION (enter "X" in "YE         | S" box and initial grou | ndwater conc. be                    | low)                                        |                       |                         |                                     |
|        |            |                              | VEC                         | X                    | 7                                   |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              | YES                         |                      | J .                                 |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | ENTER                        | ENTER                       |                      |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              | Initial                     |                      |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | Chemical                     | groundwater                 |                      |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | CAS No.                      | conc.,                      |                      |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | (numbers only,<br>no dashes) | C <sub>w</sub><br>(μg/L)    |                      |                                     | Chemical                           |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              |                             |                      |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | 79016                        | 7.00E+00                    | 1                    |                                     | Trichloroethyle                    | ene                           |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              |                             | -                    |                                     |                                    |                               |                         |                                     |                                             |                       |                         | _                                   |
|        |            | ENTER                        | ENTER                       | ENTER                | ENTER                               | ENTER                              | ENTER                         | ENTER                   | ENTER                               | ENTER                                       |                       | ENTER                   |                                     |
|        |            |                              | Depth                       |                      | Totals mu                           | st add up to value o               |                               |                         |                                     | Soil<br>stratum A                           |                       | User-defined            | l                                   |
|        | MORE .     | Average<br>soil/             | below grade<br>to bottom    | Depth                | Thickness                           | Thickness<br>of soil               | Thickness of soil             | Soil                    |                                     | SCS                                         |                       | stratum A               |                                     |
| *      | <u> </u>   | groundwater                  | of enclosed                 | below grade          | of soil                             | stratum B,                         | stratum C,                    | stratum                 | scs                                 | soil type                                   |                       | soil vapor              |                                     |
|        |            | temperature,                 | space floor,                | to water table,      | stratum A,                          | (Enter value or 0)                 | (Enter value or 0)            | directly above          | soil type                           | (used to estimate                           | OR                    | permeability,           |                                     |
|        |            | Ts                           | L <sub>f</sub>              | L <sub>W7</sub>      | h <sub>A</sub>                      | h <sub>B</sub>                     | h <sub>C</sub>                | water table,            | directly above                      | soil vapor                                  |                       | k <sub>v</sub>          |                                     |
|        |            | (°C)                         | (cm)                        | (cm)                 | (cm)                                | (cm)                               | (cm)                          | (Enter A, B, or C)      | water table                         | permeability)                               |                       | (cm²)                   | _                                   |
|        |            | 11                           | 15                          | 110                  | 110                                 | 0                                  | 0                             | Α                       | s                                   | Š                                           |                       |                         | 4                                   |
|        |            | <u> </u>                     | 19                          | 1 110                | 1 110                               |                                    |                               |                         |                                     |                                             |                       | <u> </u>                | _1                                  |
|        |            |                              |                             |                      |                                     |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | ENTER                        | ENTER                       | ENTER                | ENTER                               | ENTER                              | ENTER                         | ENTER                   | ENTER                               | ENTER                                       | ENTER                 | ENTER                   | ENTER                               |
|        | MORE       | Stratum A                    | Stratum A                   | Stratum A            | Stratum A                           | Stratum B<br>SCS                   | Stratum B<br>soil dry         | Stratum B<br>soil total | Stratum B<br>soil water-filled      | Stratum C<br>SCS                            | Stratum C<br>soil dry | Stratum C<br>soil total | Stratum C<br>soil water-filled      |
|        |            | SCS<br>soil type             | soil dry<br>bulk density,   | soil total porosity, | soil water-filled<br>porosity,      | soil type                          | bulk density,                 | porosity,               | porosity,                           | soil type                                   | bulk density,         | porosity,               | porosity,                           |
|        |            | Lookup Soil                  | ρ <sub>b</sub> <sup>A</sup> | n <sup>A</sup>       | θ*                                  | Lookup Soil                        | ρ <sub>b</sub> <sup>B</sup>   | n <sup>B</sup>          | θ,,,                                | Lookup Soil                                 | ρ <sub>b</sub> C      | nc                      | θ <sub>w</sub> <sup>C</sup>         |
|        |            | Parameters                   | (g/cm <sup>3</sup> )        | (unitless)           | (cm <sup>3</sup> /cm <sup>3</sup> ) | Parameters                         | (g/cm³)                       | (unitless)              | (cm <sup>3</sup> /cm <sup>3</sup> ) | Parameters                                  | (g/cm³)               | (unitless)              | (cm <sup>3</sup> /cm <sup>3</sup> ) |
|        |            |                              | (9/0/                       | (cittless)           | (0)                                 |                                    | (3.5)                         | (0)311000/              | \\                                  |                                             |                       |                         |                                     |
|        |            | S                            | 1.80                        | 0.330                | 0.054                               | S                                  | 1.66                          | 0.375                   | 0.054                               | \$                                          | 1.66                  | 0.375                   | 0.054                               |
|        |            | ENTER                        | ENTER                       | ENTER                | ENTER                               | ENTER                              | ENTER                         | ENTER                   |                                     | ENTER                                       |                       |                         |                                     |
|        | MORE       | Enclosed                     | ENIER                       | Enclosed             | Enclosed                            | ENTER                              | ENIER                         | LINIER                  |                                     | Average vapor                               |                       |                         |                                     |
|        | ₩ ¥        | space                        | Soil-bldg.                  | space                | space                               | Enclosed                           | Floor-wall                    | Indoor                  |                                     | flow rate into bldg.                        |                       |                         |                                     |
|        |            | floor                        | pressure                    | floor                | floor                               | space                              | seam crack                    | air exchange            |                                     | OR                                          |                       |                         |                                     |
|        |            | thickness,                   | differential,<br>ΔP         | length,              | width,                              | height,                            | width,                        | rate,<br>ER             | L                                   | eave blank to calcula.<br>Q <sub>soll</sub> | te                    |                         |                                     |
|        |            | Lcrack                       | _                           | · L <sub>B</sub>     | W <sub>8</sub>                      | H <sub>B</sub>                     | W (2007)                      |                         |                                     |                                             |                       |                         |                                     |
|        |            | (cm)                         | (g/cm-s <sup>2</sup> )      | (cm)                 | (cm)                                | (cm)                               | (cm)                          | (1/h)                   | =                                   | (L/m)                                       |                       |                         |                                     |
|        |            | 10                           | 40                          | 1000                 | 1000                                | 244                                | 0.1                           | 0.25                    | 7                                   | 5                                           |                       |                         |                                     |
|        |            |                              |                             |                      |                                     |                                    |                               |                         | _                                   |                                             |                       |                         |                                     |
|        | MORE .     | ENTER                        | ENTER                       | ENTER                | ENTER                               | ENTER                              | ENTER Target begand           |                         |                                     |                                             |                       |                         |                                     |
|        |            | Averaging<br>time for        | Averaging<br>time for       | Exposure             | Exposure                            | Target risk for                    | Target hazard<br>quotient for |                         |                                     |                                             |                       |                         |                                     |
|        |            | carcinogens,                 | noncarcinogens,             | duration,            | frequency,                          | carcinogens,                       | noncarcinogens,               |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              |                             | ED                   | EF                                  | TR                                 | THQ                           |                         |                                     | · .                                         |                       |                         |                                     |
|        |            | . AT <sub>C</sub>            | AT <sub>NC</sub>            |                      | <u></u> 1                           |                                    |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            | (yrs)                        | (yrs)                       | (yrs)                | (days/yr)                           | (unitless)                         | (unitless)                    |                         |                                     |                                             |                       |                         |                                     |
|        |            | (yrs)                        | (yrs)                       | (yrs)                | (days/yr)                           | (unitless)                         |                               |                         |                                     |                                             |                       |                         |                                     |
|        |            |                              |                             |                      |                                     |                                    | (unitless)                    |                         |                                     |                                             |                       |                         |                                     |
|        |            | (yrs)                        | (yrs)                       | (yrs)                | (days/yr)                           | (unitless)<br>1.0E-06              |                               |                         |                                     |                                             |                       |                         |                                     |
|        | END        | (yrs)                        | (yrs)                       | (yrs)                | (days/yr)                           | (unitless)  1.0E-06  Used to calcu | 1                             |                         |                                     |                                             |                       |                         |                                     |

# CHEMICAL PROPERTIES SHEET

| Diffusivi<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | in water,<br>D <sub>w</sub> | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|----------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-0                                                        | 2 9.10E-06                  | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

| Exposure<br>duration,                                                          | Source-<br>building<br>separation,                                                      | Stratum A<br>soil<br>air-filled<br>porosity,            | Stratum B<br>soil<br>air-filled<br>porosity,     | Stratum C<br>soil<br>air-filled<br>porosity,                                            | Stratum A<br>effective<br>total fluid<br>saturation,                                             | Stratum A<br>soil<br>intrinsic<br>permeability,                       | Stratum A<br>soil<br>relative air<br>permeability,                    | Stratum A<br>soil<br>effective vapor<br>permeability,    | Thickness of capillary zone,                             | Total porosity in capillary zone,                                                  | Air-filled<br>porosity in<br>capillary<br>zone,                 | Water-filled porosity in capillary zone,                    | Floor-<br>wall<br>seam<br>perimeter,                   |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|
| τ                                                                              | L <sub>T</sub>                                                                          | θ <sub>a</sub> ^                                        | θ <sub>8</sub> <sup>B</sup>                      | $\theta_a^c$                                                                            | S <sub>te</sub>                                                                                  | K <sub>i</sub>                                                        | k <sub>rg</sub>                                                       | κ <sub>ν</sub>                                           | L <sub>cz</sub>                                          | n <sub>cz</sub>                                                                    | θ <sub>a,c2</sub>                                               | θ <sub>w,cz</sub>                                           | X <sub>crack</sub>                                     |
| (sec)                                                                          | (cm)                                                                                    | (cm³/cm³)                                               | (cm <sup>3</sup> /cm <sup>3</sup> )              | (cm³/cm³)                                                                               | (cm³/cm³)                                                                                        | (cm²)                                                                 | (cm <sup>2</sup> )                                                    | (cm²)                                                    | (cm)                                                     | (cm <sup>3</sup> /cm <sup>3</sup> )                                                | (cm³/cm³)                                                       | (cm <sup>3</sup> /cm <sup>3</sup> )                         | (cm)                                                   |
| 9.46E+08                                                                       | 95                                                                                      | 0.276                                                   | 0.321                                            | 0.321                                                                                   | 0.004                                                                                            | 9.94E-08                                                              | 0.998                                                                 | 9.92E-08                                                 | 17.05                                                    | 0.33                                                                               | 0.077                                                           | 0.253                                                       | 4,000                                                  |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>bullding</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>8</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless) | Crack depth below grade, Z <sub>crack</sub> (cm) | Enthalpy of vaporization at ave. groundwater temperature,  ΔH <sub>v,Ts</sub> (cal/mol) | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> {atm-m <sup>3</sup> /mol} | Henry's law constant at ave. groundwater temperature, H'TS (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s) | Stratum  A effective diffusion coefficient, Deff (cm²/s) | Stratum B effective diffusion coefficient, Deffs (cm²/s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, Deff_cz (cm²/s) | Total overall effective diffusion coefficient, Deff (cm²/s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm) |
|                                                                                |                                                                                         |                                                         |                                                  |                                                                                         |                                                                                                  |                                                                       |                                                                       |                                                          |                                                          | 1 0005.00                                                                          | 1 4 455 04                                                      | 7.555.04                                                    | 7                                                      |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                | 15                                               | 8,544                                                                                   | 5.05E-03                                                                                         | 2.17E-01                                                              | 1.76E-04                                                              | 9.97E-03                                                 | 0.00E+00                                                 | 0.00E+00                                                                           | 1.45E-04                                                        | 7.55E-04                                                    | 95                                                     |
| Convection path                                                                | Source<br>vapor                                                                         | Crack                                                   | Average<br>vapor<br>flow rate                    | Crack<br>effective<br>diffusion                                                         | Area of                                                                                          | Exponent of equivalent foundation Peclet                              | Infinite<br>source<br>indoor<br>attenuation                           | Infinite<br>source<br>bldg.                              | Unit<br>risk                                             | Reference                                                                          | •                                                               |                                                             |                                                        |
| length,                                                                        | conc.,                                                                                  | radius,                                                 | into bldg.,                                      | coefficient,                                                                            | crack,                                                                                           | number,                                                               | coefficient,                                                          | conc.,                                                   | factor,                                                  | conc.,                                                                             |                                                                 |                                                             |                                                        |
| L <sub>p</sub>                                                                 | C <sub>source</sub>                                                                     | r <sub>crack</sub>                                      | Q <sub>soil</sub>                                | D <sup>crack</sup>                                                                      | A <sub>crack</sub>                                                                               | exp(Pe <sup>f</sup> )                                                 | α                                                                     | C <sub>building</sub>                                    | URF                                                      | RfC                                                                                |                                                                 |                                                             |                                                        |
| (cm)                                                                           | (μg/m³)                                                                                 | (cm)                                                    | (cm <sup>3</sup> /s)                             | (cm²/s)                                                                                 | (cm²)                                                                                            | (unitless)                                                            | (unitless)                                                            | (μg/m³)                                                  | (μg/m³) <sup>-1</sup>                                    | (mg/m³)                                                                            |                                                                 |                                                             | *                                                      |
| 15                                                                             | 1.52E+03                                                                                | 0.10                                                    | 8.33E+01                                         | 9.97E-03                                                                                | 4.00E+02                                                                                         | 5.28E+90                                                              | 4.52E-04                                                              | 6.85E-01                                                 | 1.1E-04                                                  | 3.5E-02                                                                            | ] .                                                             |                                                             |                                                        |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                      | NA                                                   | 1.47E+06                                                 | NA                                                             | · | 3.1E-05                                                                    | 1.9E-02                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

**PRG SHEET** 

# RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

# **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure component water solubility, S (µg/L) | Final indoor exposure groundwater conc., (µg/L) |        | risk from vapor intrusion to indoor air, carcinogen (unitless) | quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------|--------|----------------------------------------------------------------|-----------------------------------------------------------------------|
| 2.26E-01                                             | 3.73E+02                                                               | 2.26E-01                                             | 1.47E+06                                  | 2.26E-01                                        | :<br>] | NA NA                                                          | NA NA                                                                 |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

|    | V-ADV                   | CALCULATE RIS                                        | SK-BASED GROU                                             | INDWATER CONC                                      | ENTRATION (e                                                           | nter "X" in "YES" bo                                 | ox)                                                                                     |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|----|-------------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
|    | 9 3.1; 02/04<br>eset to |                                                      | YES                                                       | OR                                                 | ]                                                                      |                                                      |                                                                                         |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
| De | efaults                 | CALCULATE INC                                        | CREMENTAL RISI                                            |                                                    | GROUNDWAT                                                              | TER CONCENTRAT                                       | TON (enter "X" in "YE                                                                   | S" box and initial grou                                        | indwater conc. be                                                  | iow)                                                 |                                                           |                                                                |                                                                    |
|    |                         |                                                      | YES                                                       | Х                                                  | ]                                                                      |                                                      |                                                                                         |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | ENTER                                                | ENTER                                                     |                                                    | :                                                                      |                                                      |                                                                                         |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | Chemical                                             | Initial groundwater                                       |                                                    |                                                                        |                                                      |                                                                                         |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | CAS No.<br>(numbers only,                            | conc.,<br>C <sub>w</sub>                                  |                                                    |                                                                        |                                                      |                                                                                         |                                                                |                                                                    |                                                      | *                                                         |                                                                |                                                                    |
|    |                         | no dashes)                                           | (μg/L)                                                    | _                                                  |                                                                        | Chemical                                             |                                                                                         | -                                                              |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | 79016                                                | 7.00E+00                                                  | ]                                                  |                                                                        | Trichloroethyle                                      | ene                                                                                     | ]                                                              |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | ENTER                                                | ENTER<br>Depth                                            | ENTER                                              | ENTER<br>Totals mu                                                     | ENTER                                                | ENTER                                                                                   | ENTER                                                          | ENTER                                                              | ENTER<br>Soil                                        |                                                           | ENTER                                                          | 1.                                                                 |
|    | MORE<br>↓               | Average<br>soil/<br>groundwater                      | below grade<br>to bottom<br>of enclosed                   | Depth<br>below grade                               | Thickness<br>of soil                                                   | Thickness<br>of soil<br>stratum B,                   | Thickness<br>of soil<br>stratum C,                                                      | Soil<br>stratum                                                | scs                                                                | stratum A<br>SCS<br>soil type                        |                                                           | User-defined stratum A                                         |                                                                    |
|    |                         | temperature,<br>T <sub>S</sub>                       | space floor,<br>L <sub>f</sub>                            | to water table,<br>L <sub>wt</sub>                 | stratum A,<br>h <sub>A</sub>                                           | (Enter value or 0)                                   | (Enter value or 0)<br>h <sub>C</sub>                                                    | directly above water table,                                    | soil type<br>directly above                                        | (used to estimate soil vapor                         | OR                                                        | soil vapor permeability, k,                                    |                                                                    |
|    |                         | (°C)                                                 | (cm)                                                      | (cm)                                               | (cm)                                                                   | (cm)                                                 | (cm)                                                                                    | (Enter A, B, or C)                                             | water table                                                        | permeability)                                        |                                                           | (cm²)                                                          |                                                                    |
|    |                         | 11                                                   | 15                                                        | 110                                                | 110                                                                    | 0                                                    | 0                                                                                       | A                                                              | S                                                                  | S                                                    |                                                           |                                                                | ]                                                                  |
|    | MORE 🔶                  | ENTER Stratum A SCS soil type Lookup Soil Parameters | ENTER Stratum A soil dry bulk density, $\rho_b^A$ (g/cm³) | ENTER Stratum A soil total porosity, n^ (unitless) | ENTER Stratum A soil water-filled porosity, $\theta_w^A$ $(cm^3/cm^3)$ | ENTER Stratum B SCS soil type Lookup Soil Parameters | ENTER Stratum B soil dry bulk density, ρ <sub>b</sub> <sup>B</sup> (g/cm <sup>3</sup> ) | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless) | ENTER Stratum B soil water-filled porosity, $\theta_w^B$ (cm³/cm³) | ENTER Stratum C SCS soil type Lookup Soil Parameters | ENTER Stratum C soil dry bulk density, $\rho_b^C$ (g/cm³) | ENTER Stratum C soil total porosity, n <sup>C</sup> (unitless) | ENTER Stratum C soil water-filled porosity, $\theta_w^C$ (cm³/cm³) |
|    |                         | S                                                    | 1.80                                                      | 0.330                                              | 0.054                                                                  | S                                                    | 1.66                                                                                    | 0.375                                                          | 0.054                                                              | s                                                    | 1.66                                                      | 0.375                                                          | 0.054                                                              |
|    | MORE                    | ENTER<br>Enclosed                                    | ENTER                                                     | ENTER<br>Enclosed                                  | ENTER<br>Enclosed                                                      | ENTER                                                | ENTER                                                                                   | ENTER                                                          |                                                                    | ENTER<br>Average vapor                               |                                                           | 0.0.0                                                          | 0.004                                                              |
|    |                         | space<br>floor                                       | Soil-bldg.<br>pressure                                    | space<br>floor                                     | space<br>floor                                                         | Enclosed space                                       | Floor-wall<br>seam crack                                                                | Indoor<br>air exchange                                         |                                                                    | flow rate into bidg.<br>OR                           |                                                           |                                                                |                                                                    |
|    |                         | thickness,<br>L <sub>crack</sub>                     | differential,<br>ΔP                                       | length,<br>L <sub>B</sub>                          | width,<br>W <sub>B</sub>                                               | height,<br>H <sub>B</sub>                            | width,<br>w                                                                             | rate,<br>ER                                                    | L                                                                  | eave blank to calcula<br>Q <sub>soil</sub>           | te                                                        |                                                                |                                                                    |
|    |                         | (cm)                                                 | (g/cm-s <sup>2</sup> )                                    | (cm)                                               | (cm)                                                                   | (cm)                                                 | (cm)                                                                                    | (1/h)                                                          | <u>.</u>                                                           | (L/m)                                                |                                                           |                                                                |                                                                    |
|    |                         | 10                                                   | 40                                                        | 1000                                               | 1000                                                                   | 244                                                  | 0.1                                                                                     | 0.25                                                           | ]                                                                  | 5                                                    |                                                           |                                                                |                                                                    |
|    | MORE .                  | ENTER<br>Averaging                                   | ENTER<br>Averaging                                        | ENTER                                              | ENTER                                                                  | ENTER<br>Target                                      | ENTER<br>Target hazard                                                                  |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | time for<br>carcinogens,                             | time for noncarcinogens,                                  | Exposure duration                                  | Exposure<br>frequency,                                                 | risk for<br>carcinogens,                             | quotient for<br>noncarcinogens,                                                         |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | AT <sub>C</sub> (yrs)                                | AT <sub>NC</sub><br>(yrs)                                 | ED<br>(yrs)                                        | EF<br>(days/yr)                                                        | TR<br>(unitless)                                     | THQ<br>(unitless)                                                                       |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         | 70                                                   | 30                                                        | 30                                                 | 350                                                                    | 1.0E-06                                              | 1                                                                                       | · .<br>                                                        |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    | END                     |                                                      |                                                           |                                                    |                                                                        | Used to calcu                                        | late risk-based                                                                         |                                                                |                                                                    |                                                      |                                                           |                                                                |                                                                    |
|    |                         |                                                      |                                                           |                                                    |                                                                        | giodilowaldi.                                        | Jon Jon Haudin.                                                                         | · ·                                                            |                                                                    |                                                      |                                                           |                                                                |                                                                    |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m <sup>3</sup> /mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                                  | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

| Sec   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm   (cm                       |     | Exposure duration,                | Source-<br>building<br>separation,     | Stratum A<br>soil<br>air-filled<br>porosity, | Stratum B<br>soil<br>air-filled<br>porosity,           | Stratum C<br>soil<br>air-filled<br>porosity,                 | Stratum A<br>effective<br>total fluid<br>saturation, | Stratum A<br>soil<br>intrinsic<br>permeability,                        | Stratum A<br>soil<br>relative air<br>permeability,   | Stratum A<br>soil<br>effective vapor<br>permeability, | Thickness of capillary zone,  | Total porosity in capillary zone,   | Air-filled porosity in capillary zone, | Water-filled porosity in capillary zone, | Floor-<br>wall<br>seam<br>perimeter, |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------|-------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|
| 9.46E+08   95   0.276   0.321   0.321   0.004   9.94E-08   0.998   9.92E-08   17.05   0.33   0.077   0.253   4.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | τ                                 | LŢ                                     | $\theta_a^{\Lambda}$                         | $\theta_a^{B}$                                         | $\theta_{\mathbf{a}}^{\mathbf{C}}$                           | S <sub>te</sub>                                      | k,                                                                     | k <sub>rg</sub>                                      | k,                                                    | L <sub>cz</sub>               |                                     | $\theta_{a,cz}$                        | $\theta_{w,cz}$                          | X <sub>crack</sub>                   |
| Area of enclosed Crack Crack Enthalpy of enclosed below area below area below area personation at constant at constant at emperature, constant at emperature, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, co                     | -   | (sec)                             | (cm)                                   | (cm³/cm³)                                    | (cm³/cm³)                                              | (cm³/cm³)                                                    | (cm³/cm³)                                            | (cm²)                                                                  | (cm²)                                                | (cm²)                                                 | (cm)                          | (cm <sup>3</sup> /cm <sup>3</sup> ) | (cm <sup>3</sup> /cm <sup>3</sup> )    | (cm³/cm³)                                | (cm)                                 |
| Area of enclosed Crack Crack Enthalpy of enclosed below area below area below area personation at constant at constant at emperature, constant at emperature, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, coefficient, co                     | Γ-  | 9.46E±08                          | 05                                     | 0.276                                        | 0.331                                                  | 0.221                                                        | 0.004                                                | 0.045.00                                                               | 0.000                                                | L 0.00F.00                                            | 47.05                         | 0.00                                |                                        |                                          | 1                                    |
| Bidg. space to-total depth vaporization at set, grade, ratio, grade, (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s)                      | _   | 3.40E100                          | . 33                                   | . 0.270                                      | 0.321                                                  | 0.321                                                        | 0.004                                                | 9.946-08                                                               | 0.998                                                | 9.92E-08                                              | 17.05                         | 0.33                                | 0.077                                  | 0.253                                    | 4,000                                |
| (cm³/s)         (cm²)         (unitless)         (cm)         (cal/mol)         (atm-m³/mol)         (unitless)         (g/cm-s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | ventilation                       | enclosed<br>space<br>below             | to-total<br>area                             | depth<br>below                                         | vaporization at ave. groundwater                             | constant at ave. groundwater                         | constant at ave. groundwater                                           | viscosity at ave. soil                               | A<br>effective<br>diffusion                           | B<br>effective<br>diffusion   | C<br>effective<br>diffusion         | zone<br>effective<br>diffusion         | overall<br>effective<br>diffusion        | path                                 |
| Cm <sup>3</sup> /s   (cm <sup>2</sup> )   (unitless)   (cm)   (cal/mol)   (atm-m³/mol)   (unitless)   (g/cm-s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (c |     | Quilding                          | AB                                     | η                                            | $Z_{crack}$                                            | $\Delta H_{v,TS}$                                            | H <sub>TS</sub>                                      | H' <sub>TS</sub>                                                       | $\mu_{TS}$                                           | D <sup>eff</sup> <sub>A</sub>                         | D <sup>eff</sup> <sub>B</sub> | D <sup>eff</sup> c                  | Deff                                   | D <sup>eff</sup> ⊤                       | -                                    |
| Average Crack equivalent source Infinite  Convection Source vapor effective foundation indoor source Unit  path vapor Crack flow rate diffusion Area of Peclet attenuation bidg, risk Reference  length, conc., radius, into bidg., coefficient, crack, number, coefficient, conc., factor, conc.,  L <sub>p</sub> C <sub>source</sub> r <sub>crack</sub> Q <sub>soil</sub> D <sup>crack</sup> A <sub>crack</sub> exp(Pe <sup>f</sup> ) α C <sub>building</sub> URF RfC  (cm) (μg/m³) (cm) (cm³/s) (cm²/s) (cm²) (unitless) (unitless) (μg/m³) (μg/m³) (μg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   | (cm³/s)                           | (cm²)                                  | (unitless)                                   | (cm)                                                   | (cal/mol)                                                    | (atm-m³/mol)                                         | (unitless)                                                             | (g/cm-s)                                             | (cm²/s)                                               | (cm²/s)                       | (cm²/s)                             |                                        | (cm <sup>2</sup> /s)                     |                                      |
| Average Crack equivalent source Infinite  Convection Source vapor effective foundation indoor source Unit  path vapor Crack flow rate diffusion Area of Peclet attenuation bidg, risk Reference  length, conc., radius, into bidg., coefficient, crack, number, coefficient, conc., factor, conc.,  L <sub>p</sub> C <sub>source</sub> r <sub>crack</sub> Q <sub>soil</sub> D <sup>crack</sup> A <sub>crack</sub> exp(Pe <sup>f</sup> ) α C <sub>building</sub> URF RfC  (cm) (μg/m³) (cm) (cm³/s) (cm²/s) (cm²) (unitless) (unitless) (μg/m³) (μg/m³) (μg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   |                                   |                                        |                                              |                                                        |                                                              | <b>,</b>                                             |                                                                        | ,                                                    |                                                       |                               |                                     |                                        |                                          |                                      |
| Average Crack equivalent source Infinite  Convection Source vapor effective foundation indoor source Unit  path vapor Crack flow rate diffusion Area of Peclet attenuation bldg. risk Reference length, conc., radius, into bldg., coefficient, crack, number, coefficient, conc.,  L <sub>p</sub> C <sub>source</sub> r <sub>crack</sub> Q <sub>soil</sub> D <sup>crack</sup> A <sub>crack</sub> exp(Pe¹) α C <sub>building</sub> URF RfC  (cm) (μg/m³) (cm) (cm³/s) (cm²/s) (cm²) (unitless) (unitless) (μg/m³) (μg/m³)¹¹ (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ļ   | 1.69E+04                          | 1.06E+06                               | 3.77E-04                                     | 15                                                     | 8,544                                                        | 5.05E-03                                             | 2.17E-01                                                               | 1.76E-04                                             | 9.97E-03                                              | 0.00E+00                      | 0.00E+00                            | 1.45E-04                               | 7.55E-04                                 | 95                                   |
| 15 1.52E+03 0.10 8.33E+01 9.97E-03 4.00E+02 5.28E+90 4.52E-04 6.85E-01 2.0E-06 6.0E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200 | path<br>length,<br>L <sub>p</sub> | vapor<br>conc.,<br>C <sub>source</sub> | radius,<br>r <sub>crack</sub>                | vapor<br>flow rate<br>into bldg.,<br>Q <sub>soil</sub> | effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup> | crack,<br>A <sub>crack</sub>                         | equivalent<br>foundation<br>Peclet<br>number,<br>exp(Pe <sup>f</sup> ) | source<br>indoor<br>attenuation<br>coefficient,<br>α | source<br>bldg.<br>conc.,<br>C <sub>building</sub>    | risk<br>factor,<br>URF        | conc.,<br>RfC                       |                                        |                                          |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · [ | 15                                | 1.52E+03                               | 0.10                                         | 8.33E+01                                               | 9.97E-03                                                     | 4.00E+02                                             | 5.28E+90                                                               | 4.52E-04                                             | 6.85E-01                                              | 2.0E-06                       | 6.0E-01                             |                                        |                                          |                                      |

RESULTS SHEET

# **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater | Indoor<br>exposure<br>groundwater | Risk-based<br>indoor<br>exposure | Pure<br>component<br>water | Final<br>indoor<br>exposure     | Incremental<br>risk from<br>vapor<br>intrusion to | Hazard<br>quotient<br>from vapor<br>intrusion to |
|-----------------------------------|-----------------------------------|----------------------------------|----------------------------|---------------------------------|---------------------------------------------------|--------------------------------------------------|
| conc.,<br>carcinogen<br>(μg/L)    | conc.,<br>noncarcinogen<br>(μg/L) | groundwater<br>conc.,<br>(μg/L)  | solubility,<br>S<br>(μg/L) | groundwater<br>conc.,<br>(μg/L) | indoor air,<br>carcinogen<br>(unitless)           | indoor air,<br>noncarcinogen<br>(unitless)       |
| NA                                | NA                                | NA                               | 1.47E+06                   | NA                              | 5.6E-07                                           | 1.1E-03                                          |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.24E+01                                                            | 6.40E+03                                                | (μg/L)<br>1.24E+01                                   | (μg/L)                                                   | 1.24E+01                                                       | NA                                                                         | (unitiess)                                                                   |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

| GW-ADV<br>Version 3.1; 02/04 | CALCULATE RIS                   | K-BASED GROUI                         | NDWATER CONC                            | ENTRATION (e                                                       | nter "X" in "YES" bo             | ×)                                     |                           |                             | •                                     |                           |                           |                             |
|------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------------|---------------------------|-----------------------------|---------------------------------------|---------------------------|---------------------------|-----------------------------|
| Reset to                     |                                 | YES                                   | OR                                      | ] .                                                                |                                  |                                        |                           |                             |                                       |                           |                           |                             |
| Defaults                     | CALCULATE INC                   | REMENTAL RISK                         |                                         | . GROUNDWAT                                                        | ER CONCENTRAT                    | ON (enter "X" in "YE                   | S" box and initial grou   | ındwater conc. bel          | low)                                  |                           |                           |                             |
|                              |                                 | YES                                   | X                                       | ]                                                                  |                                  |                                        |                           |                             |                                       |                           |                           |                             |
|                              | ENTER                           | ENTER<br>Initial                      |                                         |                                                                    |                                  |                                        |                           |                             |                                       |                           |                           |                             |
| . * *                        | Chemical CAS No.                | groundwater                           |                                         |                                                                    |                                  |                                        |                           |                             |                                       |                           |                           |                             |
|                              | (numbers only,                  | conc.,<br>C <sub>w</sub>              |                                         |                                                                    | Chaminal                         | ٠.                                     |                           |                             |                                       |                           |                           |                             |
|                              | no dashes) 75014                | (μg/L)<br>1.00E+01                    | -<br>1                                  |                                                                    | Chemical                         |                                        | ,.<br>!                   |                             |                                       |                           |                           |                             |
|                              |                                 | · · · · · · · · · · · · · · · · · · · |                                         |                                                                    | yl chloride (chlor               |                                        |                           |                             | · · · · · · · · · · · · · · · · · · · |                           |                           | _                           |
|                              | ENTER                           | ENTER<br>Depth                        | ENTER                                   | ENTER<br>Totals mu                                                 | ENTER<br>ist add up to value o   | ENTER<br>of L <sub>wT</sub> (cell G28) | ENTER                     | ENTER                       | ENTER<br>Soil                         |                           | ENTER                     |                             |
| MORE                         | Average soil/                   | below grade<br>to bottom              | Depth                                   | Thickness                                                          | Thickness<br>of soil             | Thickness<br>of soil                   | Soil                      |                             | stratum A<br>SCS                      |                           | User-defined<br>stratum A |                             |
|                              | groundwater<br>temperature,     | of enclosed<br>space floor,           | below grade<br>to water table,          | of soil<br>stratum A,                                              | stratum B,<br>(Enter value or 0) | stratum C,<br>(Enter value or 0)       | stratum<br>directly above | SCS<br>soil type            | soil type                             | OR                        | soil vapor                |                             |
|                              | Ts                              | L <sub>F</sub>                        | L <sub>WT</sub>                         | h <sub>A</sub>                                                     | h <sub>B</sub>                   | h <sub>C</sub>                         | water table,              | directly above              | (used to estimate soil vapor          | UK .                      | permeability,<br>k,       |                             |
|                              | (°C)                            | (cm)                                  | (cm)                                    | (cm)                                                               | (cm)                             | (cm)                                   | (Enter A, B, or C)        | water table                 | permeability)                         |                           | (cm <sup>2</sup> )        |                             |
|                              | 11                              | 15                                    | 110                                     | 110                                                                | 0                                | 0                                      | Α                         | S                           | s                                     | · ·                       |                           | j ,                         |
|                              | ENTER                           | ENTER                                 | ENTER                                   | ENTER                                                              | ENTER                            | ENTER                                  | ENTER                     | ENTER                       | ENTER                                 | ENTER                     | ENTER                     | ENTER                       |
| MORE ¥                       | Stratum A<br>SCS                | Stratum A soil dry                    | Stratum A                               | Stratum A soil water-filled                                        | Stratum B                        | Stratum B                              | Stratum B                 | Stratum B                   | Stratum C<br>SCS                      | Stratum C                 | Stratum C                 | Stratum C                   |
|                              | soil type                       | bulk density,                         | soil total porosity,                    | porosity,                                                          | soil type                        | soil dry<br>bulk density,              | soil total porosity,      | soil water-filled porosity. | soil type                             | soil dry<br>bulk density, | soil total porosity,      | soil water-filled porosity, |
|                              | Lookup Soil<br>Parameters       | ρ <sub>b</sub> <sup>A</sup>           | п <sup>А</sup>                          | θ <sub>w</sub> <sup>A</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Lookup Soil<br>Parameters        | ρ <sub>b</sub> <sup>B</sup>            | n <sup>B</sup>            | θ <sub>w</sub> <sup>B</sup> | Lookup Soil<br>Parameters             | ρ <sub>6</sub> C          | n <sup>C</sup>            | θ <sub>w</sub> C            |
|                              |                                 | (g/cm³)                               | (unitless)                              |                                                                    |                                  | (g/cm³)                                | (unitless)                | (cm³/cm³)                   |                                       | (g/cm³)                   | (unitless)                | (cm³/cm³)                   |
|                              | S                               | 1.80                                  | 0.330                                   | 0.054                                                              | <u> </u>                         | 1.66                                   | 0.375                     | 0.054                       | S                                     | 1.66                      | 0.375                     | 0.054                       |
| MORE                         | ENTER<br>Enclosed               | ENTER                                 | ENTER<br>Enclosed                       | ENTER<br>Enclosed                                                  | ENTER                            | ENTER                                  | ENTER                     |                             | ENTER<br>Average vapor                |                           |                           |                             |
| <u> </u>                     | space<br>floor                  | Soil-bldg.<br>pressure                | space<br>floor                          | space<br>floor                                                     | Enclosed<br>space                | Floor-wall<br>seam crack               | Indoor<br>air exchange    |                             | flow rate into bldg.<br>OR            |                           |                           |                             |
|                              | thickness,                      | differential,                         | length,                                 | width,                                                             | height,                          | width,                                 | rate,                     | Le                          | eave blank to calcula                 | te                        |                           |                             |
|                              | L <sub>crack</sub><br>(cm)      | ΔP<br>(g/cm-s <sup>2</sup> )          | L <sub>e</sub> .<br>(cm)                | (cm)                                                               | H <sub>B</sub><br>(cm)           | w<br>(cm)                              | ER<br>(1/h)               |                             | Q <sub>soil</sub><br>(L/m)            |                           |                           |                             |
|                              |                                 |                                       | *************************************** |                                                                    |                                  |                                        |                           | <b>-</b>                    |                                       |                           |                           |                             |
|                              | 10                              | 40                                    | 1000                                    | 1000                                                               | 244                              | 0.1                                    | 0.25                      | _                           | 5                                     |                           |                           |                             |
| MORE +                       | ENTER<br>Averaging              | ENTER<br>Averaging                    | ENTER                                   | ENTER                                                              | ENTER<br>Target                  | ENTER<br>Target hazard                 |                           |                             |                                       |                           |                           |                             |
|                              | time for                        | time for                              | Exposure                                | Exposure                                                           | risk for                         | quotient for                           |                           |                             |                                       |                           |                           |                             |
|                              | carcinogens,<br>AT <sub>C</sub> | noncarcinogens,<br>AT <sub>NC</sub>   | duration,<br>ED                         | frequency,<br>EF                                                   | carcinogens,<br>TR.              | noncarcinogens,<br>THQ                 |                           |                             |                                       |                           |                           |                             |
|                              | (yrs)                           | (yrs)                                 | (yrs)                                   | (days/yr)                                                          | (unitless)                       | (unitless)                             |                           |                             |                                       |                           |                           |                             |
|                              | 70                              | 30                                    | 30                                      | 350                                                                | 1.0E-06                          | 1 1                                    |                           |                             |                                       |                           |                           |                             |
| END                          |                                 |                                       |                                         |                                                                    | Used to calcul                   |                                        |                           |                             |                                       |                           |                           |                             |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> )-1 | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| 4.005.04                                                         | 1 4 005 05                                                         | 0.00= 00                                                                     |                                                                                |                                                                                  |                                                       |                                                    |                                                                                           |                                                          |                                                          |                                                    |
| 1.06E-01                                                         | 1.23E-05                                                           | 2.69E-02                                                                     | 25                                                                             | 5,250                                                                            | 259.25                                                | 432.00                                             | 1.86E+01                                                                                  | 8.80E+03                                                 | 4.4E-06                                                  | 1.0E-01                                            |

| Exposure duration,                                      | Source-<br>building<br>separation,                          | Stratum A<br>soil<br>air-filled<br>porosity,   | Stratum B<br>soil<br>air-filled<br>porosity,                               | Stratum C<br>soil<br>air-filled<br>porosity,                      | Stratum A<br>effective<br>total fluid<br>saturation,           | Stratum A<br>soil<br>Intrinsic<br>permeability,                      | Stratum A<br>soil<br>relative air<br>permeability,           | Stratum A<br>soil<br>effective vapor<br>permeability,                     | Thickness of capillary zone,                           | Total porosity in capillary zone,                      | Air-filled porosity in capillary zone,                      | Water-filled porosity in capillary zone,                                                    | Floor-<br>wall<br>seam<br>perimeter, |
|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|
| τ                                                       | L <sub>T</sub>                                              | $\theta_a^{\Lambda}$                           | $\theta_a^B$                                                               | $\theta_a^C$                                                      | Ste                                                            | k <sub>i</sub>                                                       | k <sub>rg</sub>                                              | k <sub>v</sub>                                                            | L <sub>cz</sub>                                        | n <sub>cz</sub>                                        | $\theta_{a,cz}$                                             | $\theta_{w,cz}$                                                                             | $X_{crack}$                          |
| (sec)                                                   | (cm)                                                        | (cm³/cm³)                                      | (cm <sup>3</sup> /cm <sup>3</sup> )                                        | (cm³/cm³)                                                         | (cm <sup>3</sup> /cm <sup>3</sup> )                            | (cm²)                                                                | (cm²)                                                        | (cm²)                                                                     | (cm)                                                   | (cm <sup>3</sup> /cm <sup>3</sup> )                    | (cm <sup>3</sup> /cm <sup>3</sup> )                         | (cm <sup>3</sup> /cm <sup>3</sup> )                                                         | (cm)                                 |
| 9.46E+08                                                | 95                                                          | 0.276                                          | 0.321                                                                      | 0.321                                                             | 0.004                                                          | 9.94E-08                                                             | 0.998                                                        | 9.92E-08                                                                  | 17.05                                                  | 0.33                                                   | 0.077                                                       | 0.253                                                                                       | 4,000                                |
| Bidg.<br>ventilation<br>rate,                           | Area of<br>enclosed<br>space<br>below<br>grade              | Crack-<br>to-total<br>area<br>ratio,           | Crack<br>depth<br>below<br>grade,                                          | Enthalpy of vaporization at ave. groundwater temperature,         | Henry's law<br>constant at<br>ave. groundwater<br>temperature, | Henry's law constant at ave. groundwater temperature,                | Vapor<br>viscosity at<br>ave. soil<br>temperature,           | Stratum A effective diffusion coefficient,                                | Stratum<br>B<br>effective<br>diffusion<br>coefficient, | Stratum<br>C<br>effective<br>diffusion<br>coefficient, | Capillary<br>zone<br>effective<br>diffusion<br>coefficient, | Total<br>overall<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>T</sub> | Diffusion<br>path<br>length,         |
| Q <sub>building</sub><br>(cm³/s)                        | A <sub>B</sub><br>(cm²)                                     | η (                                            | Z <sub>crack</sub>                                                         | ΔH <sub>v,TS</sub>                                                | H <sub>TS</sub><br>(atm-m³/mol)                                | H' <sub>TS</sub>                                                     | μτς                                                          | D <sup>eff</sup> <sub>A</sub><br>(cm <sup>2</sup> /s)                     | D <sup>eff</sup> B<br>(cm²/s).                         | D <sup>eff</sup> c<br>(cm²/s)                          | D <sup>eff</sup> cz<br>(cm²/s)                              | (cm²/s)                                                                                     | L <sub>d</sub>                       |
| (Cm /s)                                                 | (Citi )                                                     | (unitless)                                     | (cm)                                                                       | (cal/mol)                                                         | (atm-m/mor)                                                    | (unitless)                                                           | (g/cm-s)                                                     | (CIII 78)                                                                 | (Citi 75).                                             | (0111 75)                                              | (CIII /S)                                                   | (CIII /5)                                                                                   | (cm)                                 |
| 1.69E+04                                                | 1.06E+06                                                    | 3.77E-04                                       | 15                                                                         | 4,989                                                             | 1.78E-02                                                       | 7.63E-01                                                             | 1.76E-04                                                     | 1.34E-02                                                                  | 0.00E+00                                               | 0.00E+00                                               | 1.90E-04                                                    | 9.95E-04                                                                                    | 95                                   |
| Convection<br>path<br>length,<br>L <sub>p</sub><br>(cm) | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(μg/m³) | Crack<br>radius,<br>r <sub>crack</sub><br>(cm) | Average vapor flow rate into bldg., Q <sub>soli</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm²/s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm²)               | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³),1            | Reference<br>conc.,<br>RfC<br>(mg/m³)                  | •                                                           |                                                                                             |                                      |
| 15                                                      | 7.63E+03                                                    | 0.10                                           | 8.33E+01                                                                   | 1.34E-02                                                          | 4.00E+02                                                       | 4.11E+67                                                             | 5.78E-04                                                     | 4.41E+00                                                                  | 4.4E-06                                                | 1.0E-01                                                | 7                                                           |                                                                                             |                                      |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA                                                                     | NA                                                                  | 8.80E+06                                                 | NA                                                             | 8.0E-06                                                                    | 4.2E-02                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### **INCREMENTAL RISK CALCULATIONS:**

| (mg/E) (mg/E) (mg/E) (mg/E) (dialess) (dialess) | Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

#### DATA ENTRY SHEET

| GW-ADV<br>sion 3.1; 02/04 | CALCULATE RIS                    | K-BASED GROU             | NDWATER CONC              | ENTRATION (e                             | nter "X" in "YES" bo           | x)                                     |                                |                                          |                              |                                        |                                |                                          |
|---------------------------|----------------------------------|--------------------------|---------------------------|------------------------------------------|--------------------------------|----------------------------------------|--------------------------------|------------------------------------------|------------------------------|----------------------------------------|--------------------------------|------------------------------------------|
| Reset to<br>Defaults      |                                  | YES                      | OR                        | ]                                        |                                |                                        |                                |                                          |                              |                                        |                                |                                          |
| Delauits                  | CALCULATE INC                    | REMENTAL RISK<br>YES     | S FROM ACTUAL             | . GROUNDWAT<br><b>1</b>                  | ER CONCENTRAT                  | iON (enter "X" in "YE                  | S" box and initial grou        | ndwater conc. be                         | elow)                        |                                        | •                              |                                          |
|                           | ENTER                            | ENTER                    | <u> </u>                  | J .                                      |                                |                                        |                                |                                          |                              |                                        |                                |                                          |
|                           | Chemical                         | Initial<br>groundwater   |                           |                                          |                                |                                        |                                |                                          |                              |                                        |                                |                                          |
|                           | CAS No. (numbers only,           | conc.,<br>C <sub>W</sub> |                           | •                                        |                                |                                        |                                |                                          |                              |                                        |                                |                                          |
|                           | no dashes)                       | (μg/L)                   | • .<br>7                  |                                          | Chemical                       |                                        | 1                              |                                          |                              |                                        |                                |                                          |
|                           | 67663                            | 1.50E+01                 | J                         | L                                        | Chloroform                     | <u> </u>                               | J *                            |                                          |                              |                                        |                                |                                          |
|                           | ENTER                            | ENTER Depth              | ENTER                     | ENTER<br>Totals mu                       | ENTER<br>ust add up to value o | ENTER<br>of L <sub>wt</sub> (cell G28) | ENTER                          | ENTER                                    | ENTER<br>Soil                |                                        | ENTER                          |                                          |
| MORE .                    | Average soil/                    | below grade<br>to bottom | Donth                     | Thickness                                | Thickness<br>of soil           | Thickness<br>of soil                   | Soil                           |                                          | stratum A<br>SCS             |                                        | User-defined<br>stratum A      |                                          |
|                           | groundwater                      | of enclosed              | Depth<br>below grade      | of soil                                  | stratum B,                     | stratum C,                             | stratum                        | scs                                      | soil type                    |                                        | soil vapor                     |                                          |
|                           | temperature,                     | space floor,             | to water table,           | stratum A,                               | (Enter value or 0)             |                                        | directly above<br>water table, | soil type<br>directly above              | (used to estimate soil vapor | OR                                     | permeability<br>k <sub>v</sub> |                                          |
|                           | T <sub>s</sub><br>(°C)           | L <sub>F</sub><br>(cm)   | L <sub>WT</sub><br>(cm)   | h <sub>A</sub><br>(cm)                   | h <sub>B</sub><br>(cm)         | h <sub>C</sub><br>(cm)                 | (Enter A, B, or C)             | water table                              | permeability)                |                                        | (cm²)                          |                                          |
|                           |                                  |                          |                           |                                          |                                |                                        |                                |                                          |                              |                                        |                                | 1                                        |
|                           | 11                               | 15                       | 110                       | 110                                      | <u> </u>                       | <u> </u>                               | <u> </u>                       | S                                        | S                            |                                        | L                              | J                                        |
|                           |                                  |                          |                           |                                          |                                |                                        |                                |                                          |                              |                                        | -                              | - ENTER                                  |
| MORE                      | ENTER<br>Stratum A               | ENTER<br>Stratum A       | ENTER<br>Stratum A        | ENTER<br>Stratum A                       | ENTER<br>Stratum B             | ENTER<br>Stratum B                     | ENTER<br>Stratum B             | ENTER<br>Stratum B                       | ENTER<br>Stratum C           | ENTER<br>Stratum C                     | ENTER<br>Stratum C             | ENTER<br>Stratum C                       |
| <del>.</del>              | SCS                              | soil dry                 | soil total                | soil water-filled                        | I SCS                          | soil dry                               | soil total                     | soil water-filled                        | s SCS                        | soil dry                               | soil totai                     | soil water-filled                        |
|                           | soil type                        | bulk density,            | porosity,                 | porosity,                                | soil type                      | bulk density.,                         | porosity,                      | porosity,                                | soil type                    | bulk density,                          | porosity,<br>n <sup>C</sup>    | porosity,<br>θ <sub>w</sub> <sup>C</sup> |
|                           | Lookup Soil<br>Parameters        | ρ,Α                      | n <sup>A</sup>            | θ <sub>w</sub> <sup>A</sup><br>(cm³/cm³) | Lookup Soil<br>Parameters      | ρ <sub>6</sub> <sup>8</sup>            | n <sup>e</sup>                 | θ <sub>w</sub> <sup>B</sup><br>(cm³/cm³) | Lookup Soil<br>Parameters    | ρ <sub>ь</sub> <sup>C</sup><br>(g/cm³) | n-<br>(unitless)               | (cm³/cm³)                                |
|                           |                                  | (g/cm³)                  | (unitless)                | (cm <sup>-/cm<sup>-</sup>)</sup>         |                                | · (g/cm³)                              | (unitless)                     | (cm /cm )                                |                              | (g/ciri )                              | (unitiess)                     | (CIII /CIII )                            |
|                           | S                                | 1.80                     | 0.330                     | 0.054                                    | S                              | 1.66                                   | 0.375                          | 0.054                                    | S                            | 1.66                                   | 0.375                          | 0.054                                    |
| MORE                      | ENTER<br>Enclosed                | ENTER                    | ENTER<br>Enclosed         | ENTER<br>Enclosed                        | ENTER                          | ENTER                                  | ENTER                          | •                                        | ENTER<br>Average vapor       |                                        |                                |                                          |
| ₩                         | space                            | Soil-bldg.               | space                     | space                                    | Enclosed                       | Floor-wall                             | Indoor                         |                                          | flow rate into bldg.         |                                        |                                |                                          |
|                           | floor                            | pressure                 | floor                     | floor                                    | space                          | seam crack                             | air exchange                   |                                          | OR<br>Leave blank to calcula | to.                                    |                                |                                          |
|                           | thickness,<br>L <sub>crack</sub> | differential,<br>ΔP      | length,<br>L <sub>e</sub> | width,<br>W <sub>B</sub>                 | height,<br>H <sub>B</sub>      | width, '<br>w                          | rate,<br>ER                    |                                          | Q <sub>soi</sub>             |                                        |                                |                                          |
|                           | (cm)                             | (g/cm-s <sup>2</sup> )   | (cm)                      | (cm)                                     | (cm)                           | (cm)                                   | (1/h)                          | -<br>                                    | (L/m)                        |                                        |                                |                                          |
|                           | 10                               | 40                       | 1000                      | 1000                                     | 300                            | 0.1                                    | 0.83                           | -<br>]                                   | 5                            |                                        |                                |                                          |
| MORE                      | ENTER                            | ENTER                    | ENTER                     | ENTER                                    | ENTER                          | ENTER                                  |                                |                                          |                              |                                        |                                |                                          |
| <u> </u>                  | Averaging                        | Averaging                | _                         |                                          | Target                         | Target hazard                          |                                |                                          |                              |                                        |                                |                                          |
|                           | time for<br>carcinogens,         | time for noncarcinogens, | Exposure duration,        | Exposure<br>frequency,                   | risk for<br>carcinogens,       | quotient for<br>noncarcinogens,        |                                |                                          |                              |                                        |                                |                                          |
| •                         | AT <sub>C</sub>                  | ATNC                     | ED                        | EF                                       | TR                             | THQ                                    |                                |                                          |                              |                                        |                                |                                          |
|                           | (yrs)                            | (yrs)                    | (yrs)                     | (days/yr)                                | (unitless)                     | (unitless)                             |                                |                                          |                              |                                        |                                |                                          |
|                           | 70                               | 25                       | 25                        | 250                                      | 1.0E-06                        | 1 1                                    | ] .                            |                                          |                              |                                        |                                |                                          |
|                           |                                  |                          |                           |                                          |                                |                                        |                                |                                          |                              |                                        |                                |                                          |
| END                       |                                  |                          |                           |                                          |                                | late risk-based concentration.         |                                |                                          |                              |                                        |                                |                                          |
|                           |                                  |                          | *                         |                                          |                                |                                        | •                              |                                          |                              |                                        |                                |                                          |

| Diffusivity Diffusivity in air, in water,  D <sub>a</sub> D <sub>w</sub> (cm <sup>2</sup> /s) (cm <sup>2</sup> /s) | Henry's law constant at reference temperature, H (atm-m³/mol) | Henry's law constant reference temperature, T <sub>R</sub> (°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| 1.04E-01   1.00E-05                                                                                                | 3.66E-03                                                      | 25                                                              | 6.988                                                                             | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                              | 4.9E-02                               |

| Exposure duration, τ (sec)                                                    | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>$(cm^3/cm^3)$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>s</sub> c<br>(cm³/cm³)         | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub><br>(cm³/cm³)              | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²)                                | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)                                 | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Air-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>a.cz</sub><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm <sup>3</sup> /cm <sup>3</sup> )                        | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                                      | 95                                                                                      | 0.276                                                                     | 0.321                                                                         | 0.321                                                                                 | 0.004                                                                                             | 9.94E-08                                                                                | 0.998                                                                                       | 9.92E-08                                                                                                        | 17.05                                                                                         | 0.33                                                                                                 | 0.077                                                                                                       | 0.253                                                                                                               | 4,000                                                              |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>bulding</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)               | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H'18 (unitless)                   | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µts<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s)                   | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s)                    | Total<br>overall<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>T</sub><br>(cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 6.92E+04                                                                      | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                            | 7,544                                                                                 | 1.95E-03                                                                                          | 8.38E-02                                                                                | 1.76E-04                                                                                    | 1.31E-02                                                                                                        | 0.00E+00                                                                                      | 0.00E+00                                                                                             | 1.96E-04                                                                                                    | 1.02E-03                                                                                                            | 95                                                                 |
| Convection path length, Lp (cm)                                               | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s)    | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm²/s)      | Area of<br>crack,<br>A <sub>crack</sub><br>(cm²)                                                  | Exponent of equivalent foundation Peclet number, exp(Pe <sup>f</sup> ) (unitless)       | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>bullding</sub><br>(µg/m³)                                       | Unit<br>risk<br>factor,<br>URF<br>(µg/m³)·¹                                                   | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                |                                                                                                             |                                                                                                                     |                                                                    |
| 15                                                                            | 1.26E+03                                                                                | 0.10                                                                      | 8.33E+01                                                                      | 1,31E-02                                                                              | 4.00E+02                                                                                          | 8.21E+68                                                                                | 1.45E-04                                                                                    | 1.83E-01                                                                                                        | 2.3E-05                                                                                       | 4.9E-02                                                                                              |                                                                                                             |                                                                                                                     |                                                                    |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(μg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(μg/L) | Pure component water solubility, S (µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA NA                                                                  | NA                                                                  | 7.92E+06                                  | 210                                                            | · · |                                                                            |                                                                              |
|                                                      | 1 (4/                                                                  | 19/7                                                                | 7.926+06                                  | NA                                                             |     | 1.0E-06                                                                    | 2.6E-03                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## INCREMENTAL RISK CALCULATIONS:

|  | Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |  | Incremental<br>risk from<br>vapor<br>intrusion to<br>indoor air,<br>carcinogen<br>(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|--|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|--|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|--|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

| SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS soil dry soil total soil w          |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Defaults  CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter 'X" in "YES" box and initial groundwater conc. below)  YES  X  ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |
| ENTER   ENTER   Chemical   Groundwater   CAS No.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Corr.   Cor          |                              |
| CAS No. (numbers only, no disshes)   Conc., (numbers only, no disshes)   Cay (ugf.)   Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| Chemical CAS No. conc., (numbers only, Cw. no dashes) (µg/L)  Tight 7.00E+00  ENTER ENTER ENTER ENTER ENTER ENTER Coel (G28)  Totals must add up to value of L <sub>wt</sub> (cell G28)  Tickness of soil of soil Stratum A Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B, Stratum B |                              |
| (numbers only, Cw no dashes) (µg/L)  Trichloroethylene  ENTER ENTER Depth Depth Depth Soil/ soil of soil of soil of soil of soil of soil of soil stratum A Soil type (cm²) (cm²)  Ts Lr Lwr (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| Trichloroethylene  ENTER ENTER Depth Depth Solid was a stratum A Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B Suratum B S          |                              |
| ENTER Depth Depth Depth Depth Depth Depth Depth Depth Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil Water-filled SCS Soil type Depth Scoil Water-filled SCS Soil Water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-filled SCS Soil Gry Soil Water-fill          |                              |
| MORE → Soil/ to boltom groundwater temperature, space floor, (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| Average below grade soil/ to bottom groundwater temperature, space floor, temperature, space floor, form (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
| groundwater of enclosed space floor, to water table, stratum B, stratum B, stratum C, temperature, space floor, Ccm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| Size little and the water labe, space little and the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, consider and composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, directly above soil type water labe, directly above soil type water labe, directly above soil type built density, portant labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition of the water labe, composition          |                              |
| CC) (cm) (cm) (cm) (cm) (cm) (enter A, B, or C) water table permeability)  11 15 110 110 0 0 0 A S S  ENTER ENTER ENTER ENTER ENTER ENTER Stratum A Stratum A Stratum A Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum           |                              |
| ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER           |                              |
| ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER           |                              |
| MORE Stratum A Stratum A Stratum A Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum Stratum C Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Str            |                              |
| Stratum A Stratum A Stratum A Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum B Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum C Stratum Stratum C Stratum Stratum C Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratum Stratu          |                              |
| Soil type bulk density, porosity, porosity, soil type bulk density, porosity, soil type bulk density, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, porosity, poro          | NTER<br>ratum C              |
| Lookup Soil pb n n h h h h Lookup Soil pb n n h h h h Lookup Soil parameters (g/cm³) (unitless) (cm³/cm³) (g/cm³) (unitless) (cm²/cm³) (unitless) (cm²/cm³) (unitless) (cm²/cm³) (unitless) (cm²/cm³) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²) (unitless) (cm²/cm²)           | vater-filled                 |
| (g/cm³) (unitless) (cm³/cm³) (g/cm³) (unitless) (cm²/cm³) (parameters (g/cm³) (unitless) (cm²/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | orosity,<br>θ <sub>w</sub> C |
| S 1.80 0.330 0.054 S 1.66 0.375 0.054 S 1.66 0.375 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m³/cm³)                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.054                        |
| ENTED CATED FAVOR TO CATED CATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.054                        |
| MORE Enclosed Enclosed Enclosed Average varior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| space Soll-blog. space space Enclosed Floor-wall Indoor flow rate into bldg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| 70Or pressure floor floor space seam crack air exchange OR<br>thickness, differential, length, width, height, width, rate, Leave blank to calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| Lorack ΔP L <sub>B</sub> W <sub>B</sub> H <sub>B</sub> W ER Q <sub>soll</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| (cm) (g/cm-s²) (cm) (cm) (cm) (1/h) (L/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 10 40 1000 1000 300 0.1 0.83 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |
| MORE ENTER ENTER ENTER ENTER ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| Averaging Averaging Target Target hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| time for time for Exposure Exposure risk for quotient for carcinogens, noncarcinogens, duration, frequency, carcinogens, noncarcinogens,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| ATC ATNC ED EF TR THQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| (yrs) (yrs) (days/yr) (unitless) (unitless)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
| 70 25 25 250 1.0E-06 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
| Used to calculate risk-based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

| = | Exposure duration, τ (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> <sup>A</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>$(cm^3/cm^3)$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a{}^c$<br>(cm³/cm³)           | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub><br>(cm³/cm³) | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> )          | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²)                   | Thickness of capillary zone, L <sub>cz</sub> (cm)         | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)                           | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)                                  | Water-filled porosity in capillary zone, θ <sub>w.cz</sub> (cm³/cm³)                   | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|---|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| L | 7.88E+08                                                                       | 95                                                                                      | 0.276                                                                                                              | 0.321                                                                         | 0.321                                                                                 | 0.004                                                                                | 9.94E-08                                                                                         | 0.998                                                                                       | 9.92E-08                                                                                           | 17.05                                                     | 0.33                                                                                                 | 0.077                                                                                               | 0.253                                                                                  | 4,000                                                              |
|   | Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>n<br>(unitless)                                                            | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)               | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature,  H <sub>1S</sub> (atm-m³/mol)  | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H' <sub>TS</sub><br>(unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm²/s) | Stratum B effective diffusion coefficient, Deff B (cm²/s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> T (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| L | 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                                                           | 15                                                                            | 8,544                                                                                 | 5.05E-03                                                                             | 2.17E-01                                                                                         | 1.76E-04                                                                                    | 9.97E-03                                                                                           | 0.00E+00                                                  | 0.00E+00                                                                                             | 1.45E-04                                                                                            | 7.55E-04                                                                               | 7 7 7                                                              |
|   | Convection path length,  L <sub>p</sub> (cm)                                   | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                                                                     | Average vapor flow rate into bldg., Q <sub>soll</sub> (cm <sup>3</sup> /s)    | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s)        | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                        | Exponent of equivalent foundation Peclet number, exp(Pe <sup>f</sup> ) (unitless)                | Infinite source indoor attenuation coefficient, $\alpha$ (unitless)                         | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(μg/m <sup>3</sup> )             | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>1</sup>    | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                | 1.405-04                                                                                            | 7.332-04                                                                               | 95                                                                 |
|   | 15<br>END                                                                      | 1.52E+03                                                                                | 0.10                                                                                                               | 8.33E+01                                                                      | 9.97E-03                                                                              | 4.00E+02                                                                             | 5.28E+90                                                                                         | 1.11E-04、                                                                                   | 1.68E-01                                                                                           | 1.1E-04                                                   | 3.5E-02                                                                                              |                                                                                                     |                                                                                        |                                                                    |

**RESULTS SHEET** 

## INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Pure component water solubility, S (µg/L) | Final indoor exposure groundwater conc., (µg/L) |                   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA NA                                                   | NA                                                                  | 1.47E+06                                  | NA                                              | <b>=</b><br><br>] | 4.5E-06                                                                    | 3.3E-03                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

#### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(μg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.55E+00                                                            | 2.13E+03                                                               | 1.55E+00                                             | 1.47E+06                                                 | 1.55E+00                                                       | NA                                                                         |                                                                              |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

**GW-ADV** CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) Х YES ENTER ENTER Initial groundwater Chemical CAS No. conc., (numbers only, Cw no dashes) (µg/L) 7.00E+00 79016 Trichloroethylene ENTER ENTER ENTER ENTER ENTER **ENTER** ENTER ENTER ENTER ENTER Depth Totals must add up to value of LwT (cell G28) Soll MORE Average below grade Thickness Thickness stratum A User-defined soil/ to bottom Depth Thickness of soll of soil Soil SCS stratum A of enclosed SCS groundwater below grade of soil stratum B, stratum C, stratum soil type soil vapor OR temperature. space floor, to water table, stratum A, (Enter value or 0) (Enter value or 0) directly above soil type (used to estimate permeability, directly above Ts LF hA hB ħς water table. soil vapor (°C) permeability) (cm²) (cm) (cm) (cm) (cm) (cm) (Enter A, B, or C) water table 15 110 110 0 11 ENTER ENTER ENTER **ENTER** ENTER ENTER ENTER ENTER **ENTER ENTER ENTER** ENTER MORE Stratum A Stratum A Stratum A Stratum A Stratum B Stratum B Stratum B Stratum B Stratum C Stratum C Stratum C Stratum C SCS soil dry soil total soil water-filled SCS soil dry soil total soil water-filled SCS sóil dry soil total soil water-filled porosity, soil type bulk density, porosity, porosity, soil type bulk density, porosity, porosity, soil type bulk density, porosity, nA  $\rho_b^C$ θ**"**C ρb θ,,Α  $\rho_b^{\ B}$ 'nB Lookup Soil Lookup Soil Lookup Soil Parameters Parameters Parameters (cm<sup>3</sup>/cm<sup>3</sup>)(cm<sup>3</sup>/cm<sup>3</sup>) (g/cm<sup>3</sup>) (unitless) (cm<sup>3</sup>/cm<sup>3</sup>) (g/cm<sup>3</sup>) (unitless) (g/cm<sup>3</sup>) (unitless) 0.330 1.66 0.375 0.054 1.66 0.375 0.054 1.80 0.054 S s s **ENTER** ENTER ENTER **ENTER** ENTER ENTER ENTER **ENTER** MORE Enclosed Enclosed Enclosed Average vapor space Soil-bldg. space space Enclosed Floor-wall Indoor flow rate into bldg. space seam crack air exchange OR pressure floor floor floor Leave blank to calculate thickness, differential, length, width, height, width, rate, ΔΡ WB ER Q<sub>soil</sub> LB Нв L<sub>crack</sub> (g/cm-s2) (L/m) (cm) (cm) (cm) (cm) (cm) (1/h) 40 1000 1000 300 0.1 0.83 10 MORE **ENTER** ENTER ENTER ENTER ENTER **ENTER** Averaging Averaging Target Target hazard time for risk for quotient for time for Exposure Exposure carcinogens, noncarcinogens, duration, frequency, carcinogens, noncarcinogens, AT<sub>NC</sub> ΕĐ EF TR THQ AT<sub>C</sub> (vrs) (yrs) (vrs) (days/yr) (unitless) (unitless) 25 250 70 25 1.0E-06 Used to calculate risk-based END groundwater concentration.

| Diffusivity Diffus in air, in wa $D_a$ $D_w$ $(cm^2/s)$ $(cm^2/s)$ | ter, temperature, | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³)-1 | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|--------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|----------------------------------------------------|
| 7.005.00   0.405                                                   |                   |                                                                                |                                                                                   |                                                       |                                                    |                                                                                           |                                                          | (1-37                                       | (g,                                                |
| 7.90E-02 9.10E                                                     | -06   1.03E-02    | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                     | 6.0E-01                                            |

| Exposure duration,                                                             | Source-<br>building<br>separation,                                                      | Stratum A<br>soil<br>air-filled<br>porosity,            | Stratum B<br>soil<br>air-filled<br>porosity,                    | Stratum C<br>soil<br>air-filled<br>porosity,                                          | Stratum A effective total fluid saturation,                             | Stratum A<br>soil<br>intrinsic<br>permeability,                       | Stratum A<br>soil<br>relative air<br>permeability,                                | Stratum A<br>soil<br>effective vapor<br>permeability,                            | Thickness of capillary zone,                                                                  | Total porosity in capillary zone,                                                  | Air-filled<br>porosity in<br>capillary<br>zone,                                        | Water-filled porosity in capillary zone,                            | Floor-<br>wall<br>seam<br>perimeter,                   |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|
| τ                                                                              | L <sub>T</sub>                                                                          | .θ <sub>a</sub> ^                                       | θ <sub>a</sub> <sup>B</sup>                                     | $\theta_{\mathbf{a}}^{\mathbf{C}}$                                                    | Ste                                                                     | · k <sub>i</sub>                                                      | k <sub>rg</sub>                                                                   | , k <sub>v</sub>                                                                 | Lcz                                                                                           | n <sub>cz</sub>                                                                    | θ <sub>a,cz</sub>                                                                      | $\theta_{w,cz}$                                                     | $X_{crack}$                                            |
| (sec)                                                                          | (cm)                                                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                     | (cm³/cm³)                                                       | (cm <sup>3</sup> /cm <sup>3</sup> )                                                   | (cm³/cm³)                                                               | (cm²)                                                                 | (cm²)                                                                             | (cm²)                                                                            | (cm)                                                                                          | (cm³/cm³)                                                                          | (cm <sup>3</sup> /cm <sup>3</sup> )                                                    | (cm³/cm³)                                                           | (cm)                                                   |
| 7.005.00                                                                       | 95                                                                                      | 0.276                                                   | 0.321                                                           | 0.321                                                                                 | 0.004                                                                   | 9.94E-08                                                              | 0.998                                                                             | 9.92E-08                                                                         | 17.05                                                                                         | 0.33                                                                               | 0.077                                                                                  | 0.253                                                               | 4,000                                                  |
| 7.88E+08                                                                       | 1 95                                                                                    | 0.276                                                   | 0.321                                                           | 0.321                                                                                 | 0.004                                                                   | 9.546-00                                                              | 0.556                                                                             | 9.92E-00                                                                         | . 17.03                                                                                       | 1 0.55                                                                             | 0.077                                                                                  | 1 0.200                                                             | 1 4,000                                                |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless) | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm) | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature,  HTs (atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H'Ts (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μ <sub>TS</sub><br>(g/cm-s) | Stratum A effective diffusion coefficient, D <sup>eff</sup> (cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>8</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm²/s) | Total overall effective diffusion coefficient, [Cm <sup>2</sup> /s] | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm) |
| (0111 70)                                                                      | (0 /                                                                                    | (dilidoso)                                              | (0.1.7                                                          | (Gairrior)                                                                            |                                                                         | (diminos)                                                             | (5,0/                                                                             |                                                                                  |                                                                                               |                                                                                    |                                                                                        |                                                                     |                                                        |
| 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                | 15                                                              | 8,544                                                                                 | 5.05E-03                                                                | 2.17E-01                                                              | 1.76E-04                                                                          | 9.97E-03                                                                         | 0.00E+00                                                                                      | 0.00E+00                                                                           | 1.45E-04                                                                               | 7.55E-04                                                            | 95                                                     |
| Convection                                                                     | Source                                                                                  |                                                         | Average<br>vapor                                                | Crack<br>effective                                                                    | **************************************                                  | Exponent of equivalent foundation                                     | Infinite<br>source<br>indoor                                                      | Infinite<br>source                                                               | Unit<br>risk                                                                                  | Reference                                                                          |                                                                                        |                                                                     |                                                        |
| path                                                                           | vapor                                                                                   | Crack                                                   | flow rate                                                       | diffusion<br>coefficient,                                                             | Area of crack,                                                          | Peclet number.                                                        | attenuation<br>coefficient,                                                       | bldg.<br>conc.                                                                   | factor,                                                                                       | conc.,                                                                             |                                                                                        |                                                                     |                                                        |
| length,                                                                        | conc.,                                                                                  | radius,                                                 | into bldg.,                                                     | D <sup>crack</sup>                                                                    |                                                                         | exp(Pe <sup>f</sup> )                                                 |                                                                                   |                                                                                  | URF                                                                                           | RfC                                                                                |                                                                                        |                                                                     |                                                        |
| L <sub>p</sub>                                                                 | C <sub>source</sub>                                                                     | (crack                                                  | Q <sub>soil</sub><br>(cm³/s)                                    | (cm²/s)                                                                               | A <sub>crack</sub><br>(cm²)                                             | (unitless)                                                            | α<br>(unitless)                                                                   | C <sub>building</sub><br>(μg/m³)                                                 | (μg/m <sup>3</sup> ) <sup>-1</sup>                                                            | (mg/m³)                                                                            |                                                                                        |                                                                     |                                                        |
| (cm)                                                                           | (μg/m³)                                                                                 | (cm)                                                    | (011/5)                                                         | (011175)                                                                              | (4117)                                                                  | (0000055)                                                             | (unidess)                                                                         | (μg//// /                                                                        | (149,111)                                                                                     | (9/, /                                                                             | •                                                                                      |                                                                     |                                                        |
| 15                                                                             | 1.52E+03                                                                                | 0.10                                                    | 8.33E+01                                                        | 9.97E-03                                                                              | 4.00E+02                                                                | 5.28E+90                                                              | 1.11E-04                                                                          | 1.68E-01                                                                         | 2.0E-06                                                                                       | 6.0E-01                                                                            | ]                                                                                      |                                                                     |                                                        |

RESULTS SHEET

## INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA NA                                                   | NA                                                                  | 1.47E+06                                                 | NA                                                             | ] [ | 8.2E-08                                                                    | 1.9E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor                                 | Indoor                  | Risk-based              | Pure                 | Final                   |   | Incremental risk from    | Hazard<br>quotient          |
|----------------------------------------|-------------------------|-------------------------|----------------------|-------------------------|---|--------------------------|-----------------------------|
| exposure                               | exposure                | indoor                  | component            | indoor                  |   | vapor                    | from vapor                  |
| groundwater conc.,                     | groundwater conc.,      | exposure<br>groundwater | water<br>solubility, | exposure<br>groundwater |   | intrusion to indoor air, | intrusion to indoor air,    |
| carcinogen<br>(μg/L)                   | noncarcinogen<br>(μg/L) | conc.,<br>(μg/L)        | S<br>(µg/L)          | conc.,<br>(μg/L)        | • | carcinogen<br>(unitless) | noncarcinogen<br>(unitless) |
| ************************************** |                         |                         |                      |                         |   |                          |                             |
| 8.53E+01                               | 3.66E+04                | 8.53E+01                | 1.47E+06             | 8.53E+01                |   | NA                       | NA                          |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

|          |                 | 1.                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
|          | GW-ADV          | CALCULATE R                                                                                                                                                                          | ISK-BASED GROU                                                                                                                                                                                | INDWATER CON                                                                                                                                    | CENTRATION /-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nter "X" in "YES" bo                                                                                                                                            |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          | on 3.1; 02/04   | 5,1200211211                                                                                                                                                                         | 011-02-0100                                                                                                                                                                                   | MOWATER CON                                                                                                                                     | SEIVITATION (e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nter X in "YES" Do                                                                                                                                              | (x)                                                                                                                                                                                |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
| v el Si  | 011 3. 1, 02/04 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      | YES                                                                                                                                                                                           |                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 | •                                                                                                                                                                                  |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
| 1        | Reset to        |                                                                                                                                                                                      |                                                                                                                                                                                               | OR                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
| 1        | Defaults        | OA1 OI II A TT III                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
| <u> </u> |                 | CALCULATE IN                                                                                                                                                                         | CREMENTAL RISI                                                                                                                                                                                | KS FROM ACTUA                                                                                                                                   | L GROUNDWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ER CONCENTRAT                                                                                                                                                   | ION (enter "X" in "YE                                                                                                                                                              | S" box and initial grou                                                                                   | undwater conc. be                                                                                  | elow)                                                                                                                                       |                                                                                               |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                                                                    | ·                                                                                                         |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      | YES                                                                                                                                                                                           | X                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | ENTER                                                                                                                                                                                | ENTER                                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      | Initial                                                                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | Chemical                                                                                                                                                                             | groundwater                                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | CAS No.                                                                                                                                                                              | conc.,                                                                                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | (numbers only,                                                                                                                                                                       |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | no dashes)                                                                                                                                                                           | (μg/L)                                                                                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | 110 desites)                                                                                                                                                                         | (µg/L)                                                                                                                                                                                        | -                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chemical                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | 75044                                                                                                                                                                                |                                                                                                                                                                                               | _                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    | _                                                                                                         |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | 75014                                                                                                                                                                                | 1.00E+01                                                                                                                                                                                      |                                                                                                                                                 | Viny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /l chloride (chlor                                                                                                                                              | oethene)                                                                                                                                                                           |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                           |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      |                                                                          |
|          |                 | ENTER                                                                                                                                                                                | ENTER                                                                                                                                                                                         | ENTER                                                                                                                                           | ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ENTER                                                                                                                                                           | ENTER                                                                                                                                                                              | ENTER                                                                                                     | ENTER                                                                                              | CUTED                                                                                                                                       | <del></del>                                                                                   |                                                                      | 3                                                                        |
|          |                 |                                                                                                                                                                                      | Depth                                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | st add up to value o                                                                                                                                            |                                                                                                                                                                                    | ENIER                                                                                                     | ENIER                                                                                              | ENTER                                                                                                                                       |                                                                                               | ENTER                                                                |                                                                          |
|          | MORE            | Average                                                                                                                                                                              | below grade                                                                                                                                                                                   |                                                                                                                                                 | Totals into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    | Soil                                                                                                                                        |                                                                                               |                                                                      | ļ                                                                        |
|          | ¥               | soil/                                                                                                                                                                                | to bottom                                                                                                                                                                                     | Depth                                                                                                                                           | Tu: -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Thickness                                                                                                                                                       | Thickness                                                                                                                                                                          |                                                                                                           | •                                                                                                  | stratum A                                                                                                                                   |                                                                                               | User-defined                                                         | i                                                                        |
|          | لسنت            | groundwater                                                                                                                                                                          | of enclosed                                                                                                                                                                                   |                                                                                                                                                 | Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of soil_                                                                                                                                                        | of soil                                                                                                                                                                            | Soil                                                                                                      |                                                                                                    | SCS                                                                                                                                         |                                                                                               | stratum A                                                            |                                                                          |
|          |                 | temperature,                                                                                                                                                                         |                                                                                                                                                                                               | below grade                                                                                                                                     | of soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stratum B,                                                                                                                                                      | stratum C,                                                                                                                                                                         | stratum                                                                                                   | SCS                                                                                                | soil type                                                                                                                                   |                                                                                               | soil vapor                                                           | Į.                                                                       |
|          |                 |                                                                                                                                                                                      | space floor,                                                                                                                                                                                  | to water table,                                                                                                                                 | stratum A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Enter value or 0)                                                                                                                                              | (Enter value or 0)                                                                                                                                                                 | directly above                                                                                            | soil type                                                                                          | (used to estimate                                                                                                                           | OR                                                                                            | permeability,                                                        |                                                                          |
|          |                 | Ts                                                                                                                                                                                   | L <sub>F</sub>                                                                                                                                                                                | L <sub>WT</sub>                                                                                                                                 | h <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h <sub>B</sub>                                                                                                                                                  | · h <sub>c</sub>                                                                                                                                                                   | water table,                                                                                              | directly above                                                                                     | soil vapor                                                                                                                                  |                                                                                               | k,                                                                   |                                                                          |
|          |                 | (°C)                                                                                                                                                                                 | (cm)                                                                                                                                                                                          | (cm)                                                                                                                                            | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (cm)                                                                                                                                                            | (cm)                                                                                                                                                                               | (Enter A, B, or C)                                                                                        | water table                                                                                        | permeability)                                                                                                                               |                                                                                               | (cm²)                                                                |                                                                          |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    | (2,110,71,0,0,0)                                                                                          | Water lable                                                                                        | T permeability)                                                                                                                             | •                                                                                             | (Crit )                                                              | į                                                                        |
|          |                 | 11                                                                                                                                                                                   | 15                                                                                                                                                                                            | 110                                                                                                                                             | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                               | 0                                                                                                                                                                                  | A                                                                                                         | T                                                                                                  | <del>                                       </del>                                                                                          | 1                                                                                             |                                                                      |                                                                          |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               | <del></del>                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           | <u> </u>                                                                                           | S                                                                                                                                           |                                                                                               |                                                                      | 1                                                                        |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      | •                                                                        |
|          |                 |                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                           |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      | •                                                                        |
|          |                 | ENTER                                                                                                                                                                                | ENTER                                                                                                                                                                                         | FNTER                                                                                                                                           | ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ENTED                                                                                                                                                           | ENTED                                                                                                                                                                              | ENTER                                                                                                     |                                                                                                    |                                                                                                                                             |                                                                                               |                                                                      | •                                                                        |
|          | MORE            | ENTER<br>Stratum A                                                                                                                                                                   | ENTER<br>Stratum A                                                                                                                                                                            | ENTER<br>Stratum A                                                                                                                              | ENTER<br>Stratum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENTER<br>Stratum B                                                                                                                                              | ENTER                                                                                                                                                                              | ENTER                                                                                                     | ENTER                                                                                              | ENTER                                                                                                                                       | ENTER                                                                                         | ENTER                                                                | ENTER                                                                    |
|          | MORE            | Stratum A                                                                                                                                                                            | Stratum A                                                                                                                                                                                     | Stratum A                                                                                                                                       | Stratum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum B                                                                                                                                                       | Stratum B                                                                                                                                                                          | Stratum B                                                                                                 | Stratum B                                                                                          | Stratum C                                                                                                                                   | Stratum C                                                                                     | Stratum C                                                            | ENTER<br>Stratum C                                                       |
|          | MORE ¥          | Stratum A<br>SCS                                                                                                                                                                     | Stratum A soil dry                                                                                                                                                                            | Stratum A soil total                                                                                                                            | Stratum A soil water-filled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS                                                                                                                                                | Stratum B soil dry                                                                                                                                                                 | Stratum B soil total                                                                                      | Stratum B<br>soil water-filled                                                                     | Stratum C<br>SCS                                                                                                                            | Stratum C<br>soil dry                                                                         | Stratum C<br>soil total                                              |                                                                          |
|          |                 | Stratum A<br>SCS<br>soil type                                                                                                                                                        | Stratum A<br>soil dry<br>bulk density,                                                                                                                                                        | Stratum A soil total . porosity,                                                                                                                | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type                                                                                                                                   | Stratum B<br>soil dry<br>bulk density,                                                                                                                                             | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B<br>soil water-filled<br>porosity,                                                        | Stratum C                                                                                                                                   | Stratum C<br>soil dry<br>bulk density                                                         | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                              |
|          |                 | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup>                                                                                                                                     | Stratum A soil total                                                                                                                            | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil                                                                                                                             | Stratum B<br>soil dry<br>bulk density,                                                                                                                                             | Stratum B soil total                                                                                      | Stratum B<br>soil water-filled<br>porosity,                                                        | Stratum C<br>SCS                                                                                                                            | Stratum C<br>soil dry<br>bulk density                                                         | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                              |
|          |                 | Stratum A<br>SCS<br>soil type                                                                                                                                                        | Stratum A<br>soil dry<br>bulk density,                                                                                                                                                        | Stratum A soil total . porosity,                                                                                                                | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type                                                                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> B                                                                                                                         | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                    | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$                                        | Stratum C<br>SCS<br>soil type                                                                                                               | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                                     | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$              |
|          |                 | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup>                                                                                                                                     | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                          | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil                                                                                                                             | Stratum B<br>soil dry<br>bulk density,                                                                                                                                             | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B<br>soil water-filled<br>porosity,                                                        | Stratum C<br>SCS<br>soil type                                                                                                               | Stratum C<br>soil dry<br>bulk density                                                         | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                              |
|          |                 | Stratum A<br>SCS<br>soil type<br>Lookup Soil                                                                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup>                                                                                                                                     | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                          | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>$(cm^3/cm^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                                      | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                      | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters                                                                                              | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          |                 | Stratum A<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                                                           | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                                 | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil                                                                                                                             | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> B                                                                                                                         | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                    | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$                                        | Stratum C<br>SCS<br>soil type                                                                                                               | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                                     | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$              |
|          |                 | Stratum A<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                                                           | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                                 | Stratum A soil total porosity, n <sup>A</sup> (unitless)                                                                                        | Stratum A soil water-filled porosity, $\theta_w^A$ (cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stratum B SCS soil type Lookup Soil Parameters                                                                                                                  | Stratum B<br>soil dry<br>bulk density,<br>$ ho_b^B$<br>(g/cm <sup>3</sup> )                                                                                                        | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                  | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          |                 | Stratum A SCS SOII type Lookup Soil Parameters                                                                                                                                       | Stratum A<br>soil dry<br>bulk density,<br>$\rho_b^A$<br>(g/cm³)                                                                                                                               | Stratum A soil total porosity, n^ (unitless)                                                                                                    | Stratum A soil water-filled porosity, θ <sub>w</sub> ^ (cm³/cm³)  0.054  ENTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                                      | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                                      | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS SOII type Lookup Soil Parameters  S ENTER                                                                                     | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          |                 | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed                                                                                                                     | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )                                                                                                                         | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed                                                                 | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                                      | Stratum B soil dry bulk density, p <sub>b</sub> B (g/cm <sup>3</sup> )  1.66 ENTER                                                                                                 | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375                                            | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor                                                                       | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space                                                                                                               | Stratum A soil dry bulk density, p <sub>b</sub> <sup>A</sup> (g/cm³)  1.80  ENTER Soil-bldg.                                                                                                  | Stratum A soil total porosity, n^ (unitless)  ENTER Enclosed space                                                                              | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stratum B SCS soil type Lookup Soil Parameters S ENTER Enclosed                                                                                                 | Stratum B soil dry bulk density, p. B (g/cm³)  1.66  ENTER Floor-wall                                                                                                              | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER                                    | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg.                                                  | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space floor                                                                                                         | Stratum A soil dry bulk density, Pp <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure                                                                                       | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor                                                                 | Stratum A soil water-filled porosity, θ <sub>w</sub> ^ (cm³/cm³)  0.054  ENTER Enclosed space floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space                                                                                          | Stratum B soil dry bulk density, p b (g/cm³)  1.66  ENTER  Floor-wall seam crack                                                                                                   | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange                | Stratum B soil water-filled porosity, e B (cm³/cm³)                                                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR                                               | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space floor thickness,                                                                                              | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure differential,                                                                         | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                         | Stratum A soil water-filled poosity, \$\theta_u^A\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                                  | Stratum B soil dry bulk density, p <sub>b</sub> <sup>B</sup> (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                    | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange rate,            | Stratum B soil water-filled porosity, e B (cm³/cm³)                                                | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil Parameters  S  ENTER Enclosed space floor thickness, Lorack                                                                                      | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$                                                              | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub>                              | Stratum A soil water-filled poosity, \$\theta_w^{\text{A}}\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width, \$W_B\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                                   | Stratum B soil dry bulk density, p b (g/cm³)  1.66  ENTER  Floor-wall seam crack                                                                                                   | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange                | Stratum B soil water-filled porosity, e B (cm³/cm³)                                                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR                                               | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space floor thickness,                                                                                              | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure differential,                                                                         | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length,                                                         | Stratum A soil water-filled poosity, \$\theta_u^A\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                                  | Stratum B soil dry bulk density, p <sub>b</sub> <sup>B</sup> (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                    | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange rate,            | Stratum B soil water-filled porosity, e B (cm³/cm³)                                                | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil pe Lookup Soil Parameters  S  ENTER Enclosed space floor thickness, Lorack (cm)                                                                  | Stratum A soil dry bulk density, Pp <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s <sup>2</sup> )                                       | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)                                                 | Stratum A soil water-filled porosity, θ <sub>c</sub> , (cm <sup>3</sup> /cm <sup>3</sup> )  0.054  ENTER Enclosed space floor width, W <sub>8</sub> (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                                   | Stratum B soil dry bulk density, p <sub>b</sub> B (g/cm³)  1.66  ENTER Floor-wall seam crack width, w                                                                              | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange rate, ER         | Stratum B soil water-filled porosity, e B (cm³/cm³)                                                | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | . ↓ MORE        | Stratum A SCS soil type Lookup Soil Parameters  S  ENTER Enclosed space floor thickness, Lorack                                                                                      | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm <sup>3</sup> )  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$                                                              | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub>                              | Stratum A soil water-filled poosity, \$\theta_w^{\text{A}}\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width, \$W_B\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                                   | Stratum B soil dry bulk density, p <sub>b</sub> B (g/cm³)  1.66  ENTER Floor-wall seam crack width, w                                                                              | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, e B (cm³/cm³)                                                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE +          | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space floor thickness, Lorack (cm)                                                                                  | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)                                                                              | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                         | Stratum A soil water-filled porosity, \$\theta_w^{\text{A}}\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width, \$W_B\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                              | Stratum B soil dry bulk density, p b (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                                                     | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange rate, ER         | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER                                                       | Stratum A soli dry bulk density, P <sub>b</sub> A (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER                                                             | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)                                                 | Stratum A soil water-filled porosity, θ <sub>c</sub> , (cm <sup>3</sup> /cm <sup>3</sup> )  0.054  ENTER Enclosed space floor width, W <sub>8</sub> (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                              | Stratum B soil dry bulk density, p b (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                                                     | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE +          | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging                                                              | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, $\Delta P$ (g/cm-s²)                                                                              | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                         | Stratum A soil water-filled porosity, \$\theta_w^{\text{A}}\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width, \$W_B\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                              | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER                                                                         | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil parameters  SENTER Enclosed space floor thickness, Larack (cm)  10  ENTER Averaging time for                                                     | Stratum A soli dry bulk density, P <sub>b</sub> A (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER                                                             | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                         | Stratum A soil water-filled porosity, \$\theta_w^{\text{A}}\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width, \$W_B\$ (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER                                                    | Stratum B soil dry bulk density, p <sub>6</sub> <sup>B</sup> (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard                                  | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil Parameters  S ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging                                                              | Stratum A soil dry bulk density, Pb (g/cm³)  1.80  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging                                                                | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER            | Stratum A soil water-filled poosity, \$\theta_{\text{u}}^{\text{A}}\$ (cm^3/cm^3)  0.054  ENTER Enclosed space floor width, \$W_{\text{B}}\$ (cm)  1000  ENTER  Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for                                    | Stratum B soil dry bulk density; p <sub>b</sub> <sup>B</sup> (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                     | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  ENTER Averaging time for carcinogens,                           | Stratum A soll dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                                      | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | Stratum A soil water-filled porosity, \$\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,                       | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,                             | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc                   | Stratum A soil dry bulk density, Pp <sup>A</sup> (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub> | Stratum A soil total porosity, n^ (unitless)  O.330  ENTER Enclosed space floor length, L <sub>s</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity, e, ^ (cm³/cm³)  0.054  ENTER Enclosed space floor width, Wa (cm)  1000  ENTER Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300  ENTER Target risk for carcinogens, TR                   | Stratum B soil dry bulk density, p b (g/cm³)  1.66 ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for nonaccinogens, THQ                           | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  ENTER Averaging time for carcinogens,                           | Stratum A soll dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                                      | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | Stratum A soil water-filled porosity, \$\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens,                       | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,                             | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub> (yrs) | Stratum A soll dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)                | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, \$\theta_a^N\$ (cm^3/cm^2) \$\text{0.054}\$ ENTER Enclosed space floor width, \$W_B\$ (cm) \$\text{1000}\$ ENTER Exposure frequency, \$\text{EF}\$ (days/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens, TR (unitless)         | Stratum B soil dry bulk density, p. B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless)             | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc                   | Stratum A soil dry bulk density, Pp <sup>A</sup> (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub> | Stratum A soil total porosity, n^ (unitless)  O.330  ENTER Enclosed space floor length, L <sub>s</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity, e, ^ (cm³/cm³)  0.054  ENTER Enclosed space floor width, Wa (cm)  1000  ENTER Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300  ENTER Target risk for carcinogens, TR                   | Stratum B soil dry bulk density, p b (g/cm³)  1.66 ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for nonaccinogens, THQ                           | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub> (yrs) | Stratum A soll dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)                | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, \$\theta_a^N\$ (cm^3/cm^2) \$\text{0.054}\$ ENTER Enclosed space floor width, \$W_B\$ (cm) \$\text{1000}\$ ENTER Exposure frequency, \$\text{EF}\$ (days/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>8</sub> (cm) 300 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 | Stratum B soil dry bulk density, p b (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless)              | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |
|          | MORE UMORE      | Stratum A SCS soil type Lookup Soil type Lookup Soil Parameters  SENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub> (yrs) | Stratum A soll dry bulk density, PbA (g/cm³)  1.80  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)                | Stratum A soil total porosity, n^ (unitless)  0.330  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, \$\theta_a^N\$ (cm^3/cm^2) \$\text{0.054}\$ ENTER Enclosed space floor width, \$W_B\$ (cm) \$\text{1000}\$ ENTER Exposure frequency, \$\text{EF}\$ (days/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens, TR (unitless)         | Stratum B soil dry bulk density; p <sub>B</sub> g (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless) | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B soil water-filled porosity, 6 B (cm <sup>3</sup> /cm <sup>3</sup> )                      | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³) |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔΗ <sub>ν,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 1.06E-01                                                         | 1.23E-05                                                           | 2.69E-02                                                                     | 25                                                                             | 5,250                                                                             | 259.25                                                | 432.00                                             | 1.86E+01                                                                                  | 8.80E+03                                                 | 4.4E-06                                                 | 1.0E-01                               |

| Exposure duration, τ (sec)                                       | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)                 | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c<br>(cm³/cm³)         | Stratum A effective total fluid saturation, S <sub>te</sub> (cm³/cm³)                                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm²)        | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²)                                | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)                                 | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³) | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)                                  | Water-filled porosity in capillary zone, θ <sub>w,cz</sub> (cm³/cm³) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                         | 95                                                                                      | 0.276                                                                     | 0.321                                                                                     | 0.321                                                                                 | 0.004                                                                                                          | 9.94E-08                                                                          | 0.998                                                                                       | 9.92E-08                                                                                                        | 17.05                                                                                         | 0.33                                                                       | 0.077                                                                                               | 0.253                                                                | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>bulding</sub><br>(cm³/s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)                           | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,rs}$ (cal/mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>9</sup> /mol) | Henry's law constant at ave. groundwater temperature, H' <sub>TS</sub> (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm²/s)      | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, Deff (cm²/s)          | Diffusion path length,                                             |
| 6.92E+04                                                         | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                                        | 4,989                                                                                 | 1.78E-02                                                                                                       | 7.63E-01                                                                          | 1.76E-04                                                                                    | 1.34E-02                                                                                                        | 0.00E+00                                                                                      | 0.00E+00                                                                   | 1.90E-04                                                                                            | 9.95E-04                                                             | 95                                                                 |
| Convection path length, L <sub>p</sub> (cm)                      | Source<br>vapor<br>conc.<br>C <sub>source</sub><br>(µg/m³)                              | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average<br>vapor<br>flow rate<br>into bldg.,<br>Q <sub>soil</sub><br>(cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>orack</sup><br>(cm²/s)      | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                                  | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)              | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                                       | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                      |                                                                                                     |                                                                      |                                                                    |
| 15                                                               | 7.63E+03                                                                                | 0.10                                                                      | 8.33E+01                                                                                  | 1.34E-02                                                                              | 4.00E+02                                                                                                       | 4.11E+67                                                                          | 1.42E-04                                                                                    | 1.08E+00                                                                                                        | 4.4E-06                                                                                       | 1.0E-01                                                                    | •                                                                                                   |                                                                      |                                                                    |

**RESULTS SHEET** 

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor                            | Indoor                            | Risk-based                        | Pure                              | Final                             |   | Incremental risk from                | Hazard<br>quotient                  |
|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---|--------------------------------------|-------------------------------------|
| exposure<br>groundwater<br>conc., | exposure<br>groundwater<br>conc., | indoor<br>exposure<br>groundwater | component<br>water<br>solubility, | indoor<br>exposure<br>groundwater |   | vapor<br>intrusion to<br>indoor air, | from vapor intrusion to indoor air, |
| carcinogen<br>(μg/L)              | noncarcinogen<br>(μg/L)           | conc.,<br>(μg/L)                  | S<br>(μg/L)                       | conc.,<br>(μg/L)                  |   | carcinogen<br>(unitless)             | noncarcinogen<br>(unitless)         |
| NA                                | NA                                | NA                                | 8.80E+06                          | NA                                | [ | 1.2E-06                              | 7.4E-03                             |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 8.60E+00                                                            | 1.35E+03                                                               | 8.60E+00                                                            | 8.80E+06                                                 | 8.60E+00                                                       | NA                                                                         | l NA                                                                         |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 7

RESIDENTIAL

#### DATA ENTRY SHEET

| .1; 02/04 | CALCULATE RIS                                                                                                                  |                                                                                                                             |                                                                                         | _                                                                                                    |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           |                           |                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|---------------------------|--------------------------|
| et to     |                                                                                                                                | YES                                                                                                                         | OR                                                                                      | ]                                                                                                    |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           |                           |                          |
| ults      | CALCULATE INC                                                                                                                  | REMENTAL RISK                                                                                                               |                                                                                         | GROUNDWATE                                                                                           | ER CONCENTRATI                                                                                           | ON (enter "X" in "YE                                                                                      | S" box and initial grou                         | ndwater conc. be                         | low)                                                                                       |                           |                           |                          |
|           |                                                                                                                                | YES                                                                                                                         | X                                                                                       | ] .                                                                                                  |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           |                           |                          |
|           | ENTER                                                                                                                          | ENTER                                                                                                                       |                                                                                         |                                                                                                      |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           |                           |                          |
|           | Chemical                                                                                                                       | Initial<br>groundwater                                                                                                      |                                                                                         |                                                                                                      |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           |                           |                          |
|           | CAS No. (numbers only,                                                                                                         | conc.,<br>C <sub>w</sub>                                                                                                    |                                                                                         |                                                                                                      |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           |                           |                          |
|           | no dashes)                                                                                                                     | (µg/L)                                                                                                                      | _                                                                                       |                                                                                                      | Chemical                                                                                                 |                                                                                                           | ·                                               |                                          |                                                                                            |                           |                           |                          |
|           | 79016                                                                                                                          | 1.00E+00                                                                                                                    | ]                                                                                       |                                                                                                      | Trichloroethyle                                                                                          | ene                                                                                                       |                                                 |                                          |                                                                                            |                           |                           |                          |
|           | ENTER                                                                                                                          | ENTER<br>Depth                                                                                                              | ENTER                                                                                   | ENTER<br>Totals mus                                                                                  | ENTER<br>st add up to value o                                                                            | ENTER                                                                                                     | ENTER                                           | ENTER                                    | ENTER<br>Soil                                                                              |                           | ENTER                     | ]                        |
| MORE      | Average                                                                                                                        | below grade                                                                                                                 |                                                                                         |                                                                                                      | Thickness                                                                                                | Thickness                                                                                                 | <b>C</b> -11                                    |                                          | stratum A<br>SCS                                                                           |                           | User-defined<br>stratum A |                          |
|           | soil/<br>groundwater                                                                                                           | to bottom<br>of enclosed                                                                                                    | Depth<br>below grade                                                                    | Thickness<br>of soil                                                                                 | of soil<br>stratum B,                                                                                    | of soil<br>stratum C,                                                                                     | Soil<br>stratum                                 | scs                                      | soil type                                                                                  |                           | soil vapor                |                          |
|           | temperature,                                                                                                                   | space floor,                                                                                                                | to water table,                                                                         | stratum A,                                                                                           | (Enter value or 0)                                                                                       | (Enter value or 0)                                                                                        | directly above                                  | soil type                                | (used to estimate                                                                          | OR                        | permeability,             |                          |
|           | T <sub>s</sub>                                                                                                                 | L <sub>F</sub>                                                                                                              | Lwt                                                                                     | h <sub>A</sub>                                                                                       | h <sub>B</sub>                                                                                           | h <sub>C</sub>                                                                                            | water table,<br>(Enter A, B, or C)              | directly above<br>water table            | soil vapor<br>permeability)                                                                |                           | k,<br>(cm²)               |                          |
|           | (°C).                                                                                                                          | (cm)                                                                                                                        | (cm)                                                                                    | (cm)                                                                                                 | (cm)                                                                                                     | (cm)                                                                                                      | (Enter A, B, or C)                              | water table                              | permeability)                                                                              |                           | (6.11 )                   |                          |
|           | 11                                                                                                                             | 15                                                                                                                          | 150                                                                                     | 150                                                                                                  | 0                                                                                                        | 0                                                                                                         | A                                               | LS                                       | LS                                                                                         | <del></del>               |                           | ]                        |
|           | ENTER                                                                                                                          | ENTER                                                                                                                       | ENTER                                                                                   | ENTER                                                                                                | ENTER                                                                                                    | ENTER                                                                                                     | ENTER                                           | ENTER                                    | ENTER                                                                                      | ENTER                     | ENTER                     | ENTER                    |
| MORE      | Stratum A                                                                                                                      | Stratum A                                                                                                                   | Stratum A                                                                               | Stratum A                                                                                            | Stratum B                                                                                                | Stratum B                                                                                                 | Stratum B                                       | Stratum B                                | Stratum C                                                                                  | Stratum C                 | Stratum C                 | Stratum                  |
| Ψ .       | SCS                                                                                                                            | soil dry                                                                                                                    | soil total                                                                              | soil water-filled                                                                                    | SCS                                                                                                      | soil dry                                                                                                  | soil total porosity,                            | soil water-filled<br>porosity,           | SCS<br>soil type                                                                           | soil dry<br>bulk density, | soil total porosity,      | soil water-f<br>porosity |
|           | soil type                                                                                                                      | bulk density,<br>ρ <sub>ь</sub> <sup>A</sup>                                                                                | porosity,<br>n <sup>A</sup>                                                             | porosity,<br>θ <sub>w</sub> ^                                                                        | Soil type                                                                                                | bulk density,<br>ρ <sub>ь</sub> 8                                                                         | porosity,                                       | ροιοsity,<br>θ <sub>w</sub> <sup>8</sup> | Lookup Soil                                                                                | ρ <sub>b</sub> C          | n <sup>C</sup>            | θ <sub>w</sub> C         |
|           | Parameters                                                                                                                     | (g/cm <sup>3</sup> )                                                                                                        | (unitless)                                                                              | (cm³/cm³)                                                                                            | Parameters                                                                                               | (g/cm³)                                                                                                   | (unitless)                                      | (cm³/cm³)                                | Parameters                                                                                 | (g/cm³)                   | (unitless)                | (cm³/cm                  |
|           |                                                                                                                                |                                                                                                                             |                                                                                         |                                                                                                      |                                                                                                          |                                                                                                           |                                                 |                                          |                                                                                            |                           | (GINEGEO)                 |                          |
|           | LS                                                                                                                             | 1,60                                                                                                                        | 0.370                                                                                   | 0.076                                                                                                | \$                                                                                                       | 1.66                                                                                                      | 0.375                                           | 0.054                                    | s                                                                                          | 1.66                      | 0.375                     | 0.054                    |
| WORE      | ENTER                                                                                                                          | 1,60<br>ENTER                                                                                                               | ENTER                                                                                   | ENTER                                                                                                | S<br>ENTER                                                                                               | 1.66<br>ENTER                                                                                             |                                                 |                                          | ENTER                                                                                      |                           |                           | 0.054                    |
| MORE<br>↓ |                                                                                                                                |                                                                                                                             |                                                                                         |                                                                                                      |                                                                                                          |                                                                                                           | 0.375                                           |                                          | ENTER Average vapor flow rate into bidg.                                                   |                           |                           | 0.054                    |
| MORE ↓    | ENTER<br>Enclosed<br>space<br>floor                                                                                            | ENTER<br>Soil-bidg.<br>pressure                                                                                             | ENTER<br>Enclosed<br>space<br>floor                                                     | ENTER<br>Enclosed<br>space<br>floor                                                                  | ENTER  Enclosed  space                                                                                   | ENTER Floor-wall seam crack                                                                               | 0.375  ENTER Indoor air exchange                | 0.054                                    | ENTER Average vapor flow rate into bldg. OR                                                | 1.66                      |                           | 0.054                    |
| MORE ¥    | ENTER<br>Enclosed<br>space<br>floor<br>thickness,                                                                              | ENTER Soil-bldg. pressure differential,                                                                                     | ENTER<br>Enclosed<br>space<br>floor<br>length,                                          | ENTER<br>Enclosed<br>space<br>floor<br>width,                                                        | ENTER  Enclosed  space height,                                                                           | ENTER Floor-wall seam crack width,                                                                        | 0.375  ENTER Indoor air exchange rate,          | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculate                        | 1.66                      |                           | 0.054                    |
| MORE ¥    | ENTER<br>Enclosed<br>space<br>floor                                                                                            | ENTER<br>Soil-bidg.<br>pressure                                                                                             | ENTER<br>Enclosed<br>space<br>floor                                                     | ENTER<br>Enclosed<br>space<br>floor                                                                  | ENTER  Enclosed  space                                                                                   | ENTER Floor-wall seam crack                                                                               | 0.375  ENTER Indoor air exchange                | 0.054                                    | ENTER Average vapor flow rate into bldg. OR                                                | 1.66                      |                           | 0.054                    |
| MORE<br>↓ | ENTER Enclosed space floor thickness, L <sub>crack</sub>                                                                       | ENTER Soil-bldg. pressure differential, ΔP                                                                                  | ENTER Enclosed space floor length, L <sub>B</sub>                                       | ENTER<br>Enclosed<br>space<br>floor<br>width,<br>W <sub>B</sub>                                      | ENTER  Enclosed space height, H <sub>B</sub>                                                             | ENTER Floor-wall seam crack width, w                                                                      | 0.375  ENTER Indoor air exchange rate, ER       | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat                         | 1.66                      |                           | 0.054                    |
| <u> </u>  | ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)                                                                  | ENTER Soil-bldg, pressure differential, ΔP (g/cm-s²)                                                                        | ENTER Enclosed space floor length, Ls (cm)                                              | ENTER Enclosed space floor width, We (cm)                                                            | ENTER Enclosed space height, H <sub>8</sub> (cm)                                                         | ENTER Floor-wall seam crack width, w (cm)                                                                 | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |
| MORE WORE | ENTER Enclosed space floor thickness, L_crack (cm)  10  ENTER Averaging                                                        | ENTER  Soil-bidg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging                                          | ENTER Enclosed space floor length, L <sub>B</sub> (cm) 1000 ENTER                       | ENTER Enclosed space floor width, Ws (cm) 1000 ENTER                                                 | ENTER  Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target                                     | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard                                             | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |
| MORE      | ENTER Enclosed space floor thickness, L-rack (cm)  10  ENTER Averaging time for                                                | ENTER  Soil-bidg. pressure differential,  ΔP (g/cm-s²)  40  ENTER Averaging time for                                        | ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER Exposure            | ENTER Enclosed space floor width, W <sub>8</sub> (cm)  1000  ENTER  Exposure                         | ENTER  Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for                            | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for                                | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |
| <b>₩</b>  | ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens,                       | ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging time for noncarcinogens,                 | ENTER Enclosed space floor length, Lg (cm)  1000  ENTER  Exposure duration,             | ENTER Enclosed space floor width, We (cm)  1000  ENTER  Exposure frequency,                          | ENTER  Enclosed space height, H <sub>6</sub> (cm)  244  ENTER Target risk for carcinogens,               | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens,                | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |
| MORE      | ENTER Enclosed space floor thickness, L-rack (cm)  10  ENTER Averaging time for                                                | ENTER  Soil-bidg. pressure differential,  ΔP (g/cm-s²)  40  ENTER Averaging time for                                        | ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER Exposure            | ENTER Enclosed space floor width, W <sub>8</sub> (cm)  1000  ENTER  Exposure                         | ENTER  Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for                            | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for                                | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |
| <b>₩</b>  | ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub>       | ENTER  Soil-bidg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, $\Delta T_{NC}$ | ENTER Enclosed space floor length, L <sub>B</sub> (cm) 1000 ENTER Exposure duration, ED | ENTER Enclosed space floor width, We (cm)  1000  ENTER Exposure frequency, EF                        | ENTER  Enclosed space height, H <sub>8</sub> (cm)  244  ENTER Target risk for carcinogens, TR            | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ            | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |
| <b>↓</b>  | ENTER Enclosed space floor thickness, L <sub>crack</sub> (cm)  10  ENTER Averaging time for carcinogens, AT <sub>C</sub> (yrs) | ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)  | ENTER Enclosed space floor length, Ls (cm)  1000 ENTER Exposure duration, EO (yrs)      | ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER  Exposure frequency, EF (days/yr) | ENTER  Enclosed space height, H <sub>8</sub> (cm)  244  ENTER Target risk for carcinogens, TR (unitless) | Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitiess) | 0.375  ENTER Indoor air exchange rate, ER (1/h) | 0.054                                    | ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | 1.66                      |                           | 0.054                    |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                 | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                                            |

| Exposu<br>duration                                   | n, separation,                         | Stratum A<br>soil<br>air-filled<br>porosity,   | Stratum B<br>soil<br>air-filled<br>porosity,                               | Stratum C<br>soil<br>air-filled<br>porosity,                                   | Stratum A<br>effective<br>total fluid<br>saturation,  | Stratum A<br>soil<br>intrinsic<br>permeability,                      | Stratum A<br>soil<br>relative air<br>permeability            | Stratum A<br>soil<br>effective vapor<br>permeability,                     | Thickness of capillary zone,                            | Total porosity in capillary zone,                      | Air-filled<br>porosity in<br>capillary<br>zone,             | Water-filled porosity in capillary zone,                   | Floor-<br>wall<br>seam<br>perimeter, |
|------------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|
| τ                                                    | L <sub>T</sub>                         | θ <sub>a</sub> <sup>A</sup>                    | θ <sub>a</sub> <sup>B</sup>                                                | θ <sub>a</sub> C                                                               | S <sub>te</sub>                                       | K <sub>i</sub>                                                       | k <sub>rg</sub>                                              | Κ <sub>ν</sub>                                                            | L <sub>cz</sub>                                         | n <sub>cz</sub><br>(cm³/cm³)                           | θ <sub>a,cz</sub><br>(cm³/cm³)                              | θ <sub>w,cz</sub><br>(cm³/cm³)                             | X <sub>crack</sub>                   |
| (sec)                                                | (cm)                                   | (cm <sup>3</sup> /cm <sup>3</sup> )            | (cm <sup>3</sup> /cm <sup>3</sup> )                                        | (cm³/cm³)                                                                      | (cm³/cm³)                                             | (cm²)                                                                | (cm²)                                                        | (cm²)                                                                     | (cm)                                                    | (cm /cm )                                              | (cm /cm )                                                   | (CHI /CHI )                                                | (cm)                                 |
| 9.46E+0                                              | 8 135                                  | 0.294                                          | 0.321                                                                      | 0.321                                                                          | 0.084                                                 | 1.63E-08                                                             | 0.955                                                        | 1.55E-08                                                                  | 18.75                                                   | 0.37                                                   | 0.067                                                       | 0.303                                                      | 4,000                                |
|                                                      |                                        |                                                |                                                                            |                                                                                |                                                       |                                                                      |                                                              |                                                                           |                                                         |                                                        | **                                                          |                                                            |                                      |
| Bldg.<br>ventilation<br>rate,                        | Area of enclosed space on below grade, | Crack-<br>to-total<br>area<br>ratio,           | Crack<br>depth<br>below<br>grade,                                          | Enthalpy of<br>vaporization at<br>ave. groundwater<br>temperature,             | Henry's law constant at ave. groundwater temperature, | Henry's law<br>constant at<br>ave. groundwater<br>temperature,       | Vapor<br>viscosity at<br>ave. soil<br>temperature,           | Stratum<br>A<br>effective<br>diffusion<br>coefficient,                    | Stratum<br>B<br>effective<br>diffusion<br>coefficient,  | Stratum<br>C<br>effective<br>diffusion<br>coefficient, | Capillary<br>zone<br>effective<br>diffusion<br>coefficient, | Total<br>overall<br>effective<br>diffusion<br>coefficient, | Diffusion<br>path<br>length,         |
| Q <sub>building</sub>                                |                                        | η                                              | $Z_{crack}$                                                                | $\Delta H_{v,TS}$                                                              | H <sub>TS</sub>                                       | H' <sub>TS</sub>                                                     | $\mu_{TS}$                                                   | Deff                                                                      | D <sub>ell</sub> <sup>B</sup>                           | Deff                                                   | Deff                                                        | Deff⊥                                                      | L <sub>d</sub>                       |
| (cm³/s                                               | ) (cm²)                                | (unitless)                                     | (cm)                                                                       | (cal/mol)                                                                      | (atm-m³/mol)                                          | (unitless)                                                           | (g/cm-s)                                                     | (cm <sup>2</sup> /s)                                                      | (cm²/s)                                                 | (cm²/s)                                                | (cm²/s)                                                     | (cm²/s)                                                    | (cm)                                 |
| 1.69E+0                                              | 4 1.06E+06                             | 3.77E-04                                       | 15                                                                         | 8,544                                                                          | 5.05E-03                                              | 2.17E-01                                                             | 1.76E-04                                                     | 9.79E-03                                                                  | 0.00E+00                                                | 0.00E+00                                               | 7.83E-05                                                    | 5.37E-04                                                   | 135                                  |
| Convecti<br>path<br>length<br>L <sub>p</sub><br>(cm) | vapor                                  | Crack<br>radius,<br>r <sub>crack</sub><br>(cm) | Average vapor flow rate into bldg., Q <sub>soll</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm²)      | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³)                  |                                                             |                                                            |                                      |
|                                                      |                                        |                                                | T 0 00 0 0 0                                                               |                                                                                |                                                       | 0 555 00                                                             | 1 0075 01                                                    | 1 5 105 00                                                                | 4.504                                                   | 0.55.66                                                | 1                                                           |                                                            |                                      |
| 15                                                   | 2.17E+02                               | 0.10                                           | 8.33E+01                                                                   | 9.79E-03                                                                       | 4.00E+02                                              | 2.57E+92                                                             | 2.37E-Q4                                                     | 5.13E-02                                                                  | 1.1E-04                                                 | 3.5E-02                                                |                                                             |                                                            |                                      |

**RESULTS SHEET** 

## INCREMENTAL RISK CALCULATIONS:

|                 |               |             | _           |             |   | Incremental  | Hazard                                |
|-----------------|---------------|-------------|-------------|-------------|---|--------------|---------------------------------------|
| Indoor          | Indoor        | Risk-based  | Pure        | Final       |   | risk from    | quotient                              |
| exposure        | exposure      | indoor      | component   | indoor      |   | vapor        | from vapor                            |
| groundwater     | groundwater   | exposure    | water       | exposure    |   | intrusion to | intrusion to                          |
| conc.,          | conc.,        | groundwater | solubility, | groundwater | • | indoor air,  | indoor air,                           |
| carcinogen      | noncarcinogen | conc.,      | S           | conc.,      |   | carcinogen   | noncarcinogen                         |
| (μg/ <b>L</b> ) | (μg/L)        | (μg/L)      | (μg/L)      | (μg/L)      |   | (unitless)   | (unitless)                            |
|                 | ·             | <del></del> | ·           |             |   | ·            | · · · · · · · · · · · · · · · · · · · |
| NA NA           | NA            | NA          | 1.47E+06    | NA          |   | 2.3E-06      | 1.4E-03                               |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) |       | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 4.31E-01                                                            | 7.11E+02                                                               | 4.31E-01                                                            | 1.47E+06                                                 | 4.31E-01                                        | -<br> | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| 3W-ADV        | CALCULATE RIS                    | SK-BASED GROUN              | IDWATER CONG                   | CENTRATION (                             | enter "X" in "YES" b             | ox)                                          |                                |                                          |                                       |                                   |                                 |                                          |
|---------------|----------------------------------|-----------------------------|--------------------------------|------------------------------------------|----------------------------------|----------------------------------------------|--------------------------------|------------------------------------------|---------------------------------------|-----------------------------------|---------------------------------|------------------------------------------|
| on 3.1; 02/04 |                                  | YES                         | ·                              | 7                                        |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
| Reset to      |                                  | 765                         | OR                             | نـ                                       |                                  |                                              |                                |                                          | *                                     |                                   |                                 |                                          |
| Defaults      | CALCULATE INC                    | CREMENTAL RISK              |                                | L GROUNDWA                               | TER CONCENTRA                    | TION (enter "Y" in "YE                       | S" box and initial grou        | andurator sona h                         | nia)                                  |                                   |                                 |                                          |
|               |                                  |                             |                                | - C.1001121171                           | , LIN GONGEITHION                | non (enter X III 12                          | o box and miliar grou          | mowater conc. of                         | siow)                                 |                                   |                                 |                                          |
|               |                                  | YES                         | X                              |                                          |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | ENTER                            | ENTER                       |                                |                                          |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | Chaminal                         | Initial                     |                                |                                          |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | Chemical CAS No.                 | groundwater conc.,          |                                |                                          |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | (numbers only,                   | C <sub>w</sub>              |                                |                                          |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | no dashes)                       | (μg/L)                      |                                |                                          | Chemical                         |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | 79016                            | 1.00E+00                    |                                |                                          | Trichloroethy                    | lene                                         | !                              |                                          |                                       | *                                 |                                 |                                          |
|               |                                  |                             |                                |                                          |                                  | iono                                         |                                |                                          |                                       |                                   |                                 |                                          |
|               | ENTER                            | ENTER<br>Depth              | ENTER                          | ENTER                                    | ENTER                            | ENTER                                        | ENTER                          | ENTER                                    | ENTER                                 | ···                               | ENTER                           | 7                                        |
| MORE          | Average                          | below grade                 |                                | rotals mi                                | ust add up to value<br>Thickness | of L <sub>WT</sub> (cell G28) Thickness      | **                             |                                          | Soil                                  |                                   |                                 | ļ                                        |
| <b>.</b>      | soil/                            | to bottom                   | Depth                          | Thickness                                | of soil                          | of soil                                      | Soil                           |                                          | stratum A<br>SCS                      |                                   | User-defined<br>stratum A       |                                          |
|               | groundwater<br>temperature,      | of enclosed<br>space floor, | below grade<br>to water table, | of soil<br>stratum A                     | stratum B,<br>(Enter value or 0) | stratum C,                                   | stratum                        | scs                                      | soil type                             |                                   | soil vapor                      |                                          |
|               | Ts                               | L <sub>F</sub>              | L <sub>WT</sub>                | h <sub>A</sub>                           | h <sub>B</sub>                   | (Enter value or 0)<br>h <sub>C</sub>         | directly above<br>water table, | soil type<br>directly above              | (used to estimate soil vapor          | OR                                | permeability,<br>k <sub>v</sub> | 1                                        |
|               | (°C)                             | (cm)                        | (cm)                           | (cm)                                     | (cm)                             | (cm)                                         | (Enter A, B, or C)             | water table                              | permeability)                         |                                   | (cm²)                           |                                          |
|               | 11                               | 15                          | 150                            | 150                                      | Ó                                | 0                                            |                                |                                          |                                       | 1                                 |                                 | 1                                        |
|               |                                  | <u> </u>                    |                                | 130                                      | <u> </u>                         | <u>.                                    </u> | A                              | <u>LS</u>                                | LS                                    | ····                              |                                 | 1                                        |
|               | ENTER                            | ENTER                       | ENTER                          | ENTER                                    | ENTER                            | ENTER                                        | ENTER                          | ENTER                                    | ENTER                                 |                                   |                                 |                                          |
| MORE          | Stratum A                        | Stratum A                   | Stratum A                      | Stratum A                                | Stratum B                        | Stratum B                                    | Stratum B                      | Stratum B                                | Stratum C                             | ENTER<br>Stratum C                | ENTER<br>Stratum C              | ENTER<br>Stratum C                       |
| •             | SCS<br>soil type                 | soil dry<br>bulk density,   | soil total porosity,           | soil water-filled                        |                                  | soil dry                                     | soil total                     | soil water-filled                        | scs                                   | soil dry                          | soil total                      | soil water-filled                        |
|               | Lookup Soil                      | ρ <sub>b</sub> <sup>A</sup> | n <sup>A</sup>                 | porosity,<br>θ <sub>ω</sub> <sup>A</sup> | Soil type  Lookup Soil           | bulk density,<br>ρ <sub>ь</sub> <sup>B</sup> | porosity,<br>n <sup>e</sup>    | porosity,<br>θ <sub>ω</sub> <sup>B</sup> | Soil type  Lookup Soil                | bulk density,<br>ρ <sub>ι</sub> c | porosity,<br>n <sup>C</sup>     | porosity,<br>θ <sub>w</sub> <sup>C</sup> |
|               | Parameters                       | (g/cm³)                     | (unitless)                     | (cm <sup>3</sup> /cm <sup>3</sup> )      | Parameters                       | (g/cm <sup>3</sup> )                         | (unitless)                     | (cm³/cm³)                                | Parameters                            | ρ <sub>δ</sub><br>(g/cm³)         | (unitless)                      | e"-<br>(cm³/cm³)                         |
|               | LS                               | 1.60                        | 0.030                          | 0.070                                    |                                  |                                              |                                |                                          |                                       |                                   |                                 |                                          |
|               | <u> </u>                         | 1.60                        | 0.370                          | 0.076                                    | S                                | 1.66                                         | 0.375                          | 0.054                                    | S                                     | 1.66                              | 0.375                           | 0.054                                    |
| MORE          | ENTER                            | ENTER                       | ENTER                          | ENTER                                    | ENTER                            | ENTER                                        | ENTER                          |                                          | ENTER                                 |                                   |                                 |                                          |
| WORE +        | Enclosed space                   | Soil-bldg.                  | Enclosed<br>space              | Enclosed<br>space                        | Enclosed                         | Floor-wall                                   | Indoor                         |                                          | Average vapor<br>flow rate into bldg. |                                   |                                 |                                          |
|               | floor                            | pressure                    | floor                          | floor                                    | space                            | seam crack                                   | air exchange                   |                                          | OR                                    |                                   |                                 |                                          |
|               | thickness,<br>L <sub>crack</sub> | differential,<br>ΔP         | length,                        | width,                                   | height,                          | width,                                       | rate,                          | L                                        | eave blank to calcula                 | te                                |                                 |                                          |
|               | (cm)                             | (g/cm-s²)                   | L <sub>B</sub><br>(cm)         | W <sub>B</sub><br>(cm)                   | H <sub>B</sub><br>(cm)           | w<br>(cm)                                    | ER<br>(1/h)                    |                                          | Q <sub>soil</sub>                     |                                   |                                 |                                          |
|               |                                  |                             |                                |                                          |                                  |                                              | (771)                          | •                                        | (L/m)                                 |                                   |                                 |                                          |
|               | 10                               | 40                          | 1000                           | 1000                                     | 244                              | 0.1                                          | 0.25                           | ]                                        | 5                                     |                                   |                                 |                                          |
| MORE          | ENTER                            | ENTER                       | ENTER                          | ENTER                                    | ENTER                            | ENTER                                        |                                |                                          |                                       |                                   |                                 |                                          |
|               | Averaging time for               | Averaging<br>time for       | Exposure                       | Evenaura                                 | Target                           | Target hazard                                |                                |                                          |                                       |                                   |                                 |                                          |
|               |                                  | noncarcinogens,             | duration,                      | Exposure<br>frequency,                   | risk for<br>carcinogens,         | quotient for<br>noncarcinogens,              |                                |                                          |                                       |                                   |                                 |                                          |
|               | AT <sub>C</sub>                  | AT <sub>NC</sub>            | ED                             | EF                                       | TR                               | THQ                                          |                                |                                          |                                       |                                   |                                 |                                          |
|               | (yrs)                            | (yrs)                       | (yrs)                          | (days/yr)                                | (unitless)                       | (unitless)                                   |                                |                                          |                                       |                                   |                                 |                                          |
|               | 70                               | 30                          | 30                             | 350                                      | 1.0E-06                          | 1                                            |                                |                                          |                                       |                                   |                                 |                                          |
|               |                                  |                             |                                |                                          | Used to calcu                    | ilate risk-based                             |                                |                                          |                                       |                                   |                                 |                                          |
| END           |                                  |                             |                                |                                          |                                  | concentration.                               |                                |                                          |                                       | •                                 |                                 |                                          |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m <sup>3</sup> /mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                                  | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

| Exposure duration, τ (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_e^A$<br>$(cm^3/cm^3)$ | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>$(cm^3/cm^3)$ | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> <sup>c</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum A effective total fluid saturation, S <sub>te</sub> (cm³/cm³)                             | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm²)                               | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)                      | Total porosity in capillary zone, n <sub>cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> )                | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)                                  | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm <sup>3</sup> /cm <sup>3</sup> ) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 9.46E+08                                                                       | 135                                                                                     | 0.294                                                                         | 0.321                                                                         | 0.321                                                                                                              | 0.084                                                                                             | 1.63E-08                                                                                | 0.955                                                                                       | 4.555.00                                                                                           |                                                                                    |                                                                                                      | ,                                                                                                   |                                                                                              |                                                                    |
|                                                                                |                                                                                         |                                                                               |                                                                               | 0.021                                                                                                              | 0.004                                                                                             | 1.03E-06                                                                                | 1 0.955                                                                                     | 1.55E-08                                                                                           | 18.75                                                                              | 0.37                                                                                                 | 0.067                                                                                               | 0.303                                                                                        | 4,000                                                              |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                       | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)               | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)                              | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H'Ts (unitless)                   | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm²/s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> B (cm <sup>2</sup> /s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, Deff <sub>T</sub> (cm <sup>2</sup> /s)        | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                      | 15                                                                            | 8,544                                                                                                              | 5.05E-03                                                                                          | 2.17E-01                                                                                | 1.76E-04                                                                                    | 9.79E-03                                                                                           | 0.005.00                                                                           | 0.005.00                                                                                             | 7.00                                                                                                |                                                                                              |                                                                    |
| Convection path length, Lp (cm)                                                | Source vapor conc., C <sub>source</sub> (µg/m³)                                         | Crack radius, r <sub>crack</sub> (cm)                                         | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm³/s)                 | Crack effective diffusion coefficient, D <sup>crack</sup> (cm²/s)                                                  | Area of crack, A <sub>crack</sub> (cm <sup>2</sup> )                                              | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                    | infinite source indoor attenuation coefficient, α (unitless)                                | Infinite source bidg. conc., C <sub>building</sub> (µg/m³)                                         | Unit risk factor, URF (µg/m³)-1                                                    | Reference conc., RfC (mg/m³)                                                                         | 7.83E-05                                                                                            | 5.37E-04                                                                                     | 135                                                                |
| END                                                                            |                                                                                         |                                                                               |                                                                               |                                                                                                                    |                                                                                                   |                                                                                         |                                                                                             |                                                                                                    |                                                                                    |                                                                                                      |                                                                                                     |                                                                                              |                                                                    |
|                                                                                |                                                                                         |                                                                               |                                                                               |                                                                                                                    |                                                                                                   |                                                                                         |                                                                                             |                                                                                                    |                                                                                    |                                                                                                      |                                                                                                     |                                                                                              |                                                                    |

**RESULTS SHEET** 

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final indoor exposure groundwater conc., (µg/L) | Incremental<br>risk from<br>vapor<br>intrusion to<br>indoor air,<br>carcinogen<br>(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA NA                                                               | NA NA                                                   | NA                                                   | 1.47E+06                                                 | NA                                              | 4.2E-08                                                                                      | 8.2E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2.37E+01                                                            | 1.22E+04                                                               | 2.37E+01                                             | 1.47E+06                                                 | 2.37E+01                                        | <br>NA NA                                                                  | I NA                                                                         |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

| GW-ADV           | CALCULATE RIS         | SK-BASED GROU            | INDWATER CONC        | ENTRATION (e                   | inter "X" in "YES" be | ox)                                   |                           |                                |                                |                           |                             |                             |
|------------------|-----------------------|--------------------------|----------------------|--------------------------------|-----------------------|---------------------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------|-----------------------------|-----------------------------|
| rsion 3.1; 02/04 |                       |                          |                      | ,                              |                       |                                       |                           |                                |                                |                           |                             |                             |
| Reset to         |                       | YES                      | L                    | J                              |                       | •                                     |                           |                                |                                |                           |                             |                             |
| Defaults         | CALCULATE IN          | ODEMENTAL DIO            | OR                   |                                |                       |                                       |                           |                                |                                |                           |                             |                             |
|                  | CALCULATE INC         | CREMENTAL RISE           | KS FROM ACTUAL       | . GROUNDWA                     | TER CONCENTRAT        | TiON (enter "X" in "YE                | S" box and initial grou   | undwater conc. be              | low)                           |                           |                             |                             |
|                  |                       | YES                      | X                    | 1                              |                       |                                       |                           |                                |                                |                           |                             |                             |
|                  |                       |                          |                      | • .                            |                       |                                       |                           |                                |                                |                           |                             |                             |
|                  | ENTER                 | ENTER                    |                      |                                |                       |                                       |                           |                                |                                |                           |                             |                             |
|                  | Chemical              | Initial<br>groundwater   |                      |                                |                       |                                       |                           |                                |                                |                           |                             |                             |
|                  | CAS No.               | conc.,                   |                      |                                |                       |                                       |                           | •                              |                                |                           |                             |                             |
|                  | (numbers only,        | Cw                       |                      |                                | •                     |                                       |                           |                                |                                |                           |                             |                             |
|                  | no dashes)            | (μg/L)                   | _                    |                                | Chemical              |                                       |                           |                                |                                |                           |                             |                             |
|                  | 79016                 | 1.00E+00                 | 7                    |                                | Trichleseethyd        |                                       | 1                         |                                |                                |                           |                             |                             |
|                  |                       | 1                        | J                    |                                | Trichloroethyl        | епе                                   |                           | •                              |                                |                           |                             |                             |
|                  | ENTER                 | ENTER                    | ENTER                | ENTER                          | ENTER                 | ENTER                                 | ENTER                     | ENTER                          | ENTER                          |                           | ENTER                       | 7                           |
|                  |                       | Depth                    |                      | Totals mu                      | ust add up to value   |                                       | ]                         |                                | Soil                           |                           | LITTLE                      | 1                           |
| MORE ¥           | Average<br>soil/      | below grade              |                      |                                | Thickness             | Thickness                             | ]_                        |                                | stratum A                      |                           | User-defined                |                             |
| ا                | groundwater           | to bottom<br>of enclosed | Depth<br>below grade | Thickness<br>of soil           | of soil<br>stratum B, | of soil<br>stratum C,                 | Soil                      | 000                            | scs                            |                           | stratum A                   |                             |
|                  | temperature,          | space floor,             | to water table,      | stratum A,                     | (Enter value or 0)    |                                       | stratum<br>directly above | SCS<br>soil type               | soil type<br>(used to estimate | OR                        | soil vapor<br>permeability, |                             |
| •                | Ts                    | LF                       | Lwt                  | h <sub>A</sub>                 | he                    | h <sub>c</sub>                        | water table,              | directly above                 | soil vapor                     | OK.                       | k <sub>v</sub>              |                             |
|                  | (°C)                  | (cm)                     | (cm)                 | (cm) .                         | (cm)                  | (cm)                                  | (Enter A, B, or C)        | water table                    | permeability)                  |                           | (cm²)                       | į                           |
|                  | 11                    | 15                       | 150                  | 150                            | 0                     | 0                                     |                           |                                |                                |                           |                             | ]                           |
|                  | <u> </u>              |                          | 1 130                | 150                            | U U                   |                                       | <u> </u>                  | LS                             | LS                             | <u> </u>                  | <u> </u>                    | ļ                           |
|                  |                       |                          |                      |                                |                       |                                       |                           |                                |                                |                           |                             |                             |
| MORE             | ENTER<br>Stratum A    | ENTER                    | ENTER                | ENTER                          | ENTER                 | ENTER                                 | ENTER                     | ENTER                          | ENTER                          | ENTER                     | ENTER                       | ENTER                       |
| ₩.O.K.E          | SCS                   | Stratum A soil dry       | Stratum A soil total | Stratum A<br>soil water-filled | Stratum B<br>SCS      | Stratum B<br>soil dry                 | Stratum B<br>soil total   | Stratum 8<br>soil water-filled | Stratum C                      | Stratum C                 | Stratum C                   | Stratum C                   |
|                  | soil type             | bulk density,            | porosity,            | porosity,                      | soil type             | bulk density,                         | porosity,                 | porosity,                      | SCS<br>soil type               | soil dry<br>bulk density, | soil total porosity,        | soil water-filled porosity, |
|                  | Lookup Soil           | $\rho_b^A$               | n <sup>A</sup> .     | θ.,^                           | Lookup Soil           | ρь <sup>B</sup>                       | n <sup>B</sup>            | θ <sub>w</sub> B               | Lookup Soil                    | ρ <sub>b</sub> C          | n <sup>c</sup>              | θ <sub>w</sub> C            |
|                  | Parameters            | (g/cm³)                  | (unitless)           | (cm³/cm³)                      | Parameters            | (g/cm³)                               | (unitless)                | (cm³/cm³)                      | Parameters                     | (g/cm³)                   | (unitless)                  | (cm³/cm³)                   |
|                  | LS                    | 1.60                     | 0.370                | 0.076                          |                       | 1.00                                  |                           |                                |                                |                           | V                           |                             |
|                  |                       | 1.00                     | 0.370                | 0.076                          | S                     | 1.66                                  | 0.375                     | 0.054                          | s                              | 1.66                      | 0.375                       | 0.054                       |
|                  | ENTER                 | ENTER                    | ENTER                | ENTER                          | ENTER                 | ENTER                                 | ENTER                     |                                | ENTER                          |                           |                             |                             |
| MORE             | Enclosed<br>space     | C-11 514-                | Enclosed             | Enclosed                       |                       |                                       |                           |                                | Average vapor                  |                           |                             |                             |
|                  | floor                 | Soil-bldg.<br>pressure   | space                | space<br>floor                 | Enclosed<br>space     | Floor-wall<br>seam crack              | Indoor<br>air exchange    |                                | flow rate into bldg.           |                           |                             |                             |
|                  | thickness,            | differential,            | length,              | width,                         | height,               | width,                                | rate,                     | Le                             | OR<br>eave blank to calcula    | te .                      |                             |                             |
|                  | L <sub>crack</sub>    | ΔP                       | LB                   | Wa                             | H <sub>B</sub>        | w                                     | ER                        |                                | Q <sub>soil</sub>              |                           |                             |                             |
|                  | (cm)                  | (g/cm-s²)                | (cm)                 | (cm)                           | (cm)                  | (cm)                                  | (1/h)                     | •                              | (L/m)                          |                           |                             |                             |
|                  | 10                    | 40                       | 1000                 | 1000                           | 300                   | 0.1                                   | 0.83                      | 7                              |                                |                           |                             |                             |
|                  |                       |                          | 1                    | 1000                           | 300                   | <u> </u>                              | 0.03                      | 1                              | 5                              |                           |                             |                             |
| MORE             | ENTER                 | ENTER                    | ENTER                | ENTER                          | ENTER                 | ENTER                                 |                           |                                |                                |                           |                             |                             |
|                  | Averaging<br>time for | Averaging<br>time for    | Exposure             | Exposure                       | Target<br>risk for    | Target hazard                         |                           |                                |                                |                           |                             |                             |
|                  |                       | noncarcinogens,          | duration,            | frequency,                     | carcinogens,          | quotient for<br>noncarcinogens,       |                           |                                |                                |                           |                             |                             |
|                  | AT <sub>C</sub>       | ATNC                     | ED                   | EF                             | TR                    | THQ                                   |                           |                                |                                |                           |                             |                             |
|                  | (yrs)                 | (yrs)                    | (yrs)                | (days/yr)                      | (unitless)            | (unitiess)                            |                           |                                |                                |                           |                             |                             |
|                  | 70                    | 25                       | 25                   | 250                            | 1.0E-06               | 1                                     |                           |                                |                                |                           |                             |                             |
|                  | <del></del>           |                          | ·                    |                                | 1,00-70               | · · · · · · · · · · · · · · · · · · · |                           |                                |                                |                           |                             |                             |
| END              |                       |                          |                      |                                | Used to calcul        |                                       |                           |                                |                                |                           |                             |                             |
| L END            |                       |                          |                      | ı                              | groundwater :         | concentration                         |                           |                                |                                |                           |                             |                             |

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

| Exposure duration, τ (sec)                                        | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)  | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c<br>(cm³/cm³)         | Stratum A effective total fluid saturation, Ste (cm³/cm³)                                         | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>l</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm²) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²)                                | Thickness of capillary zone, L <sub>cz</sub> (cm)                                  | Total porosity in capillary zone, n <sub>cz</sub> (cm³/cm³) | Air-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>e,cz</sub><br>(cm³/cm³)                          | Water-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>w,cz</sub><br>(cm³/cm³)               | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                          | 135                                                                                     | 0.294                                                                                               | 0.321                                                                      | 0.321                                                                                 | 0.084                                                                                             | 1.63E-08                                                                                | 0.955                                                                          | 1.55E-08                                                                                                        | 18.75                                                                              | 0.37                                                        | 0.067                                                                                                      | 0.303                                                                                             | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm³/s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                                             | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H'Ts' (unitless)                  | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µts<br>(g/cm-s)          | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> B (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, Deff c (cm²/s)   | Capillary<br>zone<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> cz<br>(cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 6.92E+04                                                          | 1.06E+06                                                                                | 3.77E-04                                                                                            | 15                                                                         | 8,544                                                                                 | 5.05E-03                                                                                          | 2.17E-01                                                                                | 1.76E-04                                                                       | 9.79E-03                                                                                                        | 0.00E+00                                                                           | 0.00E+00                                                    | 7.83E-05                                                                                                   | 5.37E-04                                                                                          |                                                                    |
| Convection path length, L <sub>p</sub> (cm)                       | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                                                      | Average vapor flow rate into bidg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm²/s)      | Area of crack, A <sub>crack</sub> (cm <sup>2</sup> )                                              | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                    | Infinite source indoor attenuation coefficient, α (unitless)                   | Infinite source bldg. conc., C <sub>building</sub> (µg/m³)                                                      | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup>                            | Reference<br>conc.,<br>RfC<br>(mg/m³)                       | /.63E-U5                                                                                                   | 3.3/E-U4                                                                                          | 135                                                                |
| 15                                                                | 2.17E+02                                                                                | 0.10                                                                                                | 8.33E+01                                                                   | 9.79E-03                                                                              | 4.00E+02                                                                                          | 2.57E+92                                                                                | 5.81E-05                                                                       | 1.26E-02                                                                                                        | 1.1E-04                                                                            | 3.5E-02                                                     |                                                                                                            |                                                                                                   |                                                                    |

#### **RESULTS SHEET**

#### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

### **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final indoor exposure groundwater conc., (µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA NA                                                   | NA                                                   | 1.47E+06                                                 | NA                                              | 3.4E-07                                                                    | 2.5E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2.96E+00                                                            | 4.06E+03                                                               | 2.96E+00                                             | 1.47E+06                                                 | 2.96E+00                                                       | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| GW-ADV         | CALCULATE RIS               | SK-BASED GROUI              | NDWATER CONC                       | ENTRATION (e                          | nter "X" in "YES" bo             | x)                                   |                                |                                     |                                       |                       |                                       |                                |
|----------------|-----------------------------|-----------------------------|------------------------------------|---------------------------------------|----------------------------------|--------------------------------------|--------------------------------|-------------------------------------|---------------------------------------|-----------------------|---------------------------------------|--------------------------------|
| ion 3.1; 02/04 |                             | YES                         | F                                  | 1                                     |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
| Reset to       |                             |                             | OR                                 |                                       |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
| Defaults       | CALCULATE IN                | CREMENTAL RISK              | S FROM ACTUAL                      | . GROUNDWA                            | TER CONCENTRAT                   | ION (enter "X" in "YE                | S" box and initial grou        | ndwater conc. be                    | elow)                                 |                       |                                       |                                |
|                |                             | YES                         | X                                  | 7                                     |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
|                |                             |                             |                                    | _                                     |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
|                | ENTER                       | ENTER<br>Initial            |                                    |                                       | •                                |                                      |                                |                                     |                                       |                       |                                       |                                |
|                | Chemical                    | groundwater                 |                                    |                                       |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
|                | CAS No. (numbers only,      | conc.,<br>C <sub>w</sub>    |                                    |                                       |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
|                | no dashes)                  | (μg/L)                      | _                                  |                                       | Chemical                         |                                      |                                |                                     |                                       |                       |                                       |                                |
|                | 79016                       | 1.00E+00                    | ] .                                |                                       | Trichloroethyle                  | ene                                  |                                |                                     |                                       |                       |                                       |                                |
|                | ENTER                       | ENTER                       | ENTER                              | ENTER                                 | ENTER                            | ENTER                                | ENTER                          | ENTER                               | ENTER                                 |                       | ENTER                                 | 1                              |
| MORE           | Average                     | Depth<br>below grade        |                                    | Totals mu                             | ust add up to value o            |                                      | · .                            |                                     | Soil                                  |                       | User-defined                          | <b>.</b>                       |
| ₩ V            | soil/                       | to bottom                   | Depth                              | Thickness                             | of soil                          | Thickness<br>of soil                 | Soil                           |                                     | stratum A<br>SCS                      |                       | stratum A                             |                                |
|                | groundwater<br>temperature, | of enclosed<br>space floor, | below grade                        | of soil                               | stratum B,<br>(Enter value or 0) | stratum C,                           | stratum                        | SCS                                 | soil type                             | 00                    | soil vapor                            |                                |
|                | T <sub>S</sub>              | Space 1001,                 | to water table,<br>L <sub>wt</sub> | stratum A,                            | (Enter value or 0)               | (Enter value or 0)<br>h <sub>C</sub> | directly above<br>water table, | soil type<br>directly above         | (used to estimate soil vapor          | OR                    | permeability,<br>k <sub>v</sub>       |                                |
|                | (°C)                        | (cm)                        | (cm)                               | (cm)                                  | (cm)                             | (cm)                                 | (Enter A, B, or C)             | water table                         | permeability)                         |                       | (cm <sup>2</sup> )                    |                                |
|                | 11                          | 15                          | 150                                | 150                                   | 0                                | 0                                    | A                              | LS                                  | LS                                    |                       | · · · · · · · · · · · · · · · · · · · |                                |
|                |                             |                             |                                    |                                       |                                  |                                      |                                |                                     |                                       |                       |                                       | •                              |
|                | ENTER                       | ENTER                       | ENTER                              | ENTER                                 | ENTER                            | ENTER                                | ENTER                          | ENTER                               | ENTER                                 | ENTER                 | ENTER                                 | ENTER                          |
| MORE ¥         | Stratum A<br>SCS            | Stratum A soil dry          | Stratum A soil total               | Stratum A<br>soil water-filled        | Stratum B<br>SCS                 | Stratum B<br>soil dry                | Stratum B<br>soil total        | Stratum B soil water-filled         | Stratum C<br>SCS                      | Stratum C<br>soil dry | Stratum C<br>soil total               | Stratum C<br>soil water-filled |
|                | soil type                   | bulk density,               | porosity,                          | porosity,                             | soil type                        | bulk density,                        | porosity,                      | porosity,                           | soil type                             | bulk density,         | porosity,                             | porosity,                      |
|                | Lookup Soil<br>Parameters   | ρ,Α                         | n <sup>A</sup>                     | θ,, Α                                 | Lookup Soil<br>Parameters        | ρ <sub>6</sub> 8                     | u <sub>e</sub>                 | θ, Β                                | Lookup Soil<br>Parameters             | $\rho_b^{C}$          | uc                                    | θ <sub>w</sub> C               |
|                |                             | (g/cm³)                     | (unitless)                         | (cm <sup>3</sup> /cm <sup>3</sup> )   |                                  | (g/cm³)                              | (unitless)                     | (cm <sup>3</sup> /cm <sup>3</sup> ) | ( ) distribution                      | (g/cm <sup>3</sup> )  | (unitless)                            | (cm³/cm³)                      |
|                | LS                          | 1.60                        | 0.370                              | 0.076                                 | S                                | 1.66                                 | 0.375                          | 0.054                               | s                                     | 1.66                  | 0.375                                 | 0.054                          |
| ·              | ENTER                       | ENTER                       | ENTER                              | ENTER                                 | ENTER                            | ENTER                                | ENTER                          |                                     | ENTER                                 |                       |                                       |                                |
| MORE .         | Enclosed<br>space           | Soil-bldg.                  | Enclosed space                     | Enclosed space                        | Enclosed                         | Floor-wall                           | Indoor                         |                                     | Average vapor<br>flow rate into bldg. |                       |                                       |                                |
| L              | floor                       | pressure                    | floor                              | floor                                 | space                            | seam crack                           | air exchange                   |                                     | OR                                    |                       |                                       |                                |
|                | thickness,                  | differential,               | length,                            | width,                                | height,                          | width,                               | rate,                          | L                                   | eave blank to calculat                | te                    |                                       |                                |
|                | L <sub>creck</sub><br>(cm)  | ΔP<br>(g/cm-s²)             | L <sub>B</sub>                     | W <sub>B</sub>                        | H <sub>B</sub><br>(cm)           | w<br>(cm)                            | ER<br>(1/h)                    |                                     | Q <sub>soi</sub><br>(L/m)             |                       |                                       |                                |
|                |                             |                             |                                    |                                       |                                  |                                      |                                | •                                   |                                       |                       |                                       |                                |
|                | 10                          | 40 .                        | 1000                               | 1000                                  | 300                              | 0.1                                  | 0.83                           | j ·                                 | 5                                     |                       |                                       |                                |
| MORE           | ENTER                       | ENTER                       | ENTER                              | ENTER                                 | ENTER                            | ENTER                                |                                |                                     |                                       |                       |                                       |                                |
| <b>—</b>       | Averaging<br>time for       | Averaging<br>time for       | Exposure                           | Exposure                              | Target<br>risk for               | Target hazard<br>quotient for        |                                |                                     |                                       |                       |                                       |                                |
|                | carcinogens,                | noncarcinogens,             | duration,                          | frequency,                            | carcinogens,                     | noncarcinogens,                      |                                |                                     | •                                     |                       |                                       |                                |
|                | AT <sub>C</sub><br>(yrs)    | AT <sub>NC</sub><br>(yrs)   | ED<br>(yrs)                        | ЕF<br>(days/уг)                       | TR<br>(unitless)                 | THQ<br>(unitless)                    |                                |                                     |                                       |                       |                                       |                                |
|                |                             | ~                           |                                    | · · · · · · · · · · · · · · · · · · · |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
| •              | 70                          | 25                          | 25                                 | 250                                   | 1.0E-06                          | 1                                    |                                |                                     |                                       |                       |                                       |                                |
|                |                             |                             |                                    |                                       |                                  |                                      |                                |                                     |                                       |                       |                                       |                                |
| END            |                             |                             |                                    |                                       |                                  | late risk-based concentration.       |                                |                                     | •                                     |                       |                                       |                                |

## CHEMICAL PROPERTIES SHEET

| (cm/s) (cm/s) (atri-in/mol) ( c) (cal/mol) ( k) (cm/g) (mg/L)       | (μg/m <sup>3</sup> ) <sup>-1</sup> | (mg/m³) |
|---------------------------------------------------------------------|------------------------------------|---------|
| 7.90E-02 9.10E-06 1.03E-02 25 7,505 360.36 544.20 1.66E+02 1.47E+03 | 2.0E-06                            | 6.0E-01 |

#### INTERMEDIATE CALCULATIONS SHEET

|   | Exposure duration                                                 | Source-<br>building<br>separation,                                                      | Stratum A<br>soil<br>air-filled<br>porosity,            | Stratum B<br>soil<br>air-filled<br>porosity,                               | Stratum C<br>soil<br>air-filled<br>porosity,                                                  | Stratum A<br>effective<br>total fluid<br>saturation,                                                           | Stratum A<br>soil<br>intrinsic<br>permeability,                                                  | Stratum A<br>soil<br>relative air<br>permeability,                    | Stratum A<br>soil<br>effective vapor<br>permeability,                                              | Thickness of capillary zone,                                                                  | Total porosity in capillary zone,                                                                    | Air-filled porosity in capillary zone,                                                              | Water-filled<br>porosity in<br>capillary<br>zone,                                      | Floor-<br>wall<br>seam<br>perimeter,                   |
|---|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|
|   | τ.                                                                | L <sub>T</sub>                                                                          | θ <sub>a</sub> <sup>A</sup> 3.                          | θ <sub>a</sub> <sup>B</sup>                                                | θ <sub>a</sub> <sup>C</sup>                                                                   | S <sub>te</sub>                                                                                                | k <sub>i</sub>                                                                                   | k <sub>rg</sub>                                                       | k,                                                                                                 | L <sub>cz</sub>                                                                               | n <sub>cz</sub>                                                                                      | θ <sub>a,cz</sub>                                                                                   | θ <sub>w,cz</sub><br>(cm³/cm³)                                                         | X <sub>crack</sub>                                     |
| - | (sec)                                                             | (cm)                                                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                     | (cm <sup>3</sup> /cm <sup>3</sup> )                                        | (cm³/cm³)                                                                                     | (cm³/cm³)                                                                                                      | (cm²)                                                                                            | (cm²)                                                                 | (cm <sup>2</sup> )                                                                                 | (cm)                                                                                          | (cm³/cm³)                                                                                            | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                 | (cm /cm )                                                                              | (cm)                                                   |
| [ | 7.88E+08                                                          | 135                                                                                     | 0.294                                                   | 0.321                                                                      | 0.321                                                                                         | 0.084                                                                                                          | 1.63E-08                                                                                         | 0.955                                                                 | 1.55E-08                                                                                           | 18.75                                                                                         | 0.37                                                                                                 | 0.067                                                                                               | 0.303                                                                                  | 4,000                                                  |
|   | Bidg.<br>ventilation<br>rate,<br>Q <sub>bull<sup>3</sup>/s)</sub> | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless) | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H' <sub>TS</sub><br>(unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µтs<br>(g/cm-s) | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>A</sub><br>(cm²/s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>8</sub> (cm <sup>2</sup> /s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> T (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm) |
| Г | 6.92E+04                                                          | 1.06E+06                                                                                | 3.77E-04                                                | 15                                                                         | 8,544                                                                                         | 5.05E-03                                                                                                       | 2.17E-01                                                                                         | 1.76E-04                                                              | 9.79E-03                                                                                           | 0.00E+00                                                                                      | 0.00E+00                                                                                             | 7.83E-05                                                                                            | 5.37E-04                                                                               | 135                                                    |
|   | Convection path length, L <sub>p</sub> (cm)                       | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)          | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                                  | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                             | Infinite source indoor attenuation coefficient, α (unitless)          | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                          | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup>                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                |                                                                                                     |                                                                                        |                                                        |
|   | 15                                                                | 2.17E+02                                                                                | 0.10                                                    | 8.33E+01                                                                   | 9.79E-03                                                                                      | 4.00E+02                                                                                                       | 2.57E+92                                                                                         | 5.81E-05                                                              | 1.26E-02                                                                                           | 2.0E-06                                                                                       | 6.0E-01                                                                                              | ]                                                                                                   |                                                                                        |                                                        |

**RESULTS SHEET** 

### **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | 1 | risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA                                                                     | NA                                                                  | 1.47E+06                                                 | NA                                                             |   | 6.2E-09                                                        | 1.4E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

#### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc., | Indoor<br>exposure<br>groundwater<br>conc | Risk-based indoor exposure groundwater | Pure<br>component<br>water<br>solubility. | Final<br>indoor<br>exposure<br>groundwater | <br>ncremental risk from vapor intrusion to indoor air. | Hazard quotient from vapor intrusion to indoor air, |
|---------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| carcinogen<br>(mg/L)                        | noncarcinogen<br>(mg/L)                   | conc.,<br>(mg/L)                       | S<br>(mg/L)                               | conc.,<br>(mg/L)                           | carcinogen<br>(unitless)                                | noncarcinogen<br>(unitless)                         |
| 1.63E+02                                    | 6.97E+04                                  | 1.63E+02                               | 1.47E+06                                  | 1.63E+02                                   | NA                                                      | NA NA                                               |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 15

RESIDENTIAL

| GW-ADV<br>/ersion 3.1; 02/04 | CALCULATE F                                        | RISK-BASED GROU                                         | NDWATER CON                                   | CENTRATION (                                         | enter "X" in "YES" bo                                    | (x)                                                      |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|------------------------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| Reset to                     |                                                    | YES                                                     | OR                                            | ]                                                    |                                                          |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
| Defaults                     | CALCULATE IN                                       | NCREMENTAL RISH                                         |                                               | L GROUNDWA                                           | TER CONCENTRAT                                           | ON (enter "X" in "YE                                     | S" box and initial gro                        | undwater conc. be                                    | elow)                                                | 4                                               |                                                          |                                                      |
|                              |                                                    | YES                                                     | X                                             | ]                                                    |                                                          |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | ENTER                                              | ENTER<br>Initial                                        |                                               |                                                      |                                                          |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | Chemical<br>CAS No.                                | groundwater conc.,                                      |                                               |                                                      |                                                          |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | (numbers only<br>no dashes)                        | , C <sub>w</sub><br>(μg/L)                              |                                               |                                                      | Chemical                                                 |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | 67663                                              | 3.00E+00                                                | ]                                             |                                                      | Chloroform                                               |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | ENTER                                              | ENTER<br>Depth                                          | ENTER                                         | ENTER<br>Totals mu                                   | ENTER<br>ust add up to value o                           | ENTER                                                    | ENTER                                         | ENTER                                                | ENTER<br>Soll                                        | <del></del>                                     | ENTER                                                    | 1                                                    |
| MORE<br>↓                    | Average<br>soil/<br>groundwater<br>temperature,    | below grade<br>to bottom<br>of enclosed<br>space floor, | Depth<br>below grade<br>to water table,       | Thickness<br>of soil<br>stratum A,                   | Thickness<br>of soil<br>stratum B,<br>(Enter value or 0) | Thickness<br>of soil<br>stratum C,<br>(Enter value or 0) | Soil<br>stratum<br>directly above             | SCS<br>soil type                                     | stratum A SCS soil type (used to estimate            | OR                                              | User-defined<br>stratum A<br>soil vapor<br>permeability, |                                                      |
|                              | T <sub>s</sub><br>(°C)                             | L <sub>F</sub><br>(cm)                                  | L <sub>WT</sub><br>(cm)                       | h <sub>A</sub><br>(cm)                               | h <sub>B</sub><br>(cm)                                   | h <sub>C</sub><br>(cm)                                   | water table,<br>(Enter A, B, or C)            | directly above<br>water table                        | soil vapor<br>permeability)                          |                                                 | k <sub>v</sub><br>(cm²)                                  |                                                      |
|                              | 11                                                 | 15                                                      | 200                                           | 200                                                  | 0                                                        | 0                                                        | A                                             | LS                                                   | LS                                                   |                                                 |                                                          |                                                      |
| MORE ¥                       | ENTER<br>Stratum A<br>SCS<br>soil type             | ENTER<br>Stratum A<br>soil dry<br>bulk density,         | ENTER<br>Stratum A<br>soil total<br>porosity, | ENTER<br>Stratum A<br>soil water-filled<br>porosity, | ENTER<br>Stratum B<br>SCS<br>soil type                   | ENTER Stratum B soil dry bulk density,                   | ENTER<br>Stratum B<br>soil total<br>porosity, | ENTER<br>Stratum B<br>soil water-filled<br>porosity, | ENTER<br>Stratum C<br>SCS<br>soil type               | ENTER<br>Stratum C<br>soil dry<br>bulk density, | ENTER Stratum C soil total porosity,                     | ENTER<br>Stratum C<br>soil water-filled<br>porosity, |
|                              | Lookup Soil<br>Parameters                          | ρ <sub>δ</sub> ^<br>(g/cm <sup>3</sup> )                | n <sup>A</sup><br>(unitless)                  | θ <sub>w</sub> <sup>A</sup><br>(cm³/cm³)             | Lookup Soil<br>Parameters                                | ρ <sub>ь</sub> <sup>B</sup><br>(g/cm³)                   | n <sup>B</sup><br>(unitless)                  | θ <sub>w</sub> <sup>B</sup><br>(cm³/cm³)             | Lookup Soil<br>Parameters                            | ρ <sub>ь</sub> <sup>c</sup><br>(g/cm³)          | n <sup>C</sup><br>(unitless)                             | θ <sub>w</sub> <sup>C</sup><br>(cm³/cm³)             |
|                              | LS                                                 | 1.50                                                    | 0.450                                         | 0.076                                                | S                                                        | 1.66                                                     | 0.375                                         | 0.054                                                | s                                                    | 1.66                                            | 0.375                                                    | 0.054                                                |
| MORE                         | ENTER<br>Enclosed                                  | ENTER                                                   | ENTER<br>Enclosed                             | ENTER<br>Enclosed                                    | ENTER                                                    | ENTER                                                    | ENTER                                         |                                                      | ENTER<br>Average vapor                               |                                                 |                                                          |                                                      |
|                              | space<br>floor<br>thickness,<br>L <sub>crack</sub> | Soil-bidg.<br>pressure<br>differential,<br>ΔP           | space<br>floor<br>length,                     | space<br>floor<br>width,                             | Enclosed<br>space<br>height,                             | Floor-wall<br>seam crack<br>width,                       | Indoor<br>air exchange<br>rate,               | Le                                                   | flow rate into bldg.<br>OR<br>eave blank to calculat | <br><del>e</del>                                |                                                          |                                                      |
|                              | (cm)                                               | (g/cm-s <sup>2</sup> )                                  | L <sub>B</sub>                                | W <sub>B</sub><br>(cm)                               | H <sub>B</sub><br>(cm)                                   | w<br>(cm)                                                | ER<br>(1/h)                                   |                                                      | Q <sub>soil</sub><br>(L/m)                           |                                                 |                                                          |                                                      |
|                              | 10                                                 | 40                                                      | 1000                                          | 1000                                                 | 244                                                      | 0.1                                                      | 0.25                                          | · · ·                                                | 5                                                    |                                                 |                                                          |                                                      |
| MORE ¥                       | ENTER<br>Averaging                                 | ENTER<br>Averaging                                      | ENTER                                         | ENTER                                                | ENTER<br>Target                                          | ENTER<br>Target hazard                                   |                                               | •                                                    |                                                      |                                                 |                                                          |                                                      |
|                              | time for<br>carcinogens,<br>AT <sub>C</sub>        | time for<br>noncarcinogens,<br>AT <sub>NC</sub>         | Exposure<br>duration,<br>ED                   | Exposure frequency, EF                               | risk for<br>carcinogens,<br>TR                           | quotient for<br>noncarcinogens,                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | (yrs)                                              | (yrs)                                                   | (yrs)                                         | (days/yr)                                            | (unitless)                                               | THQ<br>(unitless)                                        |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
|                              | 70                                                 | 30                                                      | 30                                            | 350                                                  | 1.0E-06                                                  |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |
| END                          |                                                    |                                                         |                                               |                                                      | Used to calcula                                          |                                                          |                                               |                                                      |                                                      |                                                 |                                                          |                                                      |

## CHEMICAL PROPERTIES SHEET

|  | Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|--|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
|  | 1.04E-01                                                         | 1.00E-05                                                           | 3.66E-03                                                                     | 25                                                                             | 6,988                                                                            | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                 | 4.9E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure duration, t (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A soil air-filled porosity, $\theta_a^A$ (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum B soil air-filled porosity, $\theta_a^B$ (cm³/cm³)                 | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> <sup>C</sup><br>(cm³/cm³) | Stratum A effective total fluid saturation, Ste (cm³/cm³)                          | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm²)        | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm²)                               | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)         | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³) | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> )                          | Water-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>w,cz</sub><br>(cm³/cm³)  | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 9.46E+08                                                                       | 185                                                                                     | 0.374                                                                                | 0.321                                                                      | 0.321                                                                                    | 0.067                                                                              | 1.63E-08                                                                          | 0.964                                                                                       | 1.57E-08                                                                                           | 18.75                                                                 | 0.45                                                                       | 0.147                                                                                                                 | 0.303                                                                                | 4,000                                                              |
|                                                                                |                                                                                         |                                                                                      |                                                                            |                                                                                          |                                                                                    |                                                                                   |                                                                                             |                                                                                                    |                                                                       | <u> </u>                                                                   | 1                                                                                                                     |                                                                                      | 1 -,000                                                            |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                              | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)    | Henry's law constant at ave. groundwater temperature, H <sub>TS</sub> (atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H'TS (unitless)             | Vapor viscosity at ave. soil temperature,                                                   | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup><br>(cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> B (cm²/s) | Stratum C effective diffusion coefficient, Deff c (cm²/s)                  | Capillary<br>zone<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>cz</sub><br>(cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, $D^{eff}_{\tau}$ (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                             | 15                                                                         | 7,544                                                                                    | 1.95E-03                                                                           | 8.38E-02                                                                          | 4.705.04                                                                                    | 4.045.00                                                                                           | 200= 00                                                               |                                                                            | ·                                                                                                                     |                                                                                      |                                                                    |
| <u> </u>                                                                       |                                                                                         | J201                                                                                 | <u> </u>                                                                   | 7,044                                                                                    | 1.93E-03                                                                           | 0.30E-UZ                                                                          | 1.76E-04                                                                                    | 1.94E-02                                                                                           | 0.00E+00                                                              | 0.00E+00                                                                   | 8.86E-04                                                                                                              | 6.22E-03                                                                             | 185                                                                |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                                       | Average vapor flow rate into bidg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s)           | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                      | Exponent of equivalent foundation Peclet number, exp(Pe <sup>f</sup> ) (unitless) | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                          | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>               | Reference<br>conc.,<br>RfC<br>(mg/m³)                                      |                                                                                                                       |                                                                                      |                                                                    |
| 15                                                                             | 2.52E+02                                                                                | 0.10                                                                                 | 8.33E+01                                                                   | 1.94E-02                                                                                 | 4.00E+02                                                                           | 3.87E+46                                                                          | 1.47E-03、                                                                                   | 3.71E-01                                                                                           | 2.3E-05                                                               | 4.9E-02                                                                    | [.                                                                                                                    |                                                                                      |                                                                    |

**RESULTS SHEET** 

### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | l NA                                                    | NA                                                                  | 7.92E+06                                                 | NA                                                             | 3.5E-06                                                                    | 7.3E-03                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor exposure groundwater conc., noncarcinogen (mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |          | risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| 8.56E-01                                                            | 4.14E+02                                                | 8.56E-01                                                            | 7.92E+06                                                 | 8.56E-01                                                       | :<br>] [ | NA                                                             | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

#### DATA ENTRY SHEET

| GW-ADV<br>sion 3.1; 02/04 | CALCULATE RIS                | SK-BASED GROU                  | INDWATER CONC                      | ENTRATION (                         | enter "X" in "YES" bo                | ):<br>:                                |                                |                             |                                       |                                              |                                 |                                          |
|---------------------------|------------------------------|--------------------------------|------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|--------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|---------------------------------|------------------------------------------|
| Reset to                  |                              | YES                            | OR                                 | ]                                   |                                      |                                        |                                |                             |                                       |                                              |                                 |                                          |
| Defaults                  | CALCULATE INC                | CREMENTAL RIS                  | KS FROM ACTUAL                     | . GROUNDWA                          | TER CONCENTRAT                       | ION (enter "X" in "YE                  | S" box and initial grou        | indwater conc. be           | elow)                                 |                                              |                                 |                                          |
|                           |                              | YES                            | X                                  | ]                                   |                                      |                                        |                                |                             |                                       |                                              |                                 |                                          |
|                           | ENTER                        | ENTER                          |                                    |                                     |                                      |                                        |                                |                             |                                       |                                              |                                 |                                          |
|                           | Chemical<br>CAS No.          | Initial groundwater conc.,     |                                    |                                     |                                      |                                        |                                |                             |                                       |                                              |                                 |                                          |
|                           | (numbers only,<br>no dashes) | C <sub>w</sub><br>(μg/L)       |                                    |                                     | Chemical                             |                                        |                                |                             |                                       |                                              |                                 |                                          |
|                           | 67663                        | 3.00E+00                       | <del>-</del>                       |                                     | Chloroform                           |                                        | · .'                           |                             |                                       |                                              |                                 |                                          |
| *                         |                              | L                              |                                    |                                     |                                      | <u> </u>                               |                                |                             |                                       |                                              |                                 | :<br>_                                   |
|                           | ENTER                        | ENTER<br>Depth                 | ENTER                              | ENTER<br>Totals m                   | ENTER<br>ust add up to value o       | ENTER<br>of L <sub>wt</sub> (cell G28) | ENTER                          | ENTER                       | ENTER<br>Soil                         |                                              | ENTER                           |                                          |
| MORE                      | Average soil/                | below grade<br>to bottom       | Depth                              | Thickness                           | Thickness<br>of soil                 | Thickness<br>of soil                   | Soil                           |                             | stratum A<br>SCS                      |                                              | User-defined                    |                                          |
|                           | groundwater<br>temperature,  | of enclosed                    | below grade                        | of soil                             | stratum B,                           | stratum C,                             | stratum                        | scs                         | soil type                             |                                              | stratum A<br>soil vapor         |                                          |
|                           | T <sub>S</sub>               | space floor,<br>L <sub>F</sub> | to water table,<br>L <sub>wt</sub> | stratum A,<br>h <sub>A</sub>        | (Enter value or 0)<br>h <sub>B</sub> | (Enter value or 0)                     | directly above<br>water table, | soil type<br>directly above | (used to estimate soil vapor          | OR                                           | permeability,<br>k <sub>v</sub> | İ.                                       |
|                           | (°C)                         | (cm)                           | (cm)                               | (cm)                                | (cm)                                 | (cm)                                   | (Enter A, B, or C)             | water table                 | permeability)                         |                                              | (cm²)                           |                                          |
|                           | 11                           | 15                             | 200                                | 200                                 | 0                                    | 0                                      | Α                              | LS                          | LS                                    |                                              |                                 |                                          |
|                           | ENTED                        | FAITER                         |                                    |                                     |                                      |                                        |                                |                             |                                       |                                              |                                 |                                          |
| MORE                      | ENTER<br>Stratum A           | ENTER<br>Stratum A             | ENTER<br>Stratum A                 | ENTER<br>Stratum A                  | ENTER<br>Stratum B                   | ENTER<br>Stratum B                     | ENTER<br>Stratum B             | ENTER<br>Stratum B          | ENTER<br>Stratum C                    | ENTER<br>Stratum C                           | ENTER<br>Stratum C              | ENTER<br>Stratum C                       |
|                           | SCS<br>soil type             | soil dry<br>bulk density,      | soil total porosity,               | soil water-filled<br>porosity,      | SCS<br>soil type                     | soil dry<br>bulk density,              | soil total porosity,           | soil water-filled porosity, | scs                                   | soil dry                                     | soil total                      | soil water-filled                        |
|                           | Lookup Soil                  | ρ <sub>b</sub> <sup>A</sup>    | n <sup>A</sup>                     | θ.Α                                 | Lookup Soil                          | ρ <sub>B</sub> <sup>B</sup>            | n <sup>B</sup>                 | θ <sub>w</sub> <sup>B</sup> | soil type<br>Lookup Soil              | bulk density,<br>Ρ <sub>ο</sub> <sup>C</sup> | porosity,<br>n <sup>C</sup>     | porosity,<br>θ <sub>w</sub> <sup>C</sup> |
|                           | Parameters                   | (g/cm <sup>3</sup> )           | (unitless)                         | (cm <sup>3</sup> /cm <sup>3</sup> ) | Parameters                           | (g/cm³)                                | (unitless)                     | (cm³/cm³)                   | Parameters                            | (g/cm³)                                      | (unitless)                      | (cm³/cm³)                                |
|                           | LS                           | 1.50                           | 0.450                              | 0.076                               | S                                    | 1.66                                   | 0.375                          | 0.054                       | S                                     | 1.66                                         | 0.375                           | 0.054                                    |
| MORE                      | ENTER<br>Enclosed            | ENTER                          | ENTER<br>Enclosed                  | ENTER<br>Enclosed                   | ENTER                                | ENTER                                  | ENTER                          |                             | ENTER                                 |                                              |                                 |                                          |
| Ψ                         | space                        | Soil-bldg.                     | space                              | space                               | Enclosed                             | Floor-wall                             | Indoor                         |                             | Average vapor<br>flow rate into bldg. |                                              |                                 |                                          |
|                           | floor<br>thickness,          | pressure<br>differential,      | floor<br>length,                   | floor<br>width                      | space<br>height,                     | seam crack<br>width,                   | air exchange<br>rate,          | ,                           | OR<br>eave blank to calculat          | <b>Y</b> a                                   |                                 |                                          |
|                           | L <sub>crack</sub>           | ΔΡ                             | L <sub>B</sub>                     | WB                                  | H <sub>B</sub>                       | w                                      | ER                             |                             | Q <sub>soil</sub>                     |                                              |                                 |                                          |
|                           | (cm)                         | (g/cm-s <sup>2</sup> )         | (cm)                               | (cm)                                | (cm)                                 | (cm)                                   | (1/h)                          | •                           | (L/m)                                 |                                              |                                 |                                          |
|                           | 10                           | 40                             | 1000                               | 1000                                | 300                                  | 0.1                                    | 0.83                           | ]                           | 5                                     |                                              |                                 |                                          |
| MORE +                    | ENTER                        | ENTER                          | ENTER                              | ENTER                               | ENTER                                | ENTER                                  |                                |                             |                                       |                                              |                                 |                                          |
|                           | Averaging time for           | Averaging<br>time for          | Exposure                           | Exposure                            | Target<br>risk for                   | Target hazard<br>quotient for          |                                |                             |                                       |                                              |                                 |                                          |
|                           | carcinogens,                 | noncarcinogens,                | duration,                          | frequency,                          | carcinogens,                         | noncarcinogens,                        |                                |                             | •                                     |                                              |                                 |                                          |
|                           | AT <sub>C</sub>              | AT <sub>NC</sub>               | ED                                 | EF                                  | TR                                   | THQ                                    |                                |                             |                                       |                                              |                                 |                                          |
|                           | (yrs)                        | (yrs)                          | (yrs)                              | (days/yr)                           | (unitless)                           | (unitless)                             |                                |                             |                                       |                                              |                                 |                                          |
|                           | 70                           | 25                             | 25                                 | 250                                 | 1.0E-06                              | 1                                      | •                              |                             |                                       |                                              |                                 |                                          |
| END                       |                              |                                |                                    |                                     | Used to calcul                       |                                        |                                |                             |                                       |                                              |                                 |                                          |
|                           |                              |                                |                                    |                                     |                                      |                                        |                                |                             |                                       |                                              |                                 |                                          |

### CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 1.04E-01                                                         | 1.00E-05                                                           | 3.66E-03                                                                     | 25                                                                             | 6,988                                                                             | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                 | 4.9E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure<br>duration,<br>τ<br>(sec)                   | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)      | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B soil air-filled porosity, $\theta_a^B$ (cm³/cm³)                 | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^C$<br>(cm³/cm³)                     | Stratum A effective total fluid saturation, S <sub>te</sub> (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rp</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm <sup>2</sup> ) | Thickness of capillary zone,  L <sub>cz</sub> (cm)                           | Total porosity in capillary zone, n <sub>cz</sub> (cm³/cm³)                  | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm <sup>3</sup> /cm <sup>3</sup> ) | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm <sup>3</sup> /cm <sup>3</sup> ) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>orack</sub><br>(cm) |
|-------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                              | 185                                                               | 0.374                                                                     | 0.321                                                                      | 0.321                                                                                         | 0.067                                                                                           | 1.63E-08                                                                                | 0.964                                                                                       | 1.57E-08                                                                                      | 18.75                                                                        | 0.45                                                                         | 0.147                                                                                        | 0.303                                                                                        | 4,000                                                              |
| 7.002700                                              | 165                                                               | 0.374                                                                     | 1 0.321 [                                                                  | 0.321                                                                                         | 1 0.007                                                                                         | 1.032-08                                                                                | 1 0.504                                                                                     | 1.57 E-08                                                                                     | 10.75                                                                        | 0.45                                                                         | 0.147                                                                                        | . 0.303                                                                                      | 4,000                                                              |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>bulding</sub> | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub> | Crack-<br>to-total<br>area<br>ratio,<br>η                                 | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub>                    | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$                   | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub>               | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H'TS                  | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µтs                                   | Stratum A effective diffusion coefficient, Deff                                               | Stratum<br>B<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> B | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c | Capillary<br>zone<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> cz           | Total<br>overall<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> <sub>T</sub>  | Diffusion<br>path<br>length,<br>L <sub>d</sub>                     |
| (cm <sup>3</sup> /s)                                  | (cm <sup>2</sup> )                                                | (unitless)                                                                | (cm)                                                                       | (cal/mol)                                                                                     | (atm-m³/mol)                                                                                    | (unitless)                                                                              | (g/cm-s)                                                                                    | (cm²/s)                                                                                       | (cm²/s)                                                                      | (cm <sup>2</sup> /s)                                                         | (cm <sup>2</sup> /s)                                                                         | (cm²/s)                                                                                      | (cm)                                                               |
| 6.92E+04                                              | 1.06E+06                                                          | 3.77E-04                                                                  | 15                                                                         | 7,544                                                                                         | 1.95E-03                                                                                        | 8.38E-02                                                                                | 1.76E-04                                                                                    | 1.94E-02                                                                                      | 0.00E+00                                                                     | 0.00E+00                                                                     | 8.86E-04                                                                                     | 6.22E-03                                                                                     | 185                                                                |
| Convection path length, L <sub>p</sub> (cm)           | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(μg/m³)       | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of crack, A <sub>crack</sub> (cm <sup>2</sup> )                                            | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                    | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                     | Unit<br>risk<br>factor,<br>URF<br>(μg/m³)·1                                  | Reference<br>conc.,<br>RfC<br>(mg/m³)                                        |                                                                                              |                                                                                              |                                                                    |
| 15                                                    | 2.52E+02                                                          | 0.10                                                                      | 8.33E+01                                                                   | 1.94E-02                                                                                      | 4.00E+02                                                                                        | 3.87E+46                                                                                | 3.61E-04 、                                                                                  | 9.08E-02                                                                                      | 2.3E-05                                                                      | 4.9E-02                                                                      | 1                                                                                            |                                                                                              |                                                                    |

**RESULTS SHEET** 

### INCREMENTAL RISK CALCULATIONS:

| Indoor      | Indoor        | Risk-based  | Pure       | Final       |        | Incremental risk from | Hazard<br>quotient |
|-------------|---------------|-------------|------------|-------------|--------|-----------------------|--------------------|
| exposure    | exposure      | indoor      | component  | indoor      |        | vapor                 | from vapor         |
| groundwater | groundwater   | exposure    | water      | exposure    |        | intrusion to          | intrusion to       |
| conc        | conc          | groundwater | solubility | groundwater |        | indoor air,           | indoor air,        |
| carcinogen  | noncarcinogen | conc.,      | S          | conc.,      |        | carcinogen            | noncarcinogen      |
| (μg/L)      | (μg/L)        | (μg/L)      | (μg/L)     | (μg/L)      |        | (unitless)            | (unitless)         |
| NA          | NA            | NA          | 7.92E+06   | NA          | -<br>] | 5.1E-07               | 1.3E-03            |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 5.87E+00                                                            | 2.36E+03                                                               | 5.87E+00                                                            | 7.92E+06                                                 | 5.87E+00                                                       | [ | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Chuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 20

RESIDENTIAL

| GW-ADV    |                                                             | ISK-BASED GROU                                                                    | NOWATER CONC                                                   | ENTRATION (e                                                 | nter "X" in "YES" bo                                                               | ox)                                                                                |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|-----------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Reset to  |                                                             | YES                                                                               | OR                                                             | ]                                                            |                                                                                    |                                                                                    |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
| Defaults  | CALCULATE IN                                                | ICREMENTAL RISH                                                                   | KS FROM ACTUAL                                                 | . GROUNDWAT                                                  | ER CONCENTRAT                                                                      | ΠΟΝ (enter "X" in "YE                                                              | S" box and initial grou                                                 | indwater conc. be                                 | low)                                                                |                                                    |                                                                                                  |                                                          |
|           |                                                             | YES                                                                               | X                                                              | ]                                                            |                                                                                    |                                                                                    |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|           | ENTER                                                       | ENTER<br>Initial                                                                  |                                                                |                                                              |                                                                                    |                                                                                    |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|           | Chemical<br>CAS No.                                         | groundwater conc.,                                                                |                                                                |                                                              | •                                                                                  |                                                                                    |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|           | (numbers only,<br>no dashes)                                | C <sub>w</sub><br>(μg/L)                                                          | _                                                              |                                                              | Chemical                                                                           |                                                                                    | •                                                                       |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|           | 79016                                                       | 5.02E+00                                                                          | ]                                                              |                                                              | Trichloroethyl                                                                     | ene                                                                                |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|           | ENTER                                                       | ENTER<br>Depth                                                                    | ENTER                                                          | ENTER<br>Totals mu                                           | ENTER<br>ast add up to value                                                       | ENTER<br>of L <sub>wt</sub> (cell G28)                                             | ENTER                                                                   | ENTER                                             | ENTER<br>Soil                                                       | <del></del>                                        | ENTER                                                                                            | 1                                                        |
| MORE<br>↓ | Average soil/ groundwater temperature, T <sub>S</sub> (°C)  | below grade<br>to bottom<br>of enclosed<br>space floor,<br>L <sub>F</sub><br>(cm) | Depth below grade to water table, L <sub>wt</sub> (cm)         | Thickness<br>of soil<br>stratum A,<br>h <sub>A</sub><br>(cm) | Thickness<br>of soil<br>stratum B,<br>(Enter value or 0)<br>h <sub>B</sub><br>(cm) | Thickness<br>of soil<br>stratum C,<br>(Enter value or 0)<br>h <sub>C</sub><br>(cm) | Soil<br>stratum<br>directly above<br>water table,<br>(Enter A, B, or C) | SCS<br>soil type<br>directly above<br>water table | stratum A SCS soil type (used to estimate soil vapor permeability)  | OR                                                 | User-defined<br>stratum A<br>soil vapor<br>permeability,<br>k <sub>v</sub><br>(cm <sup>2</sup> ) |                                                          |
|           | 11                                                          | 15                                                                                | 140                                                            | 140                                                          | 0                                                                                  | 0                                                                                  | A                                                                       | SL                                                | SL                                                                  |                                                    |                                                                                                  | }                                                        |
| MORE ¥    | ENTER Stratum A SCS soil type Lookup Soil Parameters        | ENTER Stratum A soil dry bulk density,  Pb <sup>A</sup> (g/cm <sup>3</sup> )      | ENTER Stratum A soil total porosity, n <sup>A</sup> (unitless) | ENTER Stratum A soil water-filled porosity,  0, (cm³/cm³)    | ENTER Stratum B SCS soil type Lookup Soil Parameters                               | ENTER Stratum B soil dry bulk density,  pb (g/cm³)                                 | ENTER Stratum B soil total porosity, n, <sup>B</sup> (unitless)         | ENTER Stratum B soil water-filled porosity,       | ENTER Stratum C SCS soil type Lookup Soil Parameters                | ENTER Stratum C soil dry bulk density,  pb (g/cm³) | ENTER Stratum C soil total porosity, n <sup>C</sup> (unitless)                                   | ENTER Stratum C soil water-filled porosity, ew (cm³/cm³) |
|           | SL                                                          | 1.60                                                                              | 0.370                                                          | 0.103                                                        | S                                                                                  | 1.66                                                                               | 0.375                                                                   | 0.054                                             | S                                                                   | 1.66 ;                                             | 0.375                                                                                            | 0.054                                                    |
| MORE 4    | ENTER<br>Enclosed<br>space<br>floor<br>thickness,           | ENTER Soil-bldg. pressure differential,                                           | ENTER<br>Enclosed<br>space<br>floor<br>length,                 | ENTER<br>Enclosed<br>space<br>floor<br>width,                | ENTER Enclosed space height,                                                       | ENTER Floor-wall seam crack width,                                                 | ENTER Indoor air exchange rate,                                         | ı                                                 | ENTER Average vapor flow rate into bldg. OR eave blank to calculate | ·                                                  |                                                                                                  |                                                          |
|           | L <sub>crack</sub>                                          | ΔΡ                                                                                | L <sub>B</sub>                                                 | W <sub>B</sub>                                               | H <sub>B</sub>                                                                     | w                                                                                  | ER                                                                      |                                                   | Q <sub>soil</sub>                                                   | -                                                  |                                                                                                  |                                                          |
|           | (cm)                                                        | (g/cm·s²)                                                                         | (cm)                                                           | (cm)                                                         | (cm)                                                                               | (cm)                                                                               | (1/h)                                                                   | -                                                 | (L/m)                                                               |                                                    |                                                                                                  |                                                          |
|           | 10                                                          | 40                                                                                | 1000                                                           | 1000                                                         | 244                                                                                | 0.1                                                                                | 0.25                                                                    | ]                                                 | 5                                                                   |                                                    |                                                                                                  |                                                          |
| MORE<br>↓ | ENTER Averaging time for carcinogens, AT <sub>C</sub> (yrs) | ENTER Averaging time for noncarcinogens, ATNC (yrs)                               | ENTER  Exposure duration, ED (yrs)                             | ENTER  Exposure frequency,  EF (days/yr)                     | ENTER Target risk for carcinogens, TR (unitless)                                   | ENTER Target hazard quotient for noncarcinogens, THQ (unitless)                    |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
|           | 70                                                          | 30                                                                                | 30                                                             | 350                                                          | 1.0E-06                                                                            | T 1                                                                                | 1                                                                       |                                                   |                                                                     |                                                    |                                                                                                  |                                                          |
| END       | 70                                                          | 1 30                                                                              | . 30                                                           | 1 350                                                        | Used to calcu                                                                      | ulate risk-based                                                                   |                                                                         |                                                   |                                                                     |                                                    |                                                                                                  | •                                                        |

### CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

|    | Exposure duration,                                      | Source-<br>building<br>separation,                          | Stratum A<br>soil<br>air-filled<br>porosity,   | Stratum B<br>soil<br>air-filled<br>porosity,                               | Stratum C<br>soil<br>air-filled<br>porosity,                                                  | Stratum A effective total fluid saturation,                    | Stratum A<br>soil<br>intrinsic<br>permeability,                      | Stratum A<br>soil<br>relative air<br>permeability,           | Stratum A<br>soil<br>effective vapor<br>permeability,                     | Thickness of capillary zone,                            | Total porosity in capillary zone,                      | Air-filled porosity in capillary zone,                      | Water-filled porosity in capillary zone,                                     | Floor-<br>wall<br>seam<br>perimeter, |
|----|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
|    | τ                                                       | Lt                                                          | θa <sup>A</sup>                                | $\theta_a^B$                                                               | $\theta_a^c$                                                                                  | S <sub>te</sub>                                                | k <sub>i</sub>                                                       | k <sub>rg</sub>                                              | · k <sub>v</sub>                                                          | L <sub>cz</sub>                                         | n <sub>cz</sub>                                        | $\theta_{a,cz}$                                             | $\theta_{w,cz}$                                                              | X <sub>crack</sub>                   |
| _  | (sec)                                                   | (cm)                                                        | (cm <sup>3</sup> /cm <sup>3</sup> )            | (cm <sup>3</sup> /cm <sup>3</sup> )                                        | (cm³/cm³)                                                                                     | (cm³/cm³)                                                      | (cm²)                                                                | (cm²)                                                        | (cm²)                                                                     | (cm)                                                    | (cm³/cm³)                                              | (cm³/cm³)                                                   | (cm³/cm³)                                                                    | (cm)                                 |
| _  |                                                         |                                                             |                                                |                                                                            |                                                                                               |                                                                |                                                                      | 1                                                            |                                                                           |                                                         |                                                        | 1 0 050                                                     | 0.000                                                                        | 1 4000                               |
| Ļ  | 9.46E+08                                                | 125                                                         | 0.267                                          | 0.321                                                                      | 0.321                                                                                         | 0.193                                                          | 5.94E-09                                                             | 0.895                                                        | 5.32E-09                                                                  | 25.00                                                   | 0.37                                                   | 0.050                                                       | 0.320                                                                        | 4,000                                |
|    | Bldg.<br>ventilation<br>rate,                           | Area of<br>enclosed<br>space<br>below<br>grade,             | Crack-<br>to-total<br>area<br>ratio,           | Crack<br>depth<br>below<br>grade,                                          | Enthalpy of vaporization at ave. groundwater temperature,                                     | Henry's law<br>constant at<br>ave. groundwater<br>temperature, | Henry's law<br>constant at<br>ave. groundwater<br>temperature,       | Vapor<br>viscosity at<br>ave. soil<br>temperature,           | Stratum<br>A<br>effective<br>diffusion<br>coefficient,                    | Stratum B effective diffusion coefficient,              | Stratum<br>C<br>effective<br>diffusion<br>coefficient, | Capillary<br>zone<br>effective<br>diffusion<br>coefficient, | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> | Diffusion<br>path<br>length,         |
|    | Q <sub>building</sub>                                   | AB                                                          | . η                                            | $Z_{crack}$                                                                | $\Delta H_{v,TS}$                                                                             | H <sub>TS</sub>                                                | H' <sub>TS</sub>                                                     | μτς                                                          | D <sup>eff</sup> <sub>A</sub>                                             | D <sup>eff</sup> <sub>B</sub>                           | D <sup>eff</sup> c                                     | D <sup>eff</sup> cz                                         | •                                                                            | La                                   |
| ٠. | (cm³/s)                                                 | (cm²)                                                       | (unitless)                                     | (cm)                                                                       | (cai/mol)                                                                                     | (atm-m³/mol)                                                   | (unitless)                                                           | (g/cm-s)                                                     | (cm²/s)                                                                   | (cm²/s)                                                 | (cm²/s)                                                | (cm²/s)                                                     | (cm²/s)                                                                      | (cm)                                 |
|    | 1.69E+04                                                | 1.06E+06                                                    | 3.77E-04                                       | 15                                                                         | 8,544                                                                                         | 5.05E-03                                                       | 2.17E-01                                                             | 1.76E-04                                                     | 7.10E-03                                                                  | 0.00E+00                                                | 0.00E+00                                               | 3.42E-05                                                    | 1.68E-04                                                                     | 125                                  |
|    | Convection<br>path<br>length,<br>L <sub>p</sub><br>(cm) | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³) | Crack<br>radius,<br>r <sub>crack</sub><br>(cm) | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )  | Exponent of equivalent foundation Peclet number, exp(Pe') (unitiess) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite<br>source<br>bldg,<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³)                  |                                                             |                                                                              |                                      |
|    | 15                                                      | 1.09E+03                                                    | 0.10                                           | 8.33E+01                                                                   | 7.10E-03                                                                                      | 4.00E+02                                                       | 2.28E+127                                                            | 8.26E-05                                                     | 8.98E-02                                                                  | 1.1E-04                                                 | 3.5E-02                                                | 1                                                           | •                                                                            |                                      |

RESULTS SHEET

#### INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA                                                                     | NA                                                   | 1.47E+06                                                 | NA                                                             | ] | 4.1E-06                                                                    | 2.5E-03                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

**PRG SHEET** 

#### **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.24E+00                                             | 2.04E+03                                                               | 1.24E+00                                             | 1.47E+06                                                 | 1.24E+00                                                       | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

| GW-ADV<br>ersion 3.1; 02/04 | CALCULATE RI                                                                                           | SK-BASED GROU                                                                                                                               | NDWATER CONC                                                                                                  | ENTRATION (e                                                                                               | nter "X" in "YES" bo                                                                                                                      | ox)                                                                                                                             | •                                                            |                                            |                                                                                             |                                  |                                 |                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-------------------------------|
|                             |                                                                                                        | YES                                                                                                                                         |                                                                                                               | כ                                                                                                          |                                                                                                                                           |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
| Reset to<br>Defaults        |                                                                                                        |                                                                                                                                             | OR                                                                                                            |                                                                                                            |                                                                                                                                           |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
| Deladits                    | CALCULATE IN                                                                                           | CREMENTAL RISI                                                                                                                              | KS FROM ACTUAL                                                                                                | . GROUNDWA1                                                                                                | ER CONCENTRAT                                                                                                                             | FION (enter "X" in "YE                                                                                                          | S" box and initial grou                                      | ndwater conc. be                           | low)                                                                                        |                                  |                                 |                               |
|                             |                                                                                                        | YES                                                                                                                                         | X                                                                                                             | ]                                                                                                          |                                                                                                                                           |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             | ENTER                                                                                                  | ENTER                                                                                                                                       |                                                                                                               |                                                                                                            |                                                                                                                                           |                                                                                                                                 | ·                                                            |                                            |                                                                                             |                                  |                                 |                               |
|                             | Chemical                                                                                               | initial<br>groundwater                                                                                                                      |                                                                                                               |                                                                                                            |                                                                                                                                           |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             | CAS No.                                                                                                | conc.,                                                                                                                                      |                                                                                                               |                                                                                                            |                                                                                                                                           |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             | (numbers only,<br>no dashes)                                                                           | C <sub>w</sub><br>(μg/L)                                                                                                                    |                                                                                                               |                                                                                                            | Chemical                                                                                                                                  |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             |                                                                                                        |                                                                                                                                             | <u> </u>                                                                                                      |                                                                                                            | Chemical                                                                                                                                  |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             | 79016                                                                                                  | 5.02E+00                                                                                                                                    | _                                                                                                             |                                                                                                            | Trichloroethyl                                                                                                                            | ene                                                                                                                             |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             | ENTER                                                                                                  | ENTER                                                                                                                                       | ENTER                                                                                                         | ENTER                                                                                                      | ENTER                                                                                                                                     | ENTER                                                                                                                           | ENTER                                                        | ENTER                                      | ENTER                                                                                       |                                  | ENTER                           |                               |
| MORE                        | Average                                                                                                | Depth<br>below grade                                                                                                                        |                                                                                                               | Totals mu                                                                                                  | st add up to value                                                                                                                        |                                                                                                                                 |                                                              |                                            | Soil                                                                                        |                                  |                                 |                               |
|                             | soil/                                                                                                  | to bottom                                                                                                                                   | Depth                                                                                                         | Thickness                                                                                                  | of soil                                                                                                                                   | Thickness<br>of soil                                                                                                            | Soil                                                         |                                            | stratum A<br>SCS                                                                            |                                  | User-defined<br>stratum A       | *                             |
|                             | groundwater<br>temperature,                                                                            | of enclosed                                                                                                                                 | below grade                                                                                                   | of soil                                                                                                    | stratum B,                                                                                                                                | stratum C,                                                                                                                      | stratum                                                      | scs                                        | soil type                                                                                   |                                  | soil vapor                      |                               |
|                             | T <sub>S</sub>                                                                                         | space floor,<br>L <sub>f</sub>                                                                                                              | to water table,                                                                                               | stratum A,                                                                                                 | (Enter value or 0)                                                                                                                        | (Enter value or 0)                                                                                                              | directly above<br>water table,                               | soil type<br>directly above                | (used to estimate soil vapor                                                                | OR                               | permeability,<br>k <sub>v</sub> |                               |
|                             | (°C)                                                                                                   | (cm)                                                                                                                                        | (cm)                                                                                                          | (cm)                                                                                                       | (cm)                                                                                                                                      | (cm)                                                                                                                            | (Enter A, B, or C)                                           | water table                                | permeability)                                                                               |                                  | (cm²)                           |                               |
|                             | 11                                                                                                     | 15                                                                                                                                          | 140                                                                                                           | 140                                                                                                        | 0                                                                                                                                         | 0                                                                                                                               | A                                                            | SL                                         | SL                                                                                          | 1                                |                                 |                               |
|                             | <u> </u>                                                                                               |                                                                                                                                             | 1 140                                                                                                         | 140                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                     |                                                                                                                                 | L2                                                           | <u> </u>                                   | ]SL                                                                                         |                                  |                                 |                               |
|                             | ENTER                                                                                                  | ENTER                                                                                                                                       | ENTER                                                                                                         | ENTER                                                                                                      | ENTER                                                                                                                                     | ENTER                                                                                                                           | ENTER                                                        | ENTER                                      | ENTER                                                                                       | ENTER                            | ENTER                           | ENTER                         |
| MORE                        | Stratum A                                                                                              | Stratum A                                                                                                                                   | Stratum A                                                                                                     | Stratum A                                                                                                  | Stratum B                                                                                                                                 | Stratum B                                                                                                                       | Stratum B                                                    | Stratum B                                  | Stratum C                                                                                   | Stratum C                        | Stratum C                       | Stratum C                     |
| <u> </u>                    | SCS<br>soil type                                                                                       | soil dry<br>bulk density,                                                                                                                   | soil total porosity,                                                                                          | soil water-filled<br>porosity,                                                                             | SCS<br>soil type                                                                                                                          | soil dry<br>bulk density,                                                                                                       | soil total                                                   | soil water-filled                          | SCS                                                                                         | soil dry                         | soil total                      | soil water-filled             |
|                             |                                                                                                        |                                                                                                                                             |                                                                                                               | θ <sub>w</sub> <sup>A</sup>                                                                                |                                                                                                                                           | ρ <sub>b</sub> <sup>8</sup>                                                                                                     | porosity,<br>n <sup>B</sup>                                  | porosity, '<br>θ <sub>ω</sub> <sup>B</sup> | Soil type                                                                                   | bulk density,<br>Ρь <sup>C</sup> | porosity,<br>n <sup>C</sup>     | porosity,<br>θ <sub>w</sub> c |
|                             | Lookup Soil                                                                                            | 0. <sup>A</sup>                                                                                                                             | n"                                                                                                            |                                                                                                            |                                                                                                                                           |                                                                                                                                 |                                                              |                                            |                                                                                             |                                  |                                 |                               |
|                             | Lookup Soil<br>Parameters                                                                              | ρ <sub>ь</sub> <sup>A</sup><br>(g/cm³)                                                                                                      | n <sup>A</sup><br>(unitless)                                                                                  |                                                                                                            | Lookup Soil<br>Parameters                                                                                                                 |                                                                                                                                 |                                                              | ••                                         | Parameters                                                                                  |                                  |                                 |                               |
|                             | Parameters                                                                                             | (g/cm <sup>3</sup> )                                                                                                                        | (unitless)                                                                                                    | (cm <sup>3</sup> /cm <sup>3</sup> )                                                                        | Parameters                                                                                                                                | (g/cm³)                                                                                                                         | (unitless)                                                   | (cm³/cm³)                                  | Parameters                                                                                  | (g/cm³)                          | (unitless)                      | (cm³/cm³)                     |
|                             | Parameters                                                                                             | (g/cm³)                                                                                                                                     |                                                                                                               |                                                                                                            |                                                                                                                                           |                                                                                                                                 |                                                              | ••                                         |                                                                                             |                                  |                                 |                               |
| MORE                        | Parameters  SL  ENTER                                                                                  | (g/cm <sup>3</sup> )                                                                                                                        | (unitless)  0.370  ENTER                                                                                      | (cm³/cm³)<br>0.103<br>ENTER                                                                                | Parameters                                                                                                                                | (g/cm³)                                                                                                                         | (unitless)                                                   | (cm³/cm³)                                  | Parameters S ENTER                                                                          | (g/cm³)                          | (unitless)                      | (cm³/cm³)                     |
| MORE ↓                      | Parameters                                                                                             | (g/cm³)                                                                                                                                     | (unitless)  0.370  ENTER Enclosed                                                                             | (cm³/cm³)  0.103  ENTER Enclosed                                                                           | Parameters S ENTER                                                                                                                        | (g/cm <sup>3</sup> )                                                                                                            | (unitless) 0.375 ENTER                                       | (cm³/cm³)                                  | S ENTER Average vapor                                                                       | (g/cm³)                          | (unitless)                      | (cm³/cm³)                     |
| MORE V                      | ENTER Enclosed space floor                                                                             | (g/cm³)  1.60  ENTER  Soil-bldg. pressure                                                                                                   | (unitless)  0.370  ENTER Enclosed space floor                                                                 | (cm³/cm³)  0.103  ENTER Enclosed space floor                                                               | Parameters  S  ENTER  Enclosed space                                                                                                      | (g/cm³)  1.66  ENTER  Floor-wall seam crack                                                                                     | (unitless)<br>0.375                                          | (cm³/cm³)                                  | Parameters S ENTER                                                                          | (g/cm³)                          | (unitless)                      | (cm³/cm³)                     |
| MORE V                      | ENTER Enclosed space floor thickness,                                                                  | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential,                                                                                     | (unitless)  0.370  ENTER Enclosed space floor length,                                                         | (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                        | S ENTER Enclosed space height,                                                                                                            | (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                              | (unitless)  0.375  ENTER  Indoor air exchange rate,          | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bldg. OR eave blank to calcula                         | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE<br>↓                   | SL  ENTER Enclosed space floor thickness, Lerack                                                       | (g/cm³)  1.60  ENTER  Soil-bidg. pressure differential, ΔP                                                                                  | (unitless)  0.370  ENTER Enclosed space floor length, La                                                      | (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub>                                         | S ENTER Enclosed space height, H <sub>8</sub>                                                                                             | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                            | (unitless)  0.375  ENTER Indoor air exchange rate, ER        | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula                         | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE U                      | ENTER Enclosed space floor thickness,                                                                  | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential,                                                                                     | (unitless)  0.370  ENTER Enclosed space floor length,                                                         | (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                        | S ENTER Enclosed space height,                                                                                                            | (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                              | (unitless)  0.375  ENTER  Indoor air exchange rate,          | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bldg. OR eave blank to calcula                         | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE ↓                      | SL  ENTER Enclosed space floor thickness, Lerack                                                       | (g/cm³)  1.60  ENTER  Soil-bidg. pressure differential, ΔP                                                                                  | (unitless)  0.370  ENTER Enclosed space floor length, La                                                      | (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub>                                         | S ENTER Enclosed space height, H <sub>8</sub>                                                                                             | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                            | (unitless)  0.375  ENTER Indoor air exchange rate, ER        | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula                         | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | SL ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER                                          | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER                                                             | (unitless)  0.370  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                     | (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                    | S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                                                        | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                                       | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
|                             | ENTER Enclosed space floor thickness, Lereck (cm)  ENTER Averaging                                     | (g/cm³)  1.60  ENTER  Soil-bidg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging                                          | (unitless)  0.370  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER                       | Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target                                                           | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard                                             | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for                        | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for                                          | (unitless)  0.370  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER Exposure                           | (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER  Exposure             | Parameters  S ENTER Enclosed space height, He (cm)  244 ENTER Target risk for                                                             | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                               | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | SL ENTER Enclosed space floor thickness, Lerack (cm)  ENTER Averaging time for carcinogens,            | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens,                          | (unitless)  0.370  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                        | (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER                       | Parameters  S ENTER Enclosed space height, Hs (cm)  244 ENTER Target risk for carcinogens,                                                | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,               | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for                        | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for                                          | (unitless)  0.370  ENTER Enclosed space floor length, Le (cm)  1000  ENTER  Exposure duration,                | (cm³/cm³)  0.103  ENTER Enclosed space floor width, Ws (cm)  1000  ENTER  Exposure frequency,              | Parameters  S ENTER Enclosed space height, He (cm)  244 ENTER Target risk for                                                             | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                               | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | ENTER Enclosed space floor thickness, Lerack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs) | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)   | (unitless)  0.370  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER Exposure duration, ED (yrs)        | (cm³/cm³)  0.103  ENTER Enclosed space floor width, Ws (cm)  1000  ENTER  Exposure frequency, EF (days/yr) | Parameters  S ENTER Enclosed space height, He (cm)  244 ENTER Target risk for carcinogens, TR (unitless)                                  | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | SL  ENTER Enclosed space floor thickness, Lereck (cm)  10  ENTER Averaging time for carcinogens, ATc   | (g/cm³)  1.60  ENTER  Soil-bidg, pressure differential, $\Delta P$ (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, $\Delta T_{NC}$ | (unitless)  0.370  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | (cm³/cm³)  0.103  ENTER Enclosed space floor width, Ws (cm)  1000  ENTER Exposure frequency, EF            | Parameters  S ENTER  Enclosed space height, He (cm)  244  ENTER Target risk for carcinogens, TR                                           | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ            | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |
| MORE                        | ENTER Enclosed space floor thickness, Lerack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs) | (g/cm³)  1.60  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)   | (unitless)  0.370  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER Exposure duration, ED (yrs)        | (cm³/cm³)  0.103  ENTER Enclosed space floor width, Ws (cm)  1000  ENTER  Exposure frequency, EF (days/yr) | Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 Used to calcu | (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | (unitless)  0.375  ENTER  Indoor air exchange rate, ER (1/h) | (cm³/cm³)<br>0.054                         | S ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q <sub>toll</sub> (L/m) | (g/cm <sup>3</sup> )<br>1,66     | (unitless)                      | (cm³/cm³)                     |

### CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                                            |

#### INTERMEDIATE CALCULATIONS SHEET

|   | Exposure duration, t (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ B}$<br>(cm³/cm³) | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c<br>(cm³/cm³)                 | Stratum A effective total fluid saturation, Ste (cm³/cm³)                                        | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm <sup>2</sup> )                              | Thickness of capillary zone,  L <sub>cz</sub> (cm)                                            | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)         | Air-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>a,cz</sub><br>(cm³/cm³) | Water-filled porosity in capillary zone, θ <sub>w,cz</sub> (cm³/cm³)                              | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|---|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|   | 9.46E+08                                                                       | 125                                                                                     | 0.267                                                                     | 0.321                                                                         | 0.321                                                                                         | 0.193                                                                                            | 5.94E-09                                                                                | 0.895                                                                                       | 5.32E-09                                                                                                       | 25.00                                                                                         | 0.37                                                                               | 0.050                                                                             | 0.320                                                                                             | 4,000                                                              |
|   | Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)               | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H'Ts                              | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µrs<br>(g/cm-s)                       | Stratum<br>A<br>effective<br>diffusion<br>coefficient<br>D <sup>eff</sup> <sub>A</sub><br>(cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>9</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, Deff cz (cm²/s)                   | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
|   | 1.69E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                            | 8,544                                                                                         | 5.05E-03                                                                                         | 2.17E-01                                                                                | 1.76E-04                                                                                    | 7.10E-03                                                                                                       | 0.00E+00                                                                                      | 0.00E+00                                                                           | 3.42E-05                                                                          | 1.68E-04                                                                                          | 125                                                                |
| _ | Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm³/s)                 | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                    | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                    | Infinite source indoor attenuation coefficient, $\alpha$ (unitless)                         | Infinite<br>source<br>bidg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                                      | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>1</sup>                                        | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                                   |                                                                                                   |                                                                    |
|   | 15<br>END                                                                      | 1.09E+03                                                                                | 0.10                                                                      | 8.33E+01                                                                      | 7.10E-03                                                                                      | 4.00E+02                                                                                         | 2.28E+127                                                                               | 8.26E-05、                                                                                   | 8.98E-02                                                                                                       | 2.0E-06                                                                                       | 6.0E-01                                                                            |                                                                                   |                                                                                                   |                                                                    |

**RESULTS SHEET** 

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

**INCREMENTAL RISK CALCULATIONS:** 

| Indoor      | Indoor        | Risk-based  | Pure        | Final       | Incremental risk from | Hazard<br>quotient                  |
|-------------|---------------|-------------|-------------|-------------|-----------------------|-------------------------------------|
| exposure    | exposure      | indoor      | component   | indoor      | vapor                 | from vapor intrusion to indoor air, |
| groundwater | groundwater   | exposure    | water       | exposure    | intrusion to          |                                     |
| conc        | conc          | groundwater | solubility, | groundwater | indoor air,           |                                     |
| carcinogen  | noncarcinogen | conc.,      | S           | conc.,      | carcinogen            | noncarcinogen                       |
| (μg/L)      | (μg/L)        | (μg/L)      | (μg/L)      | (μg/L)      | (unitless)            | (unitless)                          |
| NA .        | NA NA         | NA NA       | 1.47E+06    | NA          | 7.4E-08               | 1.4E-04                             |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

# INCREMENTAL RISK CALCULATIONS:

| indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 6.80E+01                                                            | 3.50E+04                                                               | 6.80E+01                                             | 1.47E+06                                                 | 6.80E+01                                        | l [ | NA                                                                         | NA I                                                                         |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

| GW-ADV<br>ersion 3.1; 02/04 | CALCULATE R                                                       | ISK-BASED GROUI                                                    | NDWATER CONC                                                   | CENTRATION (e                                                                                               | nter "X" in "YES" b                                                        | ox)                                                            |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|-----------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Reset to                    |                                                                   | YES                                                                | OR                                                             | ]                                                                                                           |                                                                            |                                                                |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
| Defaults                    | CALCULATÉ IN                                                      | ICREMENTAL RISK                                                    | S FROM ACTUA                                                   | L GROUNDWAT                                                                                                 | TER CONCENTRA                                                              | TION (enter "X" in "YE                                         | S" box and initial grou                                        | indwater conc. be                                                      | low)                                                             |                                                                                          |                                                                            |                                                                          |
|                             |                                                                   | YES                                                                | X                                                              | ],                                                                                                          |                                                                            |                                                                |                                                                | *                                                                      |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | ENTER<br>Chemical                                                 | ENTER<br>Initial                                                   |                                                                |                                                                                                             |                                                                            |                                                                |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | CAS No.<br>(numbers only,                                         |                                                                    |                                                                |                                                                                                             |                                                                            |                                                                |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | no dashes)                                                        | (μg/L)                                                             | •                                                              |                                                                                                             | Chemical                                                                   | <del> </del>                                                   | •                                                              |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | 79016                                                             | 5.02E+00                                                           | ] .                                                            |                                                                                                             | Trichloroethyl                                                             | ene                                                            | ]                                                              |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | ENTER                                                             | ENTER<br>Depth                                                     | ENTER                                                          | ENTER<br>Totals mu                                                                                          | ENTER<br>ist add up to value                                               | ENTER<br>of L <sub>wt</sub> (cell G28)                         | ENTER                                                          | ENTER                                                                  | ENTER<br>Soil                                                    |                                                                                          | ENTER                                                                      | ]                                                                        |
| MORE                        | Average<br>soil/<br>groundwater<br>temperature,<br>T <sub>s</sub> | below grade to bottom of enclosed space floor, L <sub>F</sub> (cm) | Depth<br>below grade<br>to water table,<br>L <sub>W</sub> T    | Thickness<br>of soil<br>stratum A,                                                                          | Thickness<br>of soil<br>stratum B,<br>(Enter value or 0)<br>h <sub>B</sub> | h <sub>C</sub>                                                 | Soil<br>stratum<br>directly above<br>water table.              | SCS<br>soil type<br>directly above                                     | stratum A<br>SCS<br>soil type<br>(used to estimate<br>soil vapor | OR                                                                                       | User-defined<br>stratum A<br>soil vapor<br>permeability,<br>k <sub>v</sub> |                                                                          |
|                             |                                                                   |                                                                    | (cm)                                                           | (cm)                                                                                                        | (cm)                                                                       | (cm)                                                           | (Enter A, B, or C)                                             | water table                                                            | permeability)                                                    |                                                                                          | (cm²)                                                                      | •                                                                        |
|                             | 11                                                                | 15                                                                 | 140                                                            | 140                                                                                                         | 0                                                                          | 0                                                              | Α                                                              | SL                                                                     | SL                                                               |                                                                                          |                                                                            | )                                                                        |
| MORE +                      | ENTER Stratum A SCS soil type Lookup Soil Parameters              | ENTER Stratum A soil dry bulk density, $\rho_b^A$ (g/cm³)          | ENTER Stratum A soil total porosity, n <sup>A</sup> (unitless) | ENTER Stratum A soil water-filled porosity, θ <sub>w</sub> <sup>A</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum B<br>SCS<br>Soil type<br>Lookup Soil<br>Parameters                 | ENTER Stratum B soil dry bulk density, $\rho_b^B$ (g/cm $^3$ ) | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless) | ENTER Stratum B soil water-filled porosity, $\theta_w^B$ $(cm^3/cm^3)$ | ENTER Stratum C SCS Soil type Lookup Soil Parameters             | ENTER Stratum C soil dry bulk density,  p <sub>b</sub> <sup>C</sup> (g/cm <sup>3</sup> ) | ENTER Stratum C soil total porosity, n <sup>C</sup> (unitless)             | ENTER Stratum C soil water-filled porosity, $\theta_w^{C}$ $(cm^3/cm^3)$ |
|                             | SL                                                                | 1.60                                                               | 0.370                                                          | 0.103                                                                                                       | S                                                                          | 1.66                                                           | 0.375                                                          | 0.054                                                                  | S                                                                | 1.66                                                                                     | 0.375                                                                      | 0.054                                                                    |
| MORE                        | ENTER<br>Enclosed<br>space                                        | ENTER<br>Soil-bidg.                                                | ENTER<br>Enclosed<br>space                                     | ENTER<br>Enclosed<br>space                                                                                  | ENTER<br>Enclosed                                                          | ENTER Floor-wall                                               | ENTER                                                          |                                                                        | ENTER Average vapor flow rate into bldg.                         |                                                                                          | • *                                                                        |                                                                          |
| L                           | floor<br>thickness,<br>L <sub>crack</sub>                         | pressure<br>differential,<br>ΔΡ                                    | floor<br>length,<br>L <sub>8</sub>                             | floor<br>width,<br>W <sub>8</sub>                                                                           | space<br>height,<br>H <sub>B</sub>                                         | seam crack<br>width<br>w                                       | air exchange<br>rate,<br>ER                                    | L                                                                      | OR<br>eave blank to calculat<br>Q <sub>soil</sub>                | te                                                                                       |                                                                            |                                                                          |
|                             | (cm)                                                              | (g/cm-s <sup>2</sup> )                                             | (cm)                                                           | (cm)                                                                                                        | (cm)                                                                       | (cm)                                                           | (1/h)                                                          | _                                                                      | (L/m)                                                            |                                                                                          |                                                                            |                                                                          |
|                             | 10                                                                | 40                                                                 | 1000                                                           | 1000                                                                                                        | 300                                                                        | 0.1                                                            | 0.83                                                           | ]                                                                      | 5                                                                |                                                                                          |                                                                            |                                                                          |
| MORE .                      | ENTER<br>Averaging                                                | ENTER<br>Averaging                                                 | ENTER                                                          | ENTER                                                                                                       | ENTER<br>Target                                                            | ENTER<br>Target hazard                                         |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | time for carcinogens,                                             | time for<br>noncarcinogens,<br>AT <sub>NC</sub>                    | Exposure<br>duration,<br>ED                                    | Exposure<br>frequency,<br>EF                                                                                | risk for<br>carcinogens,<br>TR                                             | quotient for<br>noncarcinogens,<br>THQ                         |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
|                             | (yrs)                                                             | (yrs)                                                              | (yrs)                                                          | (days/yr)                                                                                                   | (unitless)                                                                 | (unitless)                                                     |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
| END                         | 70                                                                | 25                                                                 | 25                                                             | 250                                                                                                         |                                                                            | late risk-based                                                | are<br>Salan<br>Taran                                          |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |
| ENU                         |                                                                   |                                                                    |                                                                |                                                                                                             | groungwater                                                                | concentration.                                                 |                                                                |                                                                        |                                                                  |                                                                                          |                                                                            |                                                                          |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's law constant reference temperature, T <sub>R</sub> (°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m <sup>3</sup> ) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                              | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                              | 3.5E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure duration, t (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A soil air-filled porosity, $\theta_a^A$ (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)  | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> <sup>c</sup><br>(cm³/cm³) | Stratum A effective total fluid saturation, Ste (cm³/cm³)               | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm²) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm²)             | Thickness of capillary zone, L <sub>cz</sub> (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)         | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)                                  | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                                       | 125                                                                                     | 0.267                                                                                | 0.321                                                                      | 0.321                                                                                    | 0.193                                                                   | 5.94E-09                                                                   | 0.895                                                                                       | 5.32E-09                                                                         | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.37                                                                               | 0.050                                                                                               | 0.320                                                              | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                              | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)    | Henry's law constant at ave. groundwater temperature,  Hrs (atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H*Ts (unitless)      | Vapor viscosity at ave. soil temperature, μτs (g/cm-s)                                      | Stratum A effective diffusion coefficient, D <sup>eff</sup> (cm <sup>2</sup> /s) | Stratum B effective diffusion coefficient, D <sup>eff</sup> B (cm <sup>2</sup> /s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>cz</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, Deff (cm²/s)        | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                             | 15                                                                         | 8,544                                                                                    | 5.05E-03                                                                | 2.17E-01                                                                   | 1.76E-04                                                                                    | 7.10E-03                                                                         | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00                                                                           | 3.42E-05                                                                                            | 1.68E-04                                                           | . 125                                                              |
| Convection path length,                                                        | Source vapor conc., C <sub>source</sub> (µg/m³)                                         | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                                       | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s)           | Area of crack, A <sub>crack</sub> (cm²)                                 | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)       | Infinite source indoor attenuation coefficient α (unitless)                                 | Infinite<br>source<br>bidg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)        | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              | 5.22.00                                                                                             | 1.052-04                                                           |                                                                    |
| (cm)                                                                           | (µg/iii)                                                                                | 12.1.1                                                                               | ·····                                                                      |                                                                                          |                                                                         |                                                                            |                                                                                             |                                                                                  | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                                                                                    |                                                                                                     |                                                                    |                                                                    |

### **RESULTS SHEET**

## RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(μg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | NA                                                                     | NA                                                   | 1.47E+06                                                 | NA                                                             | <br>5.9E-07                                                                | 4.3E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

## INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 8.48E+00                                                            | 1.17E+04                                                               | 8.48E+00                                                            | 1.47E+06                                                 | 8.48E+00                                                       | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

| GW-ADV<br>ersion 3.1; 02/ |                                  | RISK-BASED GRO                                  | UNDWATER CONC                                       | ENTRATION (e                                         | nter "X" in "YES" bo             | ox)                                        |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|---------------------------|----------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------|-------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
| Reset to                  |                                  | YES                                             | OR                                                  | ]                                                    |                                  |                                            |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
| Defaults                  | CALCULATE                        | INCREMENTAL RIS                                 | SKS FROM ACTUAL                                     | GROUNDWAT                                            | TER CONCENTRAT                   | TION (enter "X" in "YE                     | S" box and initial grou                  | ndwater conc. be                                     | low)                                       |                                                 |                                                     |                                                          |
|                           |                                  | YES                                             | X                                                   | ]                                                    |                                  |                                            |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | ENTER                            | ENTER<br>Initial                                |                                                     |                                                      |                                  |                                            |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | Chemical<br>CAS No.              | groundwater<br>conc.,                           |                                                     |                                                      |                                  |                                            |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | (numbers on no dashes)           | ly, C <sub>w</sub>                              |                                                     |                                                      | Chemical                         |                                            |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | 79016                            | 5.02E+00                                        | <del>-</del>                                        |                                                      | Trichloroethyl                   | ene                                        | •<br>1                                   |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | ENTER                            | ENTER                                           | ENTER                                               | ENTER                                                | ENTER                            | ENTER                                      | I<br>ENTER                               | ENTER                                                | ENTER .                                    |                                                 | ENTER                                               | 1                                                        |
| MORI                      | Average                          | Depth below grade                               |                                                     | Totals mu                                            | ust add up to value<br>Thickness | of L <sub>w1</sub> (cell G28)<br>Thickness |                                          |                                                      | Soil<br>stratum A                          |                                                 | User-defined                                        |                                                          |
| <u> </u>                  | soil/<br>groundwate              |                                                 | Depth<br>below grade                                | Thickness of soil                                    | of soil<br>stratum B;            | of soil<br>stratum C,                      | Soil<br>stratum                          | scs                                                  | SCS<br>soil type                           | 05                                              | stratum A<br>soil vapor                             |                                                          |
|                           | temperature<br>T <sub>S</sub>    | L <sub>F</sub>                                  | to water table,<br>L <sub>wt</sub>                  | stratum A,<br>h <sub>A</sub>                         | (Enter value or 0)               | h <sub>c</sub>                             | directly above water table,              | soil type<br>directly above                          | (used to estimate soil vapor               | OR                                              | permeability,<br>k <sub>v</sub>                     |                                                          |
|                           | (°C)                             | (cm)                                            | (cm)                                                | (cm)                                                 | (cm)                             | (cm)                                       | (Enter A, B, or C)                       | water table                                          | permeability)                              | r i                                             | (cm²)                                               |                                                          |
|                           | 11                               | 15                                              | 140                                                 | 140                                                  | 0                                | 0                                          | Α                                        | SL                                                   | SL                                         |                                                 | L                                                   |                                                          |
| MORI                      | SCS soil type                    | ENTER<br>Stratum A<br>soil dry<br>bulk density, | ENTER Stratum A soil total porosity, n <sup>A</sup> | ENTER<br>Stratum A<br>soil water-filled<br>porosity, | soil type                        | ENTER Stratum B soil dry bulk density,     | ENTER Stratum B soil total porosity,  QB | ENTER<br>Stratum B<br>soil water-filled<br>porosity, | ENTER<br>Stratum C<br>SCS<br>soil type     | ENTER<br>Stratum C<br>soil dry<br>bulk density, | ENTER Stratum C soil total porosity, n <sup>C</sup> | ENTER Stratum C soil water-filled porosity, $\theta_w^C$ |
|                           | Lookup Soil<br>Parameters        | ρ <sub>ь</sub> <sup>A</sup><br>(g/cm³)          | (unitless)                                          | θ <b>"<sup>A</sup></b><br>(cm³/cm³)                  | Lookup Soil<br>Parameters        | ρ <sub>ь</sub> <sup>8</sup><br>(g/cm³)     | Q (unitless)                             | θ <sub>w</sub> <sup>B</sup><br>(cm³/cm³)             | Lookup Soil<br>Parameters                  | ρ <sub>ь</sub> с<br>(g/cm³)                     | (unitiess)                                          | (cm³/cm³)                                                |
|                           | SL                               | 1.60                                            | 0.370                                               | 0.103                                                | S                                | 1.66                                       | 0.375                                    | 0.054                                                | s                                          | 1.66                                            | 0.375                                               | 0.054                                                    |
| MORI                      | ENTER Enclosed                   | ENTER                                           | ENTER<br>Enclosed                                   | ENTER<br>Enclosed                                    | ENTER                            | ENTER                                      | ENTER                                    |                                                      | ENTER<br>Average vapor                     |                                                 |                                                     |                                                          |
| 4                         | space<br>floor                   | Soil-bldg.<br>pressure                          | space                                               | space<br>floor                                       | Enclosed space                   | Floor-wall<br>seam crack                   | Indoor<br>air exchange                   | ,                                                    | flow rate into bldg.<br>OR                 |                                                 |                                                     |                                                          |
|                           | thickness,<br>L <sub>crack</sub> | differential,<br>ΔP                             | length,<br>L <sub>B</sub>                           | width,<br>W <sub>B</sub>                             | height,<br>H <sub>8</sub>        | width,<br>w                                | rate,<br>ER                              | ۱.                                                   | eave blank to calcula<br>Q <sub>soil</sub> | te                                              |                                                     |                                                          |
|                           | (cm)                             | (g/cm-s <sup>2</sup> )                          | (cm)                                                | (cm)                                                 | (cm)                             | (cm)                                       | (1/h)                                    |                                                      | (L/m)                                      |                                                 |                                                     |                                                          |
|                           | 10                               | 40                                              | 1000                                                | 1000                                                 | 300                              | 0.1                                        | 0.83                                     | ]                                                    | .5                                         |                                                 |                                                     |                                                          |
| MOR!<br>↓                 | Averaging                        | ENTER<br>Averaging                              | ENTER                                               | ENTER                                                | ENTER<br>Target                  | ENTER<br>Target hazard                     |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | time for<br>carcinogens          |                                                 |                                                     | Exposure frequency,                                  | risk for carcinogens,            | quotient for noncarcinogens,               |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
|                           | AT <sub>C</sub><br>(yrs)         | AT <sub>NC</sub><br>(yrs)                       | ED<br>(yrs)                                         | EF<br>(days/yr)                                      | TR<br>(unitless)                 | THQ<br>(unitless)                          |                                          |                                                      |                                            |                                                 | -                                                   |                                                          |
|                           | 70                               | 25                                              | 25                                                  | 250                                                  | 1.0E-06                          | 1                                          |                                          |                                                      |                                            |                                                 |                                                     |                                                          |
| END                       | <del>-</del>                     |                                                 |                                                     | v                                                    |                                  | ulate risk-based<br>r concentration.       |                                          |                                                      |                                            |                                                 |                                                     |                                                          |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm²/s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|-----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 7.90E-02                                            | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                             | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                                            |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure duration, τ (sec)                                                     | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B soil air-filled porosity, θ <sub>a</sub> <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ C}$<br>(cm³/cm³)                 | Stratum A effective total fluid saturation, Ste (cm³/cm³)                                                      | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> )          | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm²)      | Thickness of capillary zone,  L <sub>cz</sub> (cm)                                            | Total porosity in capillary zone, n <sub>cz</sub> (cm³/cm³)                        | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)          | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm <sup>3</sup> /cm <sup>3</sup> )      | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                |                                                                                         |                                                                           |                                                                                                     |                                                                                               |                                                                                                                |                                                                                                  | 1                                                                                           |                                                                           | 05.00                                                                                         |                                                                                    | 0.050                                                                       | 0.320                                                                                             | 4,000                                                              |
| 7.88E+08                                                                       | 125                                                                                     | 0.267                                                                     | 0.321                                                                                               | 0.321                                                                                         | 0.193                                                                                                          | 5.94E-09                                                                                         | 0.895                                                                                       | 5.32E-09                                                                  | 25.00                                                                                         | 0.37                                                                               | 0.050                                                                       | 0.320                                                                                             | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)                                     | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H' <sub>TS</sub><br>(unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>μτs<br>(g/cm-s)                       | Stratum A effective diffusion coefficient, D <sup>eff</sup> (cm²/s)       | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>8</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm²/s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                                                  | 8,544                                                                                         | 5.05E-03                                                                                                       | 2.17E-01                                                                                         | 1.76E-04                                                                                    | 7.10E-03                                                                  | 0.00E+00                                                                                      | 0.00E+00                                                                           | 3.42E-05                                                                    | 1.68E-04                                                                                          | 125                                                                |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s)                          | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm²)                                                               | Exponent of equivalent foundation Peclet number, exp(Pe <sup>t</sup> ) (unitless)                | Infinite source indoor attenuation coefficient, α (unitless)                                | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³) | Unit<br>risk<br>factor,<br>URF<br>(μg/m³)·1                                                   | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                             |                                                                                                   |                                                                    |
| 15                                                                             | 1.09E+03                                                                                | 0.10                                                                      | 8.33E+01                                                                                            | 7.10E-03                                                                                      | 4.00E+02                                                                                                       | 2.28E+127                                                                                        | 2.02E-05                                                                                    | 2.20E-02                                                                  | 2.0E-06                                                                                       | 6.0E-01                                                                            | J                                                                           |                                                                                                   |                                                                    |

## **RESULTS SHEET**

# RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

## **INCREMENTAL RISK CALCULATIONS:**

|   | Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| [ | NA                                                                  | NA NA                                                   | NA                                                                  | 1.47E+06                                                 | NA                                                             | 1.1E-08                                                        | 2.5E-05                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### **INCREMENTAL RISK CALCULATIONS:**

| indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc., | Pure<br>component<br>water<br>solubility,<br>S | Final<br>indoor<br>exposure<br>groundwater<br>conc., | Incremental risk from vapor intrusion to indoor air, carcinogen | Hazard quotient from vapor intrusion to indoor air, noncarcinogen |
|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| (mg/L)                                                    | (mg/L)                                                       | (mg/L)                                                    | (mg/L)                                         | (mg/L)                                               | (unitless)                                                      | (unitless)                                                        |
| 4.67E+02                                                  | 2.00E+05                                                     | 4.67E+02                                                  | 1.47E+06                                       | 4.67E+02                                             | NA                                                              | NA NA                                                             |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

SITE 23

RESIDENTIAL

#### DATA ENTRY SHEET

| GW-ADV<br>sion 3.1; 02/04 | CALCULATE RIS                                                                                                                                                    | K-BASED GROUP                                                                                                                                                                                            | NDWATER CONC                                                                                                                                    | ENTRATION (e                                                                                                                                                 | nter "X" in "YES" bo                                                                                                                                          | <b>x</b> )                                                                                                                                                                          |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       | ÷                                                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Reset to<br>Defaults      |                                                                                                                                                                  | YES                                                                                                                                                                                                      | OR                                                                                                                                              | ]                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
| Beladits                  | CALCULATE INC                                                                                                                                                    | REMENTAL RISK                                                                                                                                                                                            | S FROM ACTUAL                                                                                                                                   | L GROUNDWAT                                                                                                                                                  | ER CONCENTRAT                                                                                                                                                 | ION (enter "X" in "YE                                                                                                                                                               | S" box and initial grou                                                                                         | indwater conc. be                                                                              | low)                                                                                                                                  |                                                                                               |                                                                       |                                                                                   |
|                           |                                                                                                                                                                  | YES                                                                                                                                                                                                      | X                                                                                                                                               | ]                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
|                           | ENTER                                                                                                                                                            | ENTER<br>Initial                                                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
|                           | Chemical<br>CAS No.                                                                                                                                              | groundwater<br>conc.                                                                                                                                                                                     |                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
|                           | (numbers only,                                                                                                                                                   | Cw                                                                                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
|                           | no dashes)                                                                                                                                                       | (µg/L)                                                                                                                                                                                                   |                                                                                                                                                 | *                                                                                                                                                            | Chemical                                                                                                                                                      | **************************************                                                                                                                                              |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
|                           | 67663                                                                                                                                                            | 3.00E+00                                                                                                                                                                                                 | ]                                                                                                                                               |                                                                                                                                                              | Chloroform                                                                                                                                                    |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       |                                                                                               |                                                                       |                                                                                   |
|                           | ENTER                                                                                                                                                            | ENTER<br>Depth                                                                                                                                                                                           | ENTER                                                                                                                                           | ENTER<br>Totals mu                                                                                                                                           | ENTER<br>ist add up to value of                                                                                                                               | ENTER                                                                                                                                                                               | ENTER                                                                                                           | ENTER                                                                                          | ENTER<br>Soil                                                                                                                         | · · ·                                                                                         | ENTER                                                                 |                                                                                   |
| MORE                      | Average                                                                                                                                                          | below grade                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                              | Thickness                                                                                                                                                     | Thickness                                                                                                                                                                           |                                                                                                                 |                                                                                                | stratum A                                                                                                                             |                                                                                               | User-defined                                                          |                                                                                   |
| <u> </u>                  | soil/<br>groundwater                                                                                                                                             | to bottom<br>of enclosed                                                                                                                                                                                 | Depth                                                                                                                                           | Thickness                                                                                                                                                    | of soil                                                                                                                                                       | of soil                                                                                                                                                                             | Soil                                                                                                            |                                                                                                | scs                                                                                                                                   |                                                                                               | stratum A                                                             | ·                                                                                 |
|                           | temperature,                                                                                                                                                     | space floor,                                                                                                                                                                                             | below grade<br>to water table,                                                                                                                  | of soil<br>stratum A,                                                                                                                                        | stratum B,<br>(Enter value or 0)                                                                                                                              | stratum C,<br>(Enter value or 0)                                                                                                                                                    | stratum<br>directly above                                                                                       | SCS<br>soil type                                                                               | soil type<br>(used to estimate                                                                                                        | OR                                                                                            | soil vapor<br>permeability.                                           |                                                                                   |
|                           | Ts                                                                                                                                                               | Le                                                                                                                                                                                                       | L <sub>W7</sub>                                                                                                                                 | h <sub>A</sub>                                                                                                                                               | h <sub>B</sub>                                                                                                                                                | h <sub>c</sub>                                                                                                                                                                      | water table,                                                                                                    | directly above                                                                                 | soil vapor                                                                                                                            | OK                                                                                            | k,                                                                    | ł                                                                                 |
|                           | (°C)                                                                                                                                                             | (cm)                                                                                                                                                                                                     | (cm)                                                                                                                                            | (cm)                                                                                                                                                         | (cm)                                                                                                                                                          | (cm)                                                                                                                                                                                | (Enter A, B, or C)                                                                                              | water table                                                                                    | permeability)                                                                                                                         |                                                                                               | (cm²)                                                                 |                                                                                   |
|                           |                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                 | 1                                                                                                                                                            |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                | ·                                                                                                                                     | -                                                                                             |                                                                       | 1                                                                                 |
|                           | 11                                                                                                                                                               | 15                                                                                                                                                                                                       | 210                                                                                                                                             | 210                                                                                                                                                          | ٥                                                                                                                                                             |                                                                                                                                                                                     |                                                                                                                 | 61                                                                                             | ei -                                                                                                                                  | 7                                                                                             |                                                                       |                                                                                   |
|                           | 11                                                                                                                                                               | 15                                                                                                                                                                                                       | 210                                                                                                                                             | 210                                                                                                                                                          | 0                                                                                                                                                             | 0                                                                                                                                                                                   | A                                                                                                               | SL                                                                                             | SL                                                                                                                                    | 1                                                                                             |                                                                       |                                                                                   |
|                           | ENTER                                                                                                                                                            | 15<br>ENTER                                                                                                                                                                                              |                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                 |                                                                                                |                                                                                                                                       | ENTER                                                                                         | EMTEO                                                                 | ENTED                                                                             |
| MORE                      | ENTER<br>Stratum A                                                                                                                                               | ENTER<br>Stratum A                                                                                                                                                                                       | 210 ENTER Stratum A                                                                                                                             | 210  ENTER Stratum A                                                                                                                                         | 0 ENTER Stratum B                                                                                                                                             | 0 ENTER Stratum B                                                                                                                                                                   | A ENTER Stratum B                                                                                               | SL<br>ENTER<br>Stratum B                                                                       | SL<br>ENTER<br>Stratum C                                                                                                              | ENTER<br>Stratum C                                                                            | ENTER<br>Stratum C                                                    | ENTER<br>Stratum C                                                                |
| MORE +                    | ENTER<br>Stratum A<br>SCS                                                                                                                                        | ENTER<br>Stratum A<br>soil dry                                                                                                                                                                           | ENTER<br>Stratum A<br>soil total                                                                                                                | ENTER<br>Stratum A<br>soil water-filled                                                                                                                      | ENTER<br>Stratum B<br>SCS                                                                                                                                     | ENTER<br>Stratum B<br>soil dry                                                                                                                                                      | ENTER<br>Stratum B<br>soil total                                                                                | ENTER<br>Stratum B<br>soil water-filled                                                        | ENTER<br>Stratum C<br>SCS                                                                                                             | Stratum C soil dry                                                                            | Stratum C<br>soil total                                               | Stratum C<br>soil water-filled                                                    |
|                           | ENTER<br>Stratum A<br>SCS<br>soil type                                                                                                                           | ENTER<br>Stratum A<br>soil dry<br>bulk density,                                                                                                                                                          | ENTER<br>Stratum A<br>soil total<br>porosity,                                                                                                   | ENTER<br>Stratum A<br>soil water-filled<br>porosity,                                                                                                         | ENTER<br>Stratum B<br>SCS<br>soil type                                                                                                                        | ENTER<br>Stratum B<br>soil dry<br>bulk density,                                                                                                                                     | ENTER<br>Stratum B<br>soil total<br>porosity,                                                                   | ENTER<br>Stratum B<br>soil water-filled<br>porosity,                                           | ENTER<br>Stratum C<br>SCS<br>soil type                                                                                                | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                  | Stratum C<br>soil water-filled<br>porosity,                                       |
|                           | ENTER<br>Stratum A<br>SCS                                                                                                                                        | ENTER Stratum A soil dry bulk density, \$\rho_{\rho}^{\rho}\$                                                                                                                                            | ENTER<br>Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                 | ENTER Stratum A soil water-filled porosity,  0,4                                                                                                             | ENTER<br>Stratum B<br>SCS                                                                                                                                     | ENTER Stratum B soil dry bulk density, $\rho_b^B$                                                                                                                                   | ENTER<br>Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                 | ENTER Stratum B soil water-filled porosity,  0,8                                               | ENTER Stratum C SCS soil type Lookup Soil                                                                                             | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                                     | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>                | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{\mathbf{w}}^{\ C}$        |
|                           | ENTER Stratum A SCS SOil type Lookup Soil Parameters                                                                                                             | ENTER<br>Stratum A<br>soil dry<br>bulk density,                                                                                                                                                          | ENTER<br>Stratum A<br>soil total<br>porosity,                                                                                                   | ENTER<br>Stratum A<br>soil water-filled<br>porosity,                                                                                                         | ENTER Stratum B SCS soil type                                                                                                                                 | ENTER<br>Stratum B<br>soil dry<br>bulk density,                                                                                                                                     | ENTER<br>Stratum B<br>soil total<br>porosity,                                                                   | ENTER<br>Stratum B<br>soil water-filled<br>porosity,                                           | ENTER<br>Stratum C<br>SCS<br>soil type                                                                                                | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                  | Stratum C<br>soil water-filled<br>porosity,                                       |
|                           | ENTER Stratum A SCS soil type Lookup Soil                                                                                                                        | ENTER Stratum A soil dry bulk density, \$\rho_{\rho}^{\rho}\$                                                                                                                                            | ENTER<br>Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                 | ENTER Stratum A soil water-filled porosity,  0,4                                                                                                             | ENTER Stratum B SCS soil type                                                                                                                                 | ENTER Stratum B soil dry bulk density, $\rho_b^{\ B}$                                                                                                                               | ENTER<br>Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                 | ENTER Stratum B soil water-filled porosity,  0,8                                               | ENTER Stratum C SCS soil type Lookup Soil                                                                                             | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                                     | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>                | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{\mathbf{w}}^{\mathbf{C}}$ |
|                           | ENTER Stratum A SCS SOil type Lookup Soil Parameters                                                                                                             | ENTER Stratum A soil dry bulk density, \$\rho_b^A^{\text{(g/cm}^3)}\$                                                                                                                                    | ENTER<br>Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                   | ENTER Stratum A soil water-filled porosity, θ, (cm³/cm³)  0.103                                                                                              | ENTER Stratum B SCS soil type Lookup Soil Parameters                                                                                                          | ENTER Stratum B soil dry bulk density, $ ho_b^{\ B}$ (g/cm³)                                                                                                                        | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)                                                  | ENTER Stratum B soil water-filled porosity, $\theta_w^B$ (cm³/cm³)                             | ENTER Stratum C SCS soil type Lookup Soil Parameters S ENTER                                                                          | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
|                           | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space                                                                                   | ENTER Stratum A soil dry bulk density, pb^ (g/cm³)  1.50  ENTER  Soil-bldg.                                                                                                                              | ENTER Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed space                                                     | ENTER Stratum A soil water-filled porosity, θ, (cm³/cm³)  0.103  ENTER Enclosed space                                                                        | ENTER Stratum B SCS soil type Lookup Soil Parameters                                                                                                          | ENTER Stratum B soil dry bulk density, $ ho_b^{\ B}$ (g/cm <sup>3</sup> )                                                                                                           | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)                                                  | ENTER Stratum B soil water-filled porosity, $\theta_w^B$ (cm³/cm³)                             | ENTER Stratum C SCS soil type Lookup Soil Parameters                                                                                  | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| <b>₩</b> ORE              | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor                                                                              | ENTER Stratum A soil dry bulk density, pb <sup>A</sup> (g/cm <sup>3</sup> )  1.50  ENTER  Soil-bldg. pressure                                                                                            | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor                                                           | ENTER Stratum A soil water-filled porosity, 0," (cm³/cm³)  0.103  ENTER Enclosed space floor                                                                 | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space                                                                                  | ENTER Stratum B soil dry bulk density, \$\rho_b^B\right(g/cm^3)\right)  1.66  ENTER  Floor-wall seam crack                                                                          | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange                  | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR                                   | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| <b>₩</b> ORE              | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness,                                                                   | ENTER Stratum A soil dry bulk density, p,^ (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential,                                                                                                       | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length,                                                   | ENTER Stratum A soil water-filled porosity, θ, (cm³/cm³)  0.103  ENTER Enclosed space floor width,                                                           | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                          | ENTER Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                              | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate,          | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lockup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR gave blank to calcula             | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| <b>₩</b> ORE              | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor                                                                              | ENTER Stratum A soil dry bulk density, pb <sup>A</sup> (g/cm <sup>3</sup> )  1.50  ENTER  Soil-bldg. pressure                                                                                            | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor                                                           | ENTER Stratum A soil water-filled porosity, 0," (cm³/cm³)  0.103  ENTER Enclosed space floor                                                                 | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                           | ENTER Stratum B soil dry bulk density, $\rho_b^B$ (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                              | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER       | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calcula             | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| <b>₩</b> ORE              | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (Cm)                                                       | ENTER Stratum A soil dry bulk density, p <sub>0</sub> <sup>A</sup> (g/cm <sup>3</sup> )  1.50  ENTER  Soil-bldg pressure differential, ΔP (g/cm-s <sup>2</sup> )                                         | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                               | ENTER Stratum A soil water-filled porosity, e," (cm³/cm³)  0.103  ENTER Enclosed space floor width, We (cm)                                                  | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                      | ENTER Stratum B soil dry bulk density, \$\rho_b^B\\ (g/cm^3)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                                      | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE U                    | ENTER Stratum A SCS soll type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)                                                      | ENTER Stratum A soil dry bulk density, ph^ (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP                                                                                                    | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L8                                                | ENTER Stratum A soil water-filled porosity, θ, (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub>                                            | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                           | ENTER Stratum B soil dry bulk density, $\rho_b^B$ (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w                                                                              | ENTER Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER       | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calcula             | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE WORE                 | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER                                             | ENTER Stratum A soil dry bulk density, p,5 (g/cm³)  1.50  ENTER  Soil-bldg pressure differential, ΔP (g/cm-s²)  40  ENTER                                                                                | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                               | ENTER Stratum A soil water-filled porosity, e," (cm³/cm³)  0.103  ENTER Enclosed space floor width, We (cm)                                                  | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER                                            | ENTER Stratum B soil dry bulk density, \$\rho_b^8\$ (g/cm³)  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER                                                            | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE U                    | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, L-vack (cm)  10 ENTER Averaging                                   | ENTER Stratum A soil dry bulk density, pb^ (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging                                                                    | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>8</sub> (cm)  1000  ENTER                  | ENTER Stratum A soil water-filled porosity, θ, (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER                          | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target                                     | ENTER Stratum B soil dry bulk density, \$\rho_b^8\$ (g/cm³)  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard                                              | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE WORE                 | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for                        | ENTER Stratum A soil dry bulk density, p,5 (g/cm³)  1.50  ENTER  Soil-bldg pressure differential, ΔP (g/cm-s²)  40  ENTER                                                                                | ENTER Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                   | ENTER Stratum A soil water-filled porosity, θ, (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER Enclosed Space           | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for                          | ENTER Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm³)  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for                                 | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE WORE                 | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for carcinogens, ATc         | ENTER Stratum A soil dry bulk density, p <sub>b</sub> <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>ICC</sub> | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED       | ENTER Stratum A soil water-filled porosity, 0, 4 (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER Exposure frequency, EF | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for carcinogens, TR          | ENTER Stratum B soil dry bulk density, \$\rho_b^B\\ (g/cm^3)\$  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ          | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE WORE                 | ENTER Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens.           | ENTER Stratum A soil dry bulk density, ps^ (g/cm³)  1.50  ENTER  Soil-bldg pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens,                                             | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration,          | ENTER Stratum A soil water-filled porosity, e,,,,,,, (cm³/cm³)  0.103  ENTER Enclosed space floor width, We (cm)  1000  ENTER  Exposure frequency,           | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for carcinogens,             | ENTER Stratum B soil dry bulk density, \$\rho_{\theta}^{9}\$ (g/cm^{3})  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotlent for noncarcinogens,     | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE WORE                 | ENTER Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for carcinogens, ATc         | ENTER Stratum A soil dry bulk density, p <sub>b</sub> <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>ICC</sub> | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED       | ENTER Stratum A soil water-filled porosity, 0, 4 (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER Exposure frequency, EF | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)  244  ENTER Target risk for carcinogens, TR          | ENTER Stratum B soil dry bulk density, \$\rho_b^B\\ (g/cm^3)\$  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ          | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |
| MORE WORE                 | ENTER Stratum A SCS soll type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs) | ENTER Stratum A soil dry bulk density, ps^ (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs)                     | ENTER Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, Le (cm)  1000  ENTER  Exposure duration, ED (yrs) | ENTER Stratum A soil water-filled porosity,                                                                                                                  | ENTER Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens, TR (unitless) | ENTER Stratum B soil dry bulk density, \$\rho_b^B\$ (g/cm^3)  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | ENTER Stratum B soil water-filled porosity, θ <sup>B</sup> (cm <sup>3</sup> /cm <sup>3</sup> ) | ENTER Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR save blank to calcula Qsoil (L/m) | Stratum C<br>soil dry<br>bulk defansity,<br>\$\rho_b^C\$<br>\(\langle g/cm^3\rangle\)         | Straturn C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^{C}$<br>$(cm^3/cm^3)$    |

## CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's law constant reference temperature, T <sub>R</sub> (°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 1.04E-01                                                         | 1.00E-05                                                           | 3.66E-03                                                                     | 25                                                              | 6,988                                                                             | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                 | 4.9E-02                                            |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure duration,                                                            | Source-<br>building<br>separation,                                                      | Stratum A<br>soil<br>air-filled<br>porosity,                       | Stratum B<br>soil<br>air-filled<br>porosity,                               | Stratum C<br>soil<br>air-filled<br>porosity,                                          | Stratum A<br>effective<br>total fluid<br>saturation,                                             | Stratum A<br>soil<br>intrinsic<br>permeability,                       | Stratum A<br>soil<br>relative air<br>permeability,                    | Stratum A<br>soil<br>effective vapor<br>permeability,                                 | Thickness of capillary zone,                                                      | Total<br>porosity in<br>capillary<br>zone,                                                           | Air-filled porosity in capillary zone,                                                   | Water-filled<br>porosity in<br>capillary<br>zone,                                                 | Floor-<br>wall<br>seam<br>perimeter,                   |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| (222)                                                                         | L <sub>7</sub>                                                                          | θ <sub>a</sub> <sup>A</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | θ <sub>a</sub> <sup>B</sup><br>(cm³/cm³)                                   | θ <sub>ε</sub> <sup>C</sup><br>(cm³/cm³)                                              | S <sub>te</sub><br>(cm³/cm³)                                                                     | k <sub>i</sub>                                                        | k <sub>rg</sub>                                                       | k <sub>v</sub>                                                                        | L <sub>cz</sub>                                                                   | n <sub>cz</sub>                                                                                      | θ <sub>a,cz</sub>                                                                        | θ <sub>w,cz</sub>                                                                                 | X <sub>crack</sub>                                     |
| (sec)                                                                         | (cm)                                                                                    | (cm /cm )                                                          | (cm·/cm·)                                                                  | (cm²/cm²)                                                                             | (cm²/cm²)                                                                                        | (cm²)                                                                 | (cm²)                                                                 | (cm <sup>2</sup> )                                                                    | (cm)                                                                              | (cm³/cm³)                                                                                            | (cm <sup>3</sup> /cm <sup>3</sup> )                                                      | (cm³/cm³)                                                                                         | (cm)                                                   |
| 9.46E+08                                                                      | 195                                                                                     | 0.347                                                              | 0.321                                                                      | 0.321                                                                                 | 0.156                                                                                            | 5.94E-09                                                              | 0.917                                                                 | 5.45E-09                                                                              | 25.00                                                                             | 0.45                                                                                                 | 0.130                                                                                    | 0.320                                                                                             | 4,000                                                  |
| Bidg.<br>ventilation<br>rate,<br>Q <sub>bulding</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)            | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature,  H <sub>TS</sub> (atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H'1s (unitless) | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µrs<br>(g/cm-s) | Stratum<br>A<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup><br>(cm²/s) | Stratum B effective diffusion coefficient, Deff <sub>B</sub> (cm <sup>2</sup> /s) | Stratum<br>C<br>effective<br>diffusion<br>coefficient,<br>D <sup>eff</sup> c<br>(cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> cz (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> <sub>T</sub> (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm) |
| 1.69E+04                                                                      | 1.06E+06                                                                                | 3.77E-04                                                           | 15                                                                         | 7,544                                                                                 | 1.95E-03                                                                                         | 8.38E-02                                                              | 1.76E-04                                                              | 1.51E-02                                                                              | 0.00E+00                                                                          | 0.00E+00                                                                                             | 5.93E-04                                                                                 | 3.65E-03                                                                                          | 195                                                    |
| Convection path length, L <sub>p</sub> (cm)                                   | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>creck</sub><br>(cm)                     | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm²/s)                     | Area of<br>crack,<br>A <sub>crack</sub><br>(cm²)                                                 | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)  | Infinite source indoor attenuation coefficient, $\alpha$ (unitless)   | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)             | Unit<br>risk<br>factor,<br>URF<br>(µg/m³)-¹                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                                                |                                                                                          |                                                                                                   |                                                        |
| 15                                                                            | 2.52E+02                                                                                | 0.10                                                               | 8.33E+01                                                                   | 1.51E-02                                                                              | 4.00E+02                                                                                         | 6.17E+59                                                              | 9.46E-04、                                                             | 2.38E-01                                                                              | 2.3E-05                                                                           | 4.9E-02                                                                                              | ] .                                                                                      |                                                                                                   |                                                        |

**RESULTS SHEET** 

### INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc., | Pure<br>component<br>water<br>solubility,<br>S | Final<br>indoor<br>exposure<br>groundwater<br>conc., | Incremental risk from vapor intrusion to indoor air, carcinogen | Hazard quotient from vapor intrusion to indoor air, noncarcinogen |
|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| (μg/L)                                                    | (μg/L)                                                       | (μg/L)                                                    | (μg/L)                                         | (μg/L)                                               | (unitless)                                                      | (unitless)                                                        |
| NA                                                        | NA                                                           | NA                                                        | 7.92E+06                                       | NA                                                   | 2.2E-06                                                         | 4.7E-03                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

# INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.33E+00                                                            | 6.44E+02                                                               | 1.33E+00                                                            | 7.92E+06                                                 | 1.33E+00                                                       | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Chuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

GW-ADV CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Version 3.1; 02/04 YES Reset to OR Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES X **ENTER** ENTER Initial Chemical groundwater CAS No. conc., (numbers only, Cw Chemical no dashes) (μg/L) 79016 5.00E-01 Trichloroethylene ENTER ENTER **ENTER** ENTER ENTER ENTER **ENTER ENTER ENTER** ENTER Depth Totals must add up to value of LwT (cell G28) Soil User-defined MORE Average below grade Thickness Thickness stratum A SCS stratum A Depth Soil soil/ to bottom Thickness of soil of soil soil vapor groundwater of enclosed below grade of soil stratum B, stratum C, stratum SCS soil type (Enter value or 0) directly above soil type (used to estimate OR permeability, (Enter value or 0) temperature. space floor, to water table. stratum A. hA water table, directly above soil vapor  $T_{S}$ LF Lwt he hc (°C) (cm<sup>2</sup>) (cm) (cm) (cm) (Enter A, B, or C) water table permeability) (cm) (cm) 11 15 210 210 0 0 SL SI ENTER **ENTER** ENTER ENTER ENTER ENTER ENTER **ENTER** ENTER ENTER ENTER ENTER Stratum C Stratum C Stratum C MORE Stratum A Stratum A Stratum A Stratum B Stratum B Stratum B Stratum B Stratum C Stratum A soil total soil water-filled SCS soil water-filled T. soil water-filled SCS soil dry soil dry soil total SCS soil dry soil total bulk density, porosity, soil type bulk density, porosity, porosity, soil type bulk density, porosity, porosity, soil type porosity, θ**"**C  $\rho_b^C$ nC  $\rho_b^{-8}$  $\rho_b^A$ · n<sup>A</sup> θ<sub>w</sub>^ Lookup Soil Lookuo Soil Lookup Soil Parameters Parameters (cm<sup>3</sup>/cm<sup>3</sup>) (g/cm3) (cm<sup>3</sup>/cm<sup>3</sup>) (g/cm<sup>3</sup>) (cm<sup>3</sup>/cm<sup>3</sup>) (g/cm<sup>3</sup>) (unitless) (unitless) (unitless) 0.054 1.66 0.375 0.054 SL 1.50 0.450 0.103 s 1.66 0.375 S ENTER ENTER ENTER **ENTER ENTER ENTER ENTER** ENTER Average vapor MORE Enclosed Enclosed Enclosed 4 Soil-bldg. Enclosed Floor-wall Indoor flow rate into bldg. space space Space OR floor pressure floor floor space seam crack air exchange differential, height, width, rate, Leave blank to calculate thickness, length, width. ΔΡ LB  $W_B$ HB w ΕR Q<sub>soil</sub> (g/cm-s2) (cm) (cm) (1/h) (L/m) (cm) (cm) (cm) 244 0.1 0.25 5 10 40 1000 1000 MORE **ENTER** ENTER ENTER **ENTER ENTER** ENTER ¥ Averaging Target Target hazard Averaging time for time for Exposure Exposure risk for quotient for noncarcinogens, noncarcinogens, duration. carcinogens, carcinogens, frequency, ATc ATNC ED EF TR THQ (unitiess) (unitless) (yrs) (yrs) (yrs) (days/yr) 70 30 30 350 1.0E-06 Used to calculate risk-based END groundwater concentration.

## CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m <sup>3</sup> ) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 1.1E-04                                                 | 3.5E-02                                            |

#### INTERMEDIATE CALCULATIONS SHEET

| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exposure duration,                | Source-<br>building<br>separation,     | Stratum A<br>soil<br>air-filled<br>porosity, | Stratum B<br>soil<br>air-filled<br>porosity,           | Stratum C<br>soil<br>air-filled<br>porosity,                 | Stratum A<br>effective<br>total fluid<br>saturation, | Stratum A<br>soil<br>intrinsic<br>permeability,                        | Stratum A<br>soil<br>relative air<br>permeability,   | Stratum A<br>soil<br>effective vapor<br>permeability, | Thickness of capillary zone,                | Total<br>porosity in<br>capillary<br>zone,  | Air-filled porosity in capillary zone,         | Water-filled porosity in capillary zone,          | Floor-<br>wall<br>seam<br>perimeter, |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------------------------|--------------------------------------|
| Area of enclosed Crack-enclosed convention below area below are groundwater rate, grade, (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²/s)   (cm²   | τ                                 | •                                      | θ,Α                                          | $\theta_a^B$                                           | $\theta_a^C$                                                 | S <sub>te</sub>                                      | <b>k</b> i<br>2.                                                       | k <sub>rg</sub>                                      | · .                                                   |                                             | n <sub>cz</sub>                             | $\theta_{a,cz}$                                | θ <sub>w,cz</sub>                                 | X <sub>crack</sub>                   |
| Area of enclosed Crack- Crack Enthalpy of enclosed constant at constant at viscosity at effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effective effecti | (sec)                             | (cm)                                   | (cm²/cm²)                                    | (cm³/cm³)                                              | (cm²/cm²)                                                    | (cm³/cm³)                                            | (cm²)                                                                  | (cm²)                                                | (cm²)                                                 | (cm)                                        | (cm²/cm²)                                   | (cm²/cm²)                                      | (cm²/cm²)                                         | (cm)                                 |
| Bildg. space to-total depth space to-total below area below area (constant at vac. groundwater rate, prate, (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) (cm²/s) ( | 9.46E+08                          | 195                                    | 0.347                                        | 0.321                                                  | 0.321                                                        | 0.156                                                | 5.94E-09                                                               | 0.917                                                | 5.45E-09                                              | 25.00                                       | 0.45                                        | 0.130                                          | 0.320                                             | 4,000                                |
| (cm³/s)         (cm²)         (unitless)         (cm)         (cal/mol)         (atm-m³/mol)         (unitless)         (g/cm-s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)         (cm²/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ventilation                       | enclosed<br>space<br>below             | to-total<br>area                             | depth<br>below                                         | vaporization at ave. groundwater                             | constant at ave. groundwater                         | constant at ave. groundwater                                           | viscosity at ave. soil                               | A<br>effective<br>diffusion                           | B<br>effective<br>diffusion<br>coefficient, | C<br>effective<br>diffusion<br>coefficient, | zone<br>effective<br>diffusion<br>coefficient, | overall<br>effective<br>diffusion<br>coefficient, | path                                 |
| 1.69E+04   1.06E+06   3.77E-04   15   8,544   5.05E-03   2.17E-01   1.76E-04   1.15E-02   0.00E+00   0.00E+00   4.45E-04   2.75E-03   195    Exponent of equivalent source Infinite source Infinite source Unit path vapor Crack flow rate diffusion Area of Peclet attenuation bldg. risk Reference length, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., Lp C <sub>source</sub> r <sub>crack</sub> Q <sub>soll</sub> D <sup>crack</sup> A <sub>crack</sub> exp(Pef) α C <sub>butding</sub> URF RfC (cm) (μg/m³) (cm) (cm³/s) (cm²/s) (cm²) (unitless) (unitless) (μg/m³) (μg/m³) (mg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                        | η                                            | $Z_{crack}$                                            | $\Delta H_{v,TS}$                                            | 17                                                   | H' <sub>TS</sub>                                                       | μτς                                                  | . ~                                                   | _ <del>-</del>                              | •                                           |                                                |                                                   | La                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (cm³/s)                           | (cm²)                                  | (unitless)                                   | (cm)                                                   | (cal/mol)                                                    | (atm-m³/mol)                                         | (unitiess)                                                             | (g/cm-s)                                             | (cm²/s)                                               | (cm²/s)                                     | (cm²/s)                                     | (cm²/s)                                        | (cm²/s)                                           | (cm)                                 |
| Average Crack equivalent source Infinite  Convection Source vapor effective foundation indoor source Unit  path vapor Crack flow rate diffusion Area of Peclet attenuation bldg. risk Reference  length, conc., radius, into bldg., coefficient, crack, number, coefficient, conc., factor, conc., $L_p$ $C_{source}$ $r_{crack}$ $Q_{soil}$ $D^{crack}$ $A_{crack}$ $exp(Pe^f)$ $\alpha$ $C_{building}$ URF RfC  (cm) $(\mu g/m^3)$ (cm) $(cm^3/s)$ $(cm^2/s)$ $(cm^2)$ $(unitless)$ $(unitless)$ $(\mu g/m^3)$ $(\mu g/m^3)^{-1}$ $(mg/m^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.69E+04                          | 1.06E+06                               | 3.77E-04                                     | 15                                                     | 8,544                                                        | 5.05E-03                                             | 2.17E-01                                                               | 1.76E-04                                             | 1.15E-02                                              | 0.00E+00                                    | 0.00E+00                                    | 4.45E-04                                       | 2.75E-03                                          | 195                                  |
| 15   1.08E+02   0.10   8.33E+01   1.15E-02   4.00E+02   5.15E+78   7.47E-04   8.09E-02   1.1E-04   3.5E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | path<br>length,<br>L <sub>p</sub> | vapor<br>conc.,<br>C <sub>source</sub> | radius,<br>r <sub>crack</sub>                | vapor<br>flow rate<br>into bldg.,<br>Q <sub>soil</sub> | effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup> | crack,<br>A <sub>crack</sub>                         | equivalent<br>foundation<br>Peclet<br>number,<br>exp(Pe <sup>f</sup> ) | source<br>indoor<br>attenuation<br>coefficient,<br>α | source<br>bldg.<br>conc.,<br>C <sub>building</sub>    | risk<br>factor,<br>URF                      | conc.,<br>RfC                               |                                                |                                                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                | 1.08E+02                               | 0.10                                         | 8.33E+01                                               | 1.15E-02                                                     | 4.00E+02                                             | 5.15E+78                                                               | 7.47E-04                                             | 8.09E-02                                              | 1.1E-04                                     | 3.5E-02                                     | 1                                              |                                                   |                                      |

**RESULTS SHEET** 

# INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final indoor exposure groundwater conc., (µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA                                                                     | NA                                                                  | 1.47E+06                                                 | NA                                              | <br>3.7E-06                                                                | 2.2E-03                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

PRG SHEET

#### **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |       | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 1.37E-01                                                            | 2.26E+02                                                               | 1.37E-01                                                            | 1.47E+06                                                 | 1.37E-01                                                       | •<br> | NA                                                                         | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

| GW-ADV<br>Version 3.1; 02/04 | CALCULATE RE                                                                                                                                               | SK-BASED GROU                                                                                                                                                                   | NDWATER CON                                                                                                                                           | CENTRATION (e                                                                                                                                                                                                                                 | enter "X" in "YES" bo                                                                                                                                   | ox)                                                                                                                                                                  |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
|                              |                                                                                                                                                            | YES                                                                                                                                                                             |                                                                                                                                                       | ]                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
| Reset to Defaults            |                                                                                                                                                            |                                                                                                                                                                                 | OR                                                                                                                                                    |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
| Delaults                     | CALCULATE IN                                                                                                                                               | CREMENTAL RISK                                                                                                                                                                  | S FROM ACTUA                                                                                                                                          | L GROUNDWA                                                                                                                                                                                                                                    | TER CONCENTRAT                                                                                                                                          | TON (enter "X" in "YE                                                                                                                                                | S" box and initial grou                                                                                   | undwater conc. be                                                                                  | elow)                                                                                                                                        |                                                                                   |                                                                      |                                                                              |
|                              |                                                                                                                                                            | YES                                                                                                                                                                             | X                                                                                                                                                     | 7                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              |                                                                                                                                                            | •                                                                                                                                                                               | <del></del>                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | ENTER                                                                                                                                                      | ENTER<br>Initial                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | Chemical                                                                                                                                                   | groundwater                                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | CAS No.                                                                                                                                                    | conc.,                                                                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | (numbers only,<br>no dashes)                                                                                                                               | C <sub>w</sub><br>(μg/L)                                                                                                                                                        |                                                                                                                                                       | * *                                                                                                                                                                                                                                           | Chemical                                                                                                                                                |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              |                                                                                                                                                            |                                                                                                                                                                                 | <b>-</b>                                                                                                                                              |                                                                                                                                                                                                                                               | Chemical                                                                                                                                                |                                                                                                                                                                      | •                                                                                                         |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | 79016                                                                                                                                                      | 5.00E-01                                                                                                                                                                        | ]                                                                                                                                                     |                                                                                                                                                                                                                                               | Trichloroethyle                                                                                                                                         | ene                                                                                                                                                                  |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | ENTER                                                                                                                                                      | ENTER                                                                                                                                                                           | ENTER                                                                                                                                                 | ENTER                                                                                                                                                                                                                                         | ENTER                                                                                                                                                   | ENTER                                                                                                                                                                | ENTER                                                                                                     | ENTER                                                                                              | ENTER                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                             | ENTER                                                                | ľ                                                                            |
| MORE                         | Average                                                                                                                                                    | Depth<br>below grade                                                                                                                                                            |                                                                                                                                                       | Totals mu                                                                                                                                                                                                                                     | ist add up to value o                                                                                                                                   |                                                                                                                                                                      | 7                                                                                                         |                                                                                                    | Soil                                                                                                                                         |                                                                                   |                                                                      |                                                                              |
| <u> </u>                     | soil/                                                                                                                                                      | to bottom                                                                                                                                                                       | Depth                                                                                                                                                 | Thickness                                                                                                                                                                                                                                     | Thickness of soil                                                                                                                                       | Thickness<br>of soil                                                                                                                                                 | Soil                                                                                                      |                                                                                                    | stratum A                                                                                                                                    |                                                                                   | User-defined                                                         |                                                                              |
|                              | groundwater                                                                                                                                                | of enclosed                                                                                                                                                                     | below grade                                                                                                                                           | of soil                                                                                                                                                                                                                                       | stratum B,                                                                                                                                              | stratum C,                                                                                                                                                           | stratum                                                                                                   | scs                                                                                                | SCS<br>soil type                                                                                                                             |                                                                                   | stratum A<br>soil vapor                                              |                                                                              |
|                              | temperature,<br>T <sub>s</sub>                                                                                                                             | space floor,                                                                                                                                                                    | to water table,                                                                                                                                       | stratum A,                                                                                                                                                                                                                                    | (Enter value or 0)                                                                                                                                      | (Enter value or 0)                                                                                                                                                   | directly above                                                                                            | soil type                                                                                          | (used to estimate                                                                                                                            | OR .                                                                              | permeability,                                                        |                                                                              |
|                              | 's<br>(℃)                                                                                                                                                  | L <sub>F</sub>                                                                                                                                                                  | Lwt                                                                                                                                                   | h <sub>A</sub>                                                                                                                                                                                                                                | h <sub>B</sub>                                                                                                                                          | hc                                                                                                                                                                   | water table,                                                                                              | directly above                                                                                     | soil vapor                                                                                                                                   |                                                                                   | k <sub>v</sub>                                                       |                                                                              |
|                              | (0)                                                                                                                                                        | (cm)                                                                                                                                                                            | (cm)                                                                                                                                                  | (cm)                                                                                                                                                                                                                                          | (cm)                                                                                                                                                    | (cm)                                                                                                                                                                 | (Enter A, B, or C)                                                                                        | water table                                                                                        | permeability)                                                                                                                                |                                                                                   | (cm²)                                                                |                                                                              |
|                              | 11                                                                                                                                                         | 15                                                                                                                                                                              | 210                                                                                                                                                   | 210                                                                                                                                                                                                                                           | 0                                                                                                                                                       | 0                                                                                                                                                                    | A                                                                                                         | SL                                                                                                 | SL                                                                                                                                           | !                                                                                 |                                                                      |                                                                              |
|                              |                                                                                                                                                            |                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           | ·                                                                                                  | ·                                                                                                                                            |                                                                                   |                                                                      |                                                                              |
|                              |                                                                                                                                                            |                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                      |                                                                                                           |                                                                                                    |                                                                                                                                              |                                                                                   |                                                                      |                                                                              |
|                              | ENTER                                                                                                                                                      | ENTER                                                                                                                                                                           | ENTER                                                                                                                                                 | ENTER                                                                                                                                                                                                                                         | ENTER                                                                                                                                                   | ENTER                                                                                                                                                                | FNTER                                                                                                     | ENTER                                                                                              | ENTED                                                                                                                                        | ENTER                                                                             | CHTED                                                                |                                                                              |
| MORE                         | Stratum A                                                                                                                                                  | Stratum A                                                                                                                                                                       | Stratum A                                                                                                                                             | Stratum A                                                                                                                                                                                                                                     | Stratum B                                                                                                                                               | ENTER<br>Stratum B                                                                                                                                                   | ENTER<br>Stratum B                                                                                        | ENTER<br>Stratum B                                                                                 | ENTER<br>Stratum C                                                                                                                           | ENTER<br>Stratum C                                                                | ENTER<br>Stratum C                                                   | ENTER<br>Stratum C                                                           |
| MORE ↓                       | Stratum A<br>SCS                                                                                                                                           | Stratum A soil dry                                                                                                                                                              | Stratum A soil total                                                                                                                                  | Stratum A soil water-filled                                                                                                                                                                                                                   | Stratum B<br>SCS                                                                                                                                        | Stratum B soil dry                                                                                                                                                   | Stratum B soil total                                                                                      | Stratum B soil water-filled                                                                        | ENTER<br>Stratum C<br>SCS                                                                                                                    | ENTER<br>Stratum C<br>soil dry                                                    | ENTER<br>Stratum C<br>soil total                                     | ENTER<br>Stratum C<br>soil water-filled                                      |
|                              | Stratum A<br>SCS<br>soil type                                                                                                                              | Stratum A<br>soil dry<br>bulk density,                                                                                                                                          | Stratum A soil total porosity,                                                                                                                        | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type                                                                                                                           | Stratum B<br>soil dry<br>bulk density,                                                                                                                               | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B soil water-filled porosity,                                                              | Stratum C                                                                                                                                    | Stratum C<br>soil dry<br>bulk density,                                            | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity                                   |
|                              | Stratum A<br>SCS                                                                                                                                           | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup>                                                                                                                       | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                                | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil                                                                                                                     | Stratum B<br>soil dry<br>bulk density,<br>Pb <sup>B</sup>                                                                                                            | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                    | Stratum B soil water-filled porosity, $\theta_w^B$                                                 | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                         | Stratum C<br>soil total                                              | Stratum C<br>soil water-filled                                               |
|                              | Stratum A SCS soil type Lookup Soil                                                                                                                        | Stratum A<br>soil dry<br>bulk density,                                                                                                                                          | Stratum A soil total porosity,                                                                                                                        | Stratum A<br>soil water-filled<br>porosity,                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type                                                                                                                           | Stratum B<br>soil dry<br>bulk density,                                                                                                                               | Stratum B<br>soil total<br>porosity,                                                                      | Stratum B soil water-filled porosity,                                                              | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,                                            | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity                                   |
|                              | Stratum A SCS soil type Lookup Soil                                                                                                                        | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup>                                                                                                                       | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                                | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                            | Stratum B SCS soil type Lookup Soil                                                                                                                     | Stratum B<br>soil dry<br>bulk density,<br>Pb <sup>B</sup>                                                                                                            | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                                    | Stratum B soil water-filled porosity, $\theta_w^B$                                                 | Stratum C<br>SCS<br>soil type                                                                                                                | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup>                         | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$                  |
|                              | Stratum A SCS Soil type Lookup Soil Parameters  SL ENTER                                                                                                   | Stratum A<br>soil dry<br>bulk density,<br>Pb <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                               | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                                  | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>(cm <sup>3</sup> /cm <sup>3</sup> )                                                                                                                                            | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                              | Stratum B<br>soil dry<br>bulk density,<br>$ ho_b^B$<br>(g/cm <sup>3</sup> )                                                                                          | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup><br>(unitless)                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS Soil type Lookup Soil Parameters                                                                                               | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm³)                    | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm³)<br>1,50                                                                                        | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed                                                                       | Stratum A soil water-filled porosity. $\theta_w^A$ (cm³/cm³)  0.103  ENTER Enclosed                                                                                                                                                           | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                              | Stratum B soil dry bulk density, p <sub>b</sub> B (g/cm³)  1.66  ENTER                                                                                               | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER                                      | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm³)                    | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$ |
|                              | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space                                                                                   | Stratum A soil dry bulk density, p <sub>b</sub> <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg.                                                                                   | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed space                                                                 | Stratum A soil water-filled porosity,                                                                                                                                                                                                         | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed                                                                                        | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER                                                                                                             | Stratum B soil total porosity, nB (unitless) 0.375 ENTER                                                  | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg.                                                   | Stratum C<br>soil dry<br>bulk density,<br>$ ho_b^C$<br>(g/cm³)                    | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>A</sup><br>(g/cm³)<br>1,50                                                                                        | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed                                                                       | Stratum A soil water-filled porosity. $\theta_w^A$ (cm³/cm³)  0.103  ENTER Enclosed                                                                                                                                                           | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space                                                                                  | Stratum B soil dry bulk density, p B (g/cm³)  1.66 ENTER  Floor-wall seam crack                                                                                      | Stratum B soil total porosity, n <sup>8</sup> (unitless)  0.375  ENTER Indoor air exchange                | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR                                                | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>$(cm^3/cm^3)$ |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor                                                                              | Stratum A soil dry bulk density, ps (g/cm³)  1.50  ENTER  Soil-bldg, pressure                                                                                                   | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor                                                                       | Stratum A soil water-filled porosity, θ, Λ (cm³/cm³)  0.103  ENTER Enclosed space floor                                                                                                                                                       | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed                                                                                        | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER                                                                                                             | Stratum B soil total porosity, nB (unitless) 0.375 ENTER                                                  | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS Soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculate                        | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness,                                                                  | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential,                                                                        | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed space floor length,                                                   | Stratum A soil water-filled porosity, \$\theta_w^A\$ (cm^3/cm^3)  O.103  ENTER Enclosed space floor width,                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                                          | Stratum B soil dry bulk density, p <sub>b</sub> <sup>B</sup> (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                      | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0.375 ENTER Indoor air exchange rate,            | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR                                                | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| . ↓ MORE                     | Stratum A SCS Soil type Lookup Soil Parameters SL ENTER Enclosed space floor thickness, L-crack                                                            | Stratum A soil dry bulk density, Ps^ (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)                                                                       | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                           | Stratum A soil water-filled poosity, 9,4 (cm³/cm³) 0.103   ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                      | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                                       | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE +                       | Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-rack (cm)                                                      | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)                                                           | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                           | Stratum A soil water-filled porosity, e.g., (cm <sup>3</sup> /cm <sup>3</sup> )  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                                                                                 | Stratum B SCS soil type Lookup Soil parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm)                                                      | Stratum B soil dry bulk density, pB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)                                                                        | Stratum B soil total porosity, n <sup>B</sup> (unitless) 0,375  ENTER Indoor air exchange rate, ER        | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR eave blank to calculat                         | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| . ↓ MORE                     | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lerack (cm)  10 ENTER                                             | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)  40  ENTER                                                            | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                           | Stratum A soil water-filled poosity, 9,4 (cm³/cm³) 0.103   ENTER Enclosed space floor width, W <sub>B</sub> (cm)                                                                                                                              | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER                                            | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER                                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE WORE                    | Stratum A SCS Soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-rack (cm)                                                      | Stratum A soil dry bulk density, Pb <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, AP (g/cm-s²)                                                           | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                              | Stratum A soil water-filled poosity, e., a (cm³/cm³)  0.103  ENTER Enclosed space floor width, W a (cm)                                                                                                                                       | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target                                     | Stratum B soil dry bulk density, pp 9 (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE WORE                    | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack (cm)  10  ENTER Averaging time for carcinogens,          | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, Ap (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                        | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                              | Stratum A soil water-filled porosity, \$\text{\text{\text{\text{9}}}\$}^\text{\text{\text{cm}}}^3\)  0.103  ENTER Enclosed space floor width, \$\text{\text{\text{W}}}\$ (cm)  1000  ENTER  Exposure frequency,                               | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER                                            | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER                                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE WORE                    | Stratum A SCS soil type Lookup Soil Parameters  St.  ENTER Enclosed space floor thickness, L_crack (cm)  10  ENTER Averaging time for carcinogens, ATc     | Stratum A soil dry bulk density, ps (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  ENTER  Averaging time for noncarcinogens, $\Delta T_{NC}$     | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED       | Stratum A soil water-filled poosity, 9, 4 (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER Exposure frequency, EF                                                                                         | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR           | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for nonacriongens, THQ            | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE WORE                    | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, L-crack (cm)  10  ENTER Averaging time for carcinogens,          | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, Ap (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,                        | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER                              | Stratum A soil water-filled porosity, \$\text{\text{\text{\text{9}}}\$}^\text{\text{\text{cm}}}^3\)  0.103  ENTER Enclosed space floor width, \$\text{\text{\text{W}}}\$ (cm)  1000  ENTER  Exposure frequency,                               | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens,               | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,                | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE WORE                    | Stratum A SCS soil type Lookup Soil Parameters  St.  ENTER Enclosed space floor thickness, L_crack (cm)  10  ENTER Averaging time for carcinogens, ATc     | Stratum A soil dry bulk density, ps (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, $\Delta P$ (g/cm-s²)  ENTER  Averaging time for noncarcinogens, $\Delta T_{NC}$     | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED       | Stratum A soil water-filled poosity, 9, 4 (cm³/cm³)  0.103  ENTER Enclosed space floor width, W <sub>B</sub> (cm)  1000  ENTER Exposure frequency, EF                                                                                         | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244  ENTER Target risk for carcinogens, TR           | Stratum B soil dry bulk density, p B (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for nonacriongens, THQ            | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |
| MORE WORE                    | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens, ATc (yrs) | Stratum A soil dry bulk density, Pb^ (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs) | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED (yrs) | Stratum A soil water-filled porosity, \$\text{0}_{\text{a}}^{\text{A}}\$ (cm^3/cm^3) \$\text{0.103}\$ \$\text{Enclosed space floor width, \$W_{B}\$ (cm) \$\text{1000}\$ \$\text{ENTER}\$ \$\text{Exposure frequency, \$\text{EF}\$ (days/yr) | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 244 ENTER Target risk for carcinogens, TR (unitless) | Stratum B soil dry bulk density, pe (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ (unitless) | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h) | Stratum B<br>soil water-filled<br>porosity,<br>e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bidg. OR eave blank to calculat Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>ps <sup>c</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C soil water-filled porosity, $\theta_w^C$ $(cm^3/cm^3)$             |

## CHEMICAL PROPERTIES SHEET

|   | Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/moi) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|---|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| Į | 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

#### INTERMEDIATE CALCULATIONS SHEET

|     | Exposure duration, τ (sec)                                        | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum 8<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)  | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^{\ C}$<br>(cm³/cm³)          | Stratum A<br>effective<br>total fluid<br>saturation,<br>S <sub>te</sub><br>(cm³/cm³)                           | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm <sup>2</sup> ) | Thickness of capillary zone, Loz                                                              | Total porosity in capillary zone, n <sub>cz</sub> (cm³/cm³)                        | Air-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>a,cz</sub><br>(cm³/cm³) | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm <sup>3</sup> /cm <sup>3</sup> ) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|-----|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| . [ | 9.46E+08                                                          | 195                                                                                     | 0.347                                                                     | 0.321                                                                      | 0.321                                                                                  | 0.156                                                                                                          | 5.94E-09                                                                                | 0.917                                                                                       | 5.45E-09                                                                                      | 25.00                                                                                         | 0.45                                                                               | 0.130                                                                             | 0.320                                                                                        | 4,000                                                              |
|     | Bidg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm³/s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)            | Enthalpy of vaporization at ave. groundwater temperature, ΔH <sub>v,τs</sub> (cal/mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H'TS (unitless)                   | Vapor viscosity at ave. soil temperature,                                                   | Stratum A effective diffusion coefficient, D <sup>eff</sup> (cm²/s)                           | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, Deffect (cm²/s)                   | Total overall effective diffusion coefficient, D <sup>eff</sup> T (cm <sup>2</sup> /s)       | Diffusion path length,  L <sub>d</sub> (cm)                        |
|     | 1.69E+04                                                          | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                         | 8,544                                                                                  | 5.05E-03                                                                                                       | 2.17E-01                                                                                | 1.76E-04                                                                                    | 1.15E-02                                                                                      | 0.00E+00                                                                                      | 0.00E+00                                                                           | 4.45E-04                                                                          | 2.75E-03                                                                                     | 195                                                                |
| -   | Convection path length, L <sub>p</sub> (cm)                       | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br>r <sub>crack</sub><br>(cm)                            | Average vapor flow rate into bldg., Q <sub>soil</sub> (cm <sup>3</sup> /s) | Crack effective diffusion coefficient, D <sup>crack</sup> (cm <sup>2</sup> /s)         | Area of crack, A <sub>crack</sub> (cm <sup>2</sup> )                                                           | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)                    | Infinite source indoor attenuation coefficient, $\alpha$ (unitless)                         | Infinite<br>source<br>bldg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)                     | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                                       | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              |                                                                                   |                                                                                              |                                                                    |
|     | 15                                                                | 1.08E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                   | 1.15E-02                                                                               | 4.00E+02                                                                                                       | 5.15E+78                                                                                | 7.47E-04、                                                                                   | 8.09E-02                                                                                      | 2.0E-06                                                                                       | 6.0E-01                                                                            |                                                                                   |                                                                                              |                                                                    |

RESULTS SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(µg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |     | risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA NA                                                                  | NA                                                                  | 1.47E+06                                                 | NA                                                             | ] [ | 6.6E-08                                                        | 1.3E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor exposure groundwater conc., noncarcinogen (mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) |     | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 7.52E+00                                                            | 3.87E+03                                                | 7.52E+00                                             | 1.47E+06                                                 | 7.52E+00                                                       | . [ | NA NA                                                                      | NA NA                                                                        |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

INDUSTRIAL

| GW-ADV<br>rsion 3.1; 02/04 | CALCULATE R                     | RISK-BASED GROU             | INDWATER CON                                  | CENTRATION (                        | enter "X" in "YES" b                 | oox)                                       |                                |                                |                             |                           |                         |                                |
|----------------------------|---------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------|--------------------------------|-----------------------------|---------------------------|-------------------------|--------------------------------|
| Reset to                   |                                 | YES                         | OR                                            |                                     |                                      |                                            |                                |                                |                             |                           |                         |                                |
| Defaults                   | CALCULATE IN                    | ICREMENTAL RISI             | KS FROM ACTUA                                 | L GROUNDWA                          | TER CONCENTRA                        | TION (enter "X" in "YI                     | ES" box and initial gro        | undwater conc. be              | elow)                       |                           |                         |                                |
|                            |                                 | YES                         | X                                             | J                                   |                                      |                                            |                                |                                |                             |                           |                         | *                              |
|                            | ENTER                           | ENTER<br>Initial            |                                               |                                     |                                      |                                            | .*                             |                                |                             |                           |                         |                                |
|                            | Chemical<br>CAS No.             | groundwater conc.,          |                                               |                                     |                                      |                                            | •                              |                                |                             |                           |                         |                                |
|                            | (numbers only,<br>no dashes)    |                             | <u>.</u>                                      |                                     | Chemical                             |                                            |                                | . · · .                        |                             |                           |                         |                                |
|                            | 67663                           | 3.00E+00                    | ]                                             |                                     | Chloroform                           | 1                                          | -<br>1                         |                                |                             |                           |                         |                                |
|                            | ENTER                           | ENTER                       | ENTER                                         | ENTER                               | ENTER                                | ENTER                                      | ] ENTER                        | ENTER                          | ENTER                       |                           | ENTER                   |                                |
| MORE                       | Average                         | Depth<br>below grade        |                                               | Totals m                            | ust add up to value<br>Thickness     | of L <sub>WT</sub> (cell G28)<br>Thickness | 1 - 1                          |                                | Soil                        |                           | ENIER                   | 1                              |
| Ψ                          | soil/                           | to bottom                   | Depth                                         | Thickness                           | of soil                              | of soil                                    | Soil                           |                                | stratum A<br>SCS            |                           | User-defined            |                                |
|                            | groundwater<br>temperature,     | of enclosed<br>space floor, | below grade<br>to water table.                | of soil stratum A,                  | stratum B,                           | stratum C,                                 | stratum                        | scs                            | soil type                   |                           | stratum A<br>soil vapor |                                |
|                            | Ts                              | L <sub>F</sub>              | Lwt                                           | h <sub>A</sub>                      | (Enter value or 0)<br>h <sub>e</sub> | (Enter value or 0)<br>h <sub>C</sub>       | directly above<br>water table. | soil type                      | (used to estimate           | OR                        | permeability,           |                                |
|                            | (°C)                            | (cm)                        | (cm)                                          | (cm)                                | (cm)                                 | (cm)                                       | (Enter A, B, or C)             | directly above<br>water table  | soil vapor<br>permeability) |                           | k <sub>v</sub>          |                                |
|                            | 11                              | 15                          | 210                                           | 210                                 |                                      |                                            |                                |                                | permeability)               |                           | (cm²)                   | 1                              |
|                            | <u> </u>                        |                             | 210                                           | 210                                 | 0                                    | 0                                          | Α                              | SL                             | SL                          |                           |                         |                                |
|                            | ENTER                           | ENTER                       | ENTER                                         | FNTCO                               |                                      |                                            |                                |                                |                             |                           |                         |                                |
| MORE                       | Stratum A                       | Stratum A                   | Stratum A                                     | ENTER<br>Stratum A                  | ENTER<br>Stratum B                   | ENTER<br>Stratum B                         | ENTER                          | ENTER                          | ENTER                       | ENTER                     | ENTER                   | ENTER                          |
| <u> </u>                   | scs                             | soil dry                    |                                               | soil water-filled                   |                                      | soil dry                                   | Stratum B soil total           | Stratum B<br>soil water-filled | Stratum C<br>SCS            | Stratum C                 | Stratum C               | Stratum C                      |
|                            | Soil type                       | bulk density,               | porosity,                                     | porosity,                           | soil type                            | bulk density,                              | porosity,                      | porosity,                      | soil type                   | soil dry<br>bulk density, | soil total porosity,    | soil water-filled<br>porosity, |
|                            | Parameters                      | ρ <sub>δ</sub> <sup>A</sup> | n <sup>A</sup>                                | θ,,Α                                | Lookup Soil<br>Parameters            | $\rho_b^{B}$                               | n <sup>B</sup>                 | θ <sub>w</sub> <sup>B</sup>    | Lookup Sail                 | ρ <sub>b</sub> C          | n <sup>C</sup>          | θ <sub>w</sub> C               |
|                            |                                 | (g/cm³)                     | (unitless)                                    | (cm <sup>3</sup> /cm <sup>3</sup> ) | Farameters                           | (g/cm³)                                    | (unitless)                     | (cm³/cm³)                      | Parameters                  | (g/cm³)                   | (unitless)              | (cm³/cm³)                      |
|                            | SL                              | 1.50                        | 0.450                                         | 0.103                               | S                                    | 1.66                                       | 0.375                          | 0.054                          | s                           | 1.66                      |                         |                                |
| MORE                       | ENTER<br>Enclosed               | ENTER                       | ENTER<br>Enclosed                             | ENTER<br>Enclosed                   | ENTER                                | ENTER                                      | ENTER                          |                                | ENTER                       | 1.00                      | 0.375                   | 0.054                          |
| <u> </u>                   | space                           | Soil-bldg.                  | space                                         | space                               | Enclosed                             | Floor-wall                                 | Indoor                         |                                | Average vapor               |                           |                         |                                |
|                            | floor<br>thickness.             | pressure<br>differential,   | floor                                         | floor                               | space                                | seam crack                                 | air exchange                   |                                | flow rate into bldg.<br>OR  |                           |                         |                                |
|                            | L <sub>crack</sub>              | omerential,<br>ΔP           | length,<br>L <sub>B</sub>                     | width,                              | height,                              | width,                                     | rate.                          | Le                             | ave blank to calculate      | Ð                         |                         |                                |
|                            | (cm)                            | (g/cm-s²)                   | (cm)                                          | W <sub>B</sub>                      | H <sub>B</sub>                       | W (===)                                    | ER                             |                                | Q <sub>soil</sub>           |                           |                         |                                |
|                            |                                 |                             | , <u>, , , , , , , , , , , , , , , , , , </u> | (0:11)                              | (cm)                                 | (cm)                                       | (1/h)                          |                                | (L/m)                       |                           |                         |                                |
|                            | 10                              | 40                          | 1000                                          | 1000                                | 300                                  | 0.1                                        | 0.83                           | . [                            | 5                           |                           |                         |                                |
| MORE<br>↓                  | ENTER<br>Averaging              | ENTER<br>Averaging          | ENTER                                         | ENTER                               | ENTER                                | ENTER                                      |                                | •                              |                             |                           |                         |                                |
|                            | time for                        | time for                    | Exposure                                      | Exposure                            | Target<br>risk for                   | Target hazard<br>quotient for              |                                |                                |                             |                           |                         |                                |
|                            | carcinogens,<br>AT <sub>C</sub> | noncarcinogens,             | duration,                                     | frequency,                          | carcinogens,                         | noncarcinogens,                            |                                |                                |                             |                           |                         |                                |
|                            | (yrs)                           | AT <sub>NC</sub><br>(yrs)   | ED<br>(yrs)                                   | EF<br>(days/yr)                     | TR<br>(unitless)                     | THQ<br>(unitless)                          |                                |                                |                             |                           |                         |                                |
|                            |                                 |                             |                                               |                                     | (Graness)                            | (unitiess)                                 |                                |                                |                             |                           |                         |                                |
|                            | 70                              | 25                          | 25                                            | 250                                 | 1.0E-06                              | 1                                          |                                |                                |                             |                           |                         |                                |
|                            |                                 |                             |                                               | F                                   |                                      | -                                          |                                |                                |                             |                           |                         |                                |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m <sup>3</sup> /mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 1.04E-01                                                         | 1.00E-05                                                           | 3.66E-03                                                                                  | 25                                                                             | 6,988                                                                             | 334.32                                                | 536.40                                             | 3.98E+01                                                                                  | 7.92E+03                                                 | 2.3E-05                                                 | 4.9E-02                               |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure<br>duration,<br>τ<br>(sec)                                            | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³)                | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c<br>(cm³/cm³)                 | Stratum A effective total fluid saturation, Ste (cm³/cm³)                                                      | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm²) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k <sub>v</sub><br>(cm²) | Thickness of<br>capillary<br>zone,<br>L <sub>cz</sub><br>(cm)                      | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)         | Air-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>a,cz</sub><br>(cm³/cm³) | Water-filled<br>porosity in<br>capillary<br>zone,<br>θ <sub>w,cz</sub><br>(cm³/cm³) | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 7.88E+08                                                                       | 195                                                                                     | 0.347                                                                     | 0.321                                                                                    | 0.321                                                                                         | 0.156                                                                                                          | 5.94E-09                                                                                | 0.917                                                                          | 5.45E-09                                                                         | 25.00                                                                              | 0.45                                                                               | 0.130                                                                             | 0.320                                                                               | 4,000                                                              |
| Bldg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enclosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratio,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)                          | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)         | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H <sub>TS</sub><br>(atm-m <sup>3</sup> /mol) | Henry's law constant at ave. groundwater temperature, H' <sub>Ts</sub> (unitless)       | Vapor<br>viscosity at<br>ave. soil<br>temperature,<br>µts<br>(g/cm-s)          | Stratum A effective diffusion coefficient, D <sup>eff</sup> (cm²/s)              | Stratum B effective diffusion coefficient, D <sup>eff</sup> B (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, Deff cz (cm²/s)                   | Total overall effective diffusion coefficient, Deff, (cm²/s)                        | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                                       | 7,544                                                                                         | 1.95E-03                                                                                                       | 8.38E-02                                                                                | 1.76E-04                                                                       | 1.51E-02                                                                         | 0.00E+00                                                                           | 0.00E+00                                                                           | 5.93E-04                                                                          | 3.65E-03                                                                            | 195                                                                |
| Convection path length, L <sub>p</sub> (cm)                                    | Source<br>vapor<br>conc.,<br>C <sub>source</sub><br>(µg/m³)                             | Crack<br>radius,<br><sup>r</sup> <sub>crack</sub><br>(cm)                 | Average<br>vapor<br>flow rate<br>into bldg.<br>Q <sub>soil</sub><br>(cm <sup>3</sup> /s) | Crack<br>effective<br>diffusion<br>coefficient,<br>D <sup>crack</sup><br>(cm <sup>2</sup> /s) | Area of<br>crack,<br>A <sub>crack</sub><br>(cm <sup>2</sup> )                                                  | Exponent of equivalent foundation Peclet number, exp(Pe <sup>f</sup> ) (unitless)       | Infinite source indoor attenuation coefficient, α (unitless)                   | Infinite<br>source<br>bidg.<br>conc.,<br>C <sub>building</sub><br>(µg/m³)        | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup>                            | Reference<br>conc.,<br>RfC<br>(mg/m³)                                              | 0.000-04                                                                          | 3.552-03                                                                            |                                                                    |
| 15                                                                             | 2.52E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                                 | 1.51E-02                                                                                      | 4.00E+02                                                                                                       | 6.17E+59                                                                                | 2.32E-04                                                                       | 5.83E-02                                                                         | 2.3E-05                                                                            | 4.9E-02                                                                            |                                                                                   |                                                                                     |                                                                    |

**RESULTS SHEET** 

## INCREMENTAL RISK CALCULATIONS:

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                                  | l NA                                                    | NA                                                   | 7.92E+06                                                 | NA                                                             | ] | 3.3E-07                                                                    | 8.1E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

#### INCREMENTAL RISK CALCULATIONS:

| (mg/L) (mg/L) (mg/L) (mg/L) (dilitess) (dilitess) | Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(mg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
|---------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: The values of Csource and Chuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

| W-ADV<br>on 3.1; 02/04 | CALCULATE RIS                                                                                                                                            | K-BASED GROUN                                                                                                                                                                    | NDWATER CONC                                                                                                                                    | ENTRATION (er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nter "X" in "YES" bo                                                                                                                         | x)                                                                                                                                                                 |                                                                                                     | •                                                                                                                 |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| <br>Reset to           |                                                                                                                                                          | YES                                                                                                                                                                              | OR                                                                                                                                              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                    |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
| Defaults               | CALCULATE INC                                                                                                                                            | REMENTAL RISK                                                                                                                                                                    |                                                                                                                                                 | . GROUNDWAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ER CONCENTRATI                                                                                                                               | ION (enter "X" in "YE                                                                                                                                              | S" box and initial grou                                                                             | ndwater conc. be                                                                                                  | elow)                                                                                                                                        |                                                                                               |                                                                      |                                                                                   |
| -                      |                                                                                                                                                          | YES                                                                                                                                                                              | Х                                                                                                                                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                    |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | ENTER                                                                                                                                                    | ENTER                                                                                                                                                                            |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                    |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | Chemical                                                                                                                                                 | Initial<br>groundwater                                                                                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                    |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | CAS No. (numbers only,                                                                                                                                   | conc.,<br>C <sub>w</sub>                                                                                                                                                         |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                    |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | no dashes)                                                                                                                                               | (μg/L)                                                                                                                                                                           | •                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical                                                                                                                                     |                                                                                                                                                                    | •                                                                                                   |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | 79016                                                                                                                                                    | 5.00E-01                                                                                                                                                                         | ]                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichloroethyle                                                                                                                              | ene                                                                                                                                                                |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | ENTER                                                                                                                                                    | ENTER<br>Depth                                                                                                                                                                   | ENTER                                                                                                                                           | ENTER<br>Totals mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENTER<br>st add up to value o                                                                                                                | ENTER                                                                                                                                                              | ENTER                                                                                               | ENTER                                                                                                             | ENTER<br>Soil                                                                                                                                |                                                                                               | ENTER                                                                |                                                                                   |
| MORE                   | Average<br>soil/                                                                                                                                         | below grade<br>to bottom                                                                                                                                                         | Depth                                                                                                                                           | Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thickness<br>of soil                                                                                                                         | Thickness<br>of soil                                                                                                                                               | Soil                                                                                                |                                                                                                                   | stratum A<br>SCS                                                                                                                             |                                                                                               | User-defined<br>stratum A                                            |                                                                                   |
|                        | groundwater                                                                                                                                              | of enclosed                                                                                                                                                                      | below grade                                                                                                                                     | of soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stratum B,                                                                                                                                   | stratum C,                                                                                                                                                         | stratum                                                                                             | SCS<br>soil type                                                                                                  | soil type<br>(used to estimate                                                                                                               | OR                                                                                            | soil vapor permeability,                                             |                                                                                   |
|                        | temperature,<br>T <sub>S</sub>                                                                                                                           | space floor,<br>L <sub>f</sub>                                                                                                                                                   | to water table,<br>L <sub>WT</sub>                                                                                                              | stratum A,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Enter value or 0)<br>h <sub>B</sub>                                                                                                         | (Enter value or 0)<br>h <sub>C</sub>                                                                                                                               | directly above<br>water table,                                                                      | directly above                                                                                                    | soil vapor                                                                                                                                   | ·                                                                                             | k <sub>v</sub>                                                       | ľ                                                                                 |
|                        | (°C)                                                                                                                                                     | (cm)                                                                                                                                                                             | (cm)                                                                                                                                            | (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (cm)                                                                                                                                         | (cm)                                                                                                                                                               | (Enter A, B, or C)                                                                                  | water table                                                                                                       | permeability)                                                                                                                                | •                                                                                             | (cm²)                                                                |                                                                                   |
|                        | 11                                                                                                                                                       | 15                                                                                                                                                                               | 210                                                                                                                                             | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                            | 0                                                                                                                                                                  | A                                                                                                   | SL                                                                                                                | SL                                                                                                                                           |                                                                                               |                                                                      | ]                                                                                 |
|                        |                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                    |                                                                                                     |                                                                                                                   |                                                                                                                                              |                                                                                               |                                                                      |                                                                                   |
|                        | ENTED                                                                                                                                                    | ENTED                                                                                                                                                                            | ENTED                                                                                                                                           | ENTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENTER                                                                                                                                        | ENTER                                                                                                                                                              | ENTER                                                                                               | ENTER                                                                                                             | ENTER                                                                                                                                        | ENTER                                                                                         | ENTER                                                                | ENTER                                                                             |
| MORE                   | ENTER<br>Stratum A                                                                                                                                       | ENTER<br>Stratum A                                                                                                                                                               | ENTER<br>Stratum A                                                                                                                              | ENTER<br>Stratum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENTER<br>Stratum B                                                                                                                           | ENTER<br>Stratum B                                                                                                                                                 | ENTER<br>Stratum B                                                                                  | ENTER<br>Stratum B                                                                                                | ENTER<br>Stratum C                                                                                                                           | ENTER<br>Stratum C                                                                            | ENTER<br>Stratum C                                                   | ENTER<br>Stratum C                                                                |
| MORE +                 |                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum B                                                                                                                                    | Stratum B<br>soil dry<br>bulk density,                                                                                                                             |                                                                                                     | Stratum B<br>soil water-filled<br>porosity,                                                                       | Stratum C                                                                                                                                    | Stratum C<br>soil dry<br>bulk density,                                                        | Stratum C<br>soil total<br>porosity,                                 | Stratum C<br>soil water-filled<br>porosity,                                       |
|                        | Stratum A<br>SCS                                                                                                                                         | Stratum A<br>soil dry<br>bulk density,<br>Po                                                                                                                                     | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup>                                                                                          | Stratum A soil water-filled porosity, $\theta_w^A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stratum B<br>SCS                                                                                                                             | Stratum B<br>soil dry<br>bulk density,<br>PbB                                                                                                                      | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup>                                              | Stratum B soil water-filled porosity, $\theta_w^{\ B}$                                                            | Stratum C<br>SCS                                                                                                                             | Stratum C<br>soil dry<br>bulk density,<br>Pb C                                                | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{\mathbf{w}}^{\mathbf{C}}$ |
|                        | Stratum A<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                               | Stratum A<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                    | Stratum A<br>soil total<br>porosity,<br>n <sup>A</sup><br>(unitless)                                                                            | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>$(cm^3/cm^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                      | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless)                                | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm³/cm³)                                          | Stratum C SCS soil type Lookup Soil Parameters                                                                                               | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
|                        | Stratum A SCS Soil type Lookup Soil Parameters                                                                                                           | Stratum A<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                    | Stratum A soil total porosity, n <sup>A</sup> (unitless)                                                                                        | Stratum A soil water-filled porosity, $\theta_w^A$ (cm³/cm³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>$\rho_b^B$<br>(g/cm <sup>3</sup> )                                                                                       | Stratum B<br>soil total<br>porosity,<br>n <sup>8</sup><br>(unitless)                                | Stratum B soil water-filled porosity, $\theta_w^{\ B}$                                                            | Stratum C SCS soil type Lookup Soil Parameters                                                                                               | Stratum C<br>soil dry<br>bulk density,<br>Pb C                                                | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup>               | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_{\mathbf{w}}^{\mathbf{C}}$ |
|                        | Stratum A SCS Soil type Lookup Soil Parameters  SL ENTER                                                                                                 | Stratum A<br>soil dry<br>bulk density,<br>P <sub>b</sub> <sup>A</sup><br>(g/cm <sup>3</sup> )                                                                                    | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER                                                                          | Stratum A<br>soil water-filled<br>porosity,<br>$\theta_w^A$<br>$(cm^3/cm^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stratum B<br>SCS<br>soil type<br>Lookup Soil<br>Parameters                                                                                   | Stratum B<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>B</sup><br>(g/cm <sup>3</sup> )                                                                      | Stratum B<br>soil total<br>porosity,<br>n <sup>B</sup><br>(unitless)                                | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm³/cm³)                                          | Stratum C SCS soil type Lookup Soil Parameters                                                                                               | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
|                        | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space                                                                                 | Stratum A soil dry bulk density, Po <sup>A</sup> (g/cm³)  1.50  ENTER  Soil-bldg.                                                                                                | Stratum A soil total porosity, n^A (unitless)  0.450  ENTER Enclosed space                                                                      | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters S ENTER Enclosed                                                                              | Stratum B soil dry bulk density, p <sub>b</sub> <sup>B</sup> (g/cm³)  1.66  ENTER Floor-wall                                                                       | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor                       | Stratum B<br>soil water-filled<br>porosity,<br>$\theta_w^B$<br>(cm³/cm³)                                          | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg.                                                   | Stratum C<br>soil dry<br>bulk density,<br>p <sub>b</sub> <sup>C</sup><br>(g/cm <sup>3</sup> ) | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE                   | Stratum A SCS soil type Lookup Soil Perameters SL ENTER Enclosed                                                                                         | Stratum A soil dry bulk density, Po (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential,                                                                                      | Stratum A soil total porosity, n <sup>A</sup> (unitless)  0.450  ENTER Enclosed                                                                 | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                               | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                             | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate,    | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  ENTER Average vapor flow rate into bldg. OR Leave blank to calcula                           | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE                   | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack                                                         | Stratum A soil dry bulk density, Po (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, ΔP                                                                                   | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub>                                          | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W                                                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE                   | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness,                                                                 | Stratum A soil dry bulk density, Po (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential,                                                                                      | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length,                                                         | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height,                                                               | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width,                                                                             | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate,    | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  ENTER Average vapor flow rate into bldg. OR Leave blank to calcula                           | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE                   | Stratum A SCS soil type Lookup Soil Parameters  SL  ENTER Enclosed space floor thickness, Lorack                                                         | Stratum A soil dry bulk density, Po (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, ΔP                                                                                   | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub>                                          | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub>                                                | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W                                                                           | Stratum B soil total porosity, n <sup>B</sup> (unitless)  0.375  ENTER Indoor air exchange rate, ER | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula                         | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE WORE              | Stratum A SCS soil type Lookup Soil perameters  SL  ENTER Enclosed space floor thickness, Loreck (cm)  10  ENTER                                         | Stratum A soil dry bulk density, Pb (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER                                                              | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)                                     | Stratum A soil water-filled porositive, e.g., (cm³/cm³) 0.103  ENTER Enclosed space floor width, Wa (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER                                 | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER                                                          | Stratum B soil total porosity, ns (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h)       | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE                   | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for                        | Stratum A soil dry bulk density, Po A (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for                                        | Stratum A soil total porosity, n* (unitless)  0.450  ENTER Enclosed space floor length, Le (cm)  1000  ENTER                                    | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for                 | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                              | Stratum B soil total porosity, ns (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h)       | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE WORE              | Stratum A SCS soil type Lookup Soil perameters  SL  ENTER Enclosed space floor thickness, Lorack (cm)  10  ENTER Averaging time for carcinogens,         | Stratum A soil dry bulk density, P <sub>b</sub> (g/cm³)  1.50  ENTER  Soil-bldg, pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens,              | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration,                | Stratum A soil water-filled porositive, the strategy of the soil water-filled porositive, the strategy of the soil water-filled porositive of the soil water floor width, water floor width, water floor width, water floor width, water floor width, water floor width, water floor width, water floor width, water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor water floor wat | Stratum B SCS SOII type Lookup Soil Parameters  S ENTER Enclosed space height, He (cm) 300 ENTER Target risk for carcinogens,                | Stratum B soil dry bulk density, PB (g/cm³)  1.66  ENTER  Floor-wall seam crack width, W (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens,              | Stratum B soil total porosity, ns (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h)       | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE WORE              | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for                        | Stratum A soil dry bulk density, Po A (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for                                        | Stratum A soil total porosity, n* (unitless)  0.450  ENTER Enclosed space floor length, Le (cm)  1000  ENTER                                    | Stratum A soil water-filled porosity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for                 | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for                              | Stratum B soil total porosity, ns (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h)       | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE WORE              | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  ENTER Averaging time for carcinogens, ATc          | Stratum A soil dry bulk density, Pb* (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, ΔP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub>        | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, L <sub>B</sub> (cm)  1000  ENTER  Exposure duration, ED | Stratum A soil water-filled porosity, e., (cm³/cm³).  0.103  ENTER Enclosed space floor width, Wa (cm).  1000  ENTER Exposure frequency, EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stratum B SCS soil type Lookup Soil Parameters  S ENTER Enclosed space height, H <sub>B</sub> (cm) 300 ENTER Target risk for carcinogens, TR | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER  Floor-wall seam crack width, w (cm)  0.1  ENTER  Target hazard quotient for noncarcinogens, THQ          | Stratum B soil total porosity, ns (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h)       | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |
| MORE WORE              | Stratum A SCS soil type Lookup Soil Parameters  SL ENTER Enclosed space floor thickness, Lorack (cm)  10 ENTER Averaging time for carcinogens, ATc (yrs) | Stratum A soil dry bulk density, Po A (g/cm³)  1.50  ENTER  Soil-bldg. pressure differential, AP (g/cm-s²)  40  ENTER  Averaging time for noncarcinogens, AT <sub>NC</sub> (yrs) | Stratum A soil total porosity, n^ (unitless)  0.450  ENTER Enclosed space floor length, Ls (cm)  1000  ENTER  Exposure duration, ED (yrs)       | Stratum A soil water-filled porosity, e, A (cm³/cm³)  0.103  ENTER Enclosed space floor width, We (cm)  1000  ENTER Exposure frequency, EF (days/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stratum B SCS soil type Lookup Soil parameters  SENTER Enclosed space height, HB (cm) 300 ENTER Target risk for carcinogens, TR (unitless)   | Stratum B soil dry bulk density, Pb (g/cm³)  1.66  ENTER Floor-wall seam crack width, w (cm)  0.1  ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | Stratum B soil total porosity, ns (unitless)  0.375  ENTER Indoor air exchange rate, ER (1/h)       | Stratum B<br>soil water-filled<br>porosity,<br>e <sub>w</sub> <sup>6</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Stratum C SCS soil type Lookup Soil Parameters  S ENTER Average vapor flow rate into bldg. OR Leave blank to calcula Q <sub>soil</sub> (L/m) | Stratum C<br>soil dry<br>bulk density,<br>Pb <sup>C</sup><br>(g/cm <sup>3</sup> )             | Stratum C<br>soil total<br>porosity,<br>n <sup>C</sup><br>(unitless) | Stratum C<br>soil water-filled<br>porosity,<br>$\theta_w^C$<br>(cm³/cm³)          |

# CHEMICAL PROPERTIES SHEET

|    | eiffusivity<br>in air,<br>D <sub>a</sub><br>(cm²/s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's law constant reference temperature, T <sub>R</sub> (°C) | Enthalpy of vaporization at the normal boiling point, ΔH <sub>v,b</sub> (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub> | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC |
|----|-----------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|----------------------------|
|    |                                                     |                                                                    |                                                                              |                                                                 | <u> </u>                                                                          | <del></del>                                           | - · · · · · · · · · · · · · · · · · · ·    | (0111 79)                                                                                 | (mg/L)                                         | (µg/m )                                                 | (mg/m³)                    |
| 7. | .90E-02                                             | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                              | 7,505                                                                             | 360.36                                                | 544.20                                     | 1.66E+02                                                                                  | 1.47E+03                                       | 1.1E-04                                                 | 3.5E-02                    |
|    |                                                     |                                                                    |                                                                              |                                                                 |                                                                                   |                                                       |                                            |                                                                                           |                                                |                                                         |                            |

#### INTERMEDIATE CALCULATIONS SHEET

| Exposure<br>duration, | Source-<br>building<br>separation,<br>L <sub>T</sub> | Stratum A soil air-filled porosity, | Stratum B soil air-filled porosity, | Stratum C<br>soil<br>air-filled<br>porosity,<br>$\theta_a^C$ | Stratum A<br>effective<br>total fluid<br>saturation,<br>Sha | Stratum A<br>soil<br>Intrinsic<br>permeability,<br>k | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>re</sub> | Stratum A<br>soil<br>effective vapor<br>permeability, | Thickness of capillary zone, | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub> | Air-filled porosity in capillary zone, $\theta_{acz}$ | Water-filled porosity in capillary zone, | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub> |
|-----------------------|------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|------------------------------|---------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------------------------|
| (sec)                 | (cm)                                                 | (cm <sup>3</sup> /cm <sup>3</sup> ) | (cm³/cm³)                           | (cm³/cm³)                                                    | (cm³/cm³)                                                   | (cm²)                                                | (cm²)                                                                 | κ <sub>ν</sub><br>(cm²)                               | (cm)                         | (cm³/cm³)                                                     | (cm <sup>3</sup> /cm <sup>3</sup> )                   | (cm³/cm³)                                | (cm)                                                       |
|                       | 15::-/                                               |                                     |                                     |                                                              | <u> </u>                                                    |                                                      |                                                                       | <u> </u>                                              | (6111)                       |                                                               | <u> </u>                                              |                                          | 10111)                                                     |
| 7.88E+08              | 195                                                  | 0.347                               | 0.321                               | 0.321                                                        | 0.156                                                       | 5.94E-09                                             | 0.917                                                                 | 5.45E-09                                              | 25.00                        | 0.45                                                          | 0.130                                                 | 0.320                                    | 4,000                                                      |
|                       | Area of                                              |                                     | •                                   |                                                              |                                                             |                                                      |                                                                       | Stratum                                               | Stratum                      | Stratum                                                       | Capillary                                             | Total                                    |                                                            |
|                       | enclosed                                             | Crack-                              | Crack                               | Enthalpy of                                                  | Henry's law                                                 | Henry's law                                          | Vapor                                                                 | Α                                                     | В.                           | , C                                                           | zone                                                  | overall                                  | D.W                                                        |
| Bidg.<br>ventilation  | space<br>below                                       | to-total<br>area                    | depth<br>below                      | vaporization at<br>ave. groundwater                          | constant at<br>ave. groundwater                             | constant at<br>ave. groundwater                      | viscosity at<br>ave. soil                                             | effective<br>diffusion                                | effective<br>diffusion       | effective<br>diffusion                                        | effective<br>diffusion                                | effective<br>diffusion                   | Diffusion path                                             |
| rate,                 | grade,                                               | ratio,                              | grade,                              | temperature,                                                 | temperature,                                                | temperature,                                         | temperature,                                                          | coefficient,                                          | coefficient,                 | coefficient,                                                  | coefficient,                                          | coefficient,                             | length,                                                    |
| Q <sub>building</sub> | A <sub>B</sub>                                       | η                                   | $Z_{crack}$                         | $\Delta H_{v,TS}$                                            | H <sub>TS</sub>                                             | H' <sub>TS</sub>                                     | μτς                                                                   | Deff                                                  | Deff                         | D <sup>eff</sup> c                                            | D <sup>eff</sup> cz                                   | $D^{eff}{}_{T}$                          | L <sub>d</sub>                                             |
| (cm³/s)               | (cm²)                                                | (unitless)                          | (cm)                                | (cal/mol)                                                    | (atm-m³/moi)                                                | (unitless)                                           | (g/cm-s)                                                              | (cm²/s)                                               | (cm²/s)                      | (cm²/s)                                                       | (cm²/s)                                               | (cm²/s)                                  | (cm)                                                       |
| 6.92E+04              | 1.06E+06                                             | 3.77E-04                            | 15                                  | 8,544                                                        | 5.05E-03                                                    | 2.17E-01                                             | 1.76E-04                                                              | 1.15E-02                                              | 0.00E+00                     | 0.00E+00                                                      | 4.45E-04                                              | 2.75E-03                                 | 195                                                        |
| 0.92E+04              | 1.002+00                                             | 3.772-04                            | 1 13                                | 0,344                                                        | 5.05E-03                                                    | 2.172-01                                             | 1.70E-04                                                              | 1.15E-02                                              | 0.002+00                     | 0.002+00                                                      | 4.435-04                                              | 2.73E-03                                 | 195                                                        |
|                       |                                                      |                                     |                                     |                                                              |                                                             | Exponent of                                          | Infinite                                                              |                                                       |                              |                                                               |                                                       |                                          |                                                            |
|                       |                                                      |                                     | Average                             | Crack                                                        |                                                             | equivalent                                           | source                                                                | Infinite                                              |                              |                                                               |                                                       |                                          |                                                            |
| Convection            | Source                                               | <b>.</b> .                          | vapor                               | effective                                                    |                                                             | foundation                                           | indoor                                                                | source                                                | Unit                         |                                                               |                                                       |                                          |                                                            |
| path                  | vapor                                                | Crack                               | flow rate                           | diffusion                                                    | Area of                                                     | Peclet                                               | attenuation                                                           | bldg.                                                 | risk                         | Reference                                                     |                                                       |                                          |                                                            |
| length,               | conc.,                                               | radius,                             | into bldg.,                         | coefficient,                                                 | crack,                                                      | number,                                              | coefficient,                                                          | conc.,                                                | factor,                      | conc.,                                                        |                                                       |                                          |                                                            |
| L <sub>p</sub>        | C <sub>source</sub>                                  | F <sub>crack</sub>                  | Q <sub>soli</sub>                   | D <sup>crack</sup>                                           | A <sub>crack</sub>                                          | exp(Pe <sup>r</sup> )                                | α                                                                     | Chuilding                                             | URF                          | RfC                                                           |                                                       |                                          |                                                            |
| (cm)                  | (μg/m³)                                              | (cm)                                | (cm³/s)                             | (cm²/s)                                                      | (cm <sup>2</sup> )                                          | (unitless)                                           | (unitless)                                                            | (µg/m³)                                               | (μg/m³) <sup>-1</sup>        | (mg/m³)                                                       |                                                       |                                          |                                                            |
| 15                    | 1.08E+02                                             | 0.10                                | 8.33E+01                            | 1.15E-02                                                     | 4.00E+02                                                    | 5.15E+78                                             | 1.83E-04                                                              | 1.98E-02                                              | 1.1E-04                      | 3.5E-02                                                       | 1                                                     |                                          |                                                            |
| 1 10                  | 1.000702                                             | 0.10                                | 0.335701                            | 1.136-02                                                     | 4.00=+02                                                    | J.   DE₹/0                                           | 1.03E-U4                                                              | 1.905-02                                              | 1.1E-04                      | 3.35-02                                                       | ı                                                     |                                          |                                                            |

**RESULTS SHEET** 

## INCREMENTAL RISK CALCULATIONS:

| Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (μg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(µg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| NA                                                   | NA                                                      | NA                                                   | 1.47E+06                                                 | NA                                                             | [ | 5.3E-07                                                                    | 3.9E-04                                                                      |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

**PRG SHEET** 

### INCREMENTAL RISK CALCULATIONS:

|   | Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(mg/L) | Indoor<br>exposure<br>groundwater<br>conc.,<br>noncarcinogen<br>(mg/L) | Risk-based indoor exposure groundwater conc., (mg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Final indoor exposure groundwater conc., (mg/L) | risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---|---------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| ٦ | 9.38E-01                                                            | 1.29E+03                                                               | 9.38E-01                                             | 1.47E+06                                                 | 9.38E-01                                        | NA                                                             | NA                                                                           |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

SCROLL DOWN TO "END"

#### DATA ENTRY SHEET

| GW-ADV<br>/ersion 3.1; 02/04 | CALCULATE RI                             | SK-BASED GROU                                                        | JNDWATER CON                              | CENTRATION (                                                                    | enter "X" in "YES"                       | box)                                                    |                                           |                                                         |                                                   |                                              |                                     |                             |
|------------------------------|------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------------------|----------------------------------------------|-------------------------------------|-----------------------------|
| Reset to                     |                                          | YES                                                                  | OR                                        |                                                                                 |                                          |                                                         |                                           |                                                         |                                                   |                                              |                                     |                             |
| Defaults                     | CALCULATE IN                             | CREMENTAL RIS                                                        | KS FROM ACTUA                             | L GROUNDWA                                                                      | TER CONCENTRA                            | ATION (enter "X" in "Y                                  | ES" box and initial gro                   | oundwater conc. b                                       | elow)                                             |                                              |                                     |                             |
|                              |                                          | YES                                                                  | X                                         | ]                                                                               |                                          |                                                         |                                           |                                                         | •                                                 |                                              |                                     |                             |
|                              | ENTER<br>Chemical                        | ENTER<br>Initial                                                     |                                           |                                                                                 |                                          |                                                         |                                           |                                                         |                                                   |                                              |                                     |                             |
|                              | CAS No.                                  | groundwater<br>conc.,<br>C <sub>w</sub>                              |                                           |                                                                                 |                                          |                                                         | • '                                       |                                                         |                                                   |                                              |                                     |                             |
|                              | no dashes)                               | (μg/L)                                                               | <u>.</u>                                  |                                                                                 | Chemical                                 |                                                         | •                                         |                                                         |                                                   |                                              |                                     |                             |
|                              | 79016                                    | 5.00E-01                                                             | ] .                                       |                                                                                 | Trichloroethy                            | iene                                                    | ]                                         |                                                         |                                                   |                                              |                                     |                             |
| MORE                         | ENTER<br>Average                         | ENTER<br>Depth                                                       | ENTER                                     | ENTER<br>Totals m                                                               | ENTER ust add up to value                | ENTER<br>of L <sub>wt</sub> (cell G28)                  | ENTER                                     | ENTER                                                   | ENTER<br>Soil                                     | <del></del>                                  | ENTER                               | 7                           |
| <u> </u>                     | soil/<br>groundwater                     | below grade<br>to bottom<br>of enclosed                              | Depth<br>below grade                      | Thickness<br>of soil                                                            | Thickness<br>of soil<br>stratum B,       | Thickness<br>of soil                                    | Soil                                      |                                                         | stratum A<br>SCS                                  |                                              | User-defined stratum A              |                             |
|                              | temperature,<br>T <sub>s</sub>           | space floor,<br>L <sub>F</sub>                                       | to water table,<br>L <sub>wt</sub>        | stratum A,                                                                      | (Enter value or 0)                       | stratum C,<br>(Enter value or 0)<br>h <sub>C</sub>      | stratum<br>directly above<br>water table, | SCS<br>soil type<br>directly above                      | soil type<br>(used to estimate                    | OR                                           | soil vapor<br>permeability,         |                             |
|                              | (°C)                                     | (cm)<br>15                                                           | (cm)                                      | (cm)                                                                            | (cm)                                     | (cm)                                                    | (Enter A, B, or C)                        | water table                                             | soil vapor<br>permeability)                       |                                              | k <sub>v</sub><br>(cm²)             |                             |
| . '                          | <u> </u>                                 | 13                                                                   | 210                                       | 210                                                                             | 00                                       | 0                                                       | Α                                         | SL                                                      | SL                                                |                                              | <u></u>                             |                             |
| MORE ¥                       | ENTER<br>Stratum A<br>SCS                | ENTER<br>Stratum A<br>soil dry                                       | ENTER<br>Stratum A<br>soil total          | ENTER<br>Stratum A<br>soil water-filled                                         | ENTER<br>Stratum B<br>SCS                | ENTER<br>Stratum B<br>soil dry                          | ENTER<br>Stratum B                        | ENTER<br>Stratum B                                      | ENTER<br>Stratum C                                | ENTER<br>Stratum C                           | ENTER<br>Stratum C                  | ENTER<br>Stratum C          |
|                              | Soil type  Lookup Soil Parameters        | bulk density,<br>ρ <sub>ь</sub> <sup>A</sup><br>(g/cm <sup>3</sup> ) | porosity,<br>n <sup>A</sup><br>(unitless) | porosity,<br>θ <sub>w</sub> <sup>A</sup><br>(cm <sup>3</sup> /cm <sup>3</sup> ) | Soil type  Lookup Soil Parameters        | bulk density,<br>ρ <sub>b</sub> <sup>B</sup>            | soil total<br>porosity,<br>n <sup>8</sup> | soil water-filled porosity, θ <sub>w</sub> <sup>B</sup> | SCS<br>sail type                                  | soil dry<br>bulk density,<br>Pb <sup>C</sup> | soil total porosity, n <sup>C</sup> | soil water-filled porosity, |
|                              | SL                                       | 1.50                                                                 | 0.450                                     | 0.103                                                                           | s                                        | (g/cm³)                                                 | (unitiess)                                | (cm³/cm³)                                               | Parameters                                        | (g/cm³)                                      | (unitless)                          | (cm³/cm³)                   |
|                              | ENTER                                    | ENTER                                                                | ENTER                                     | ENTER                                                                           | ENTER                                    | 1.66                                                    | 0.375                                     | 0.054                                                   | 8                                                 | 1.66                                         | 0.375                               | 0.054                       |
| MORE +                       | Enclosed<br>space<br>floor<br>thickness, | Soil-bidg.<br>pressure                                               | Enclosed<br>space<br>floor                | Enclosed space floor                                                            | Enclosed space                           | ENTER Floor-wall seam crack                             | ENTER<br>Indoor<br>air exchange           |                                                         | ENTER Average vapor flow rate into bldg.          |                                              |                                     |                             |
| _                            | L <sub>creck</sub><br>(cm)               | differential,<br>ΔP<br>(g/cm-s²)                                     | length,<br>L <sub>B</sub><br>(cm)         | width,<br>W <sub>s</sub><br>(cm)                                                | height,<br>H <sub>B</sub><br>(cm)        | width,<br>w                                             | rate,<br>ER                               | Le                                                      | OR<br>ave blank to calculate<br>Q <sub>ioli</sub> | •                                            |                                     |                             |
|                              | 10                                       | 40                                                                   | 1000                                      | 1000                                                                            | 300                                      | (cm)<br>0.1                                             | (1/h)                                     |                                                         | (L/m)                                             |                                              |                                     |                             |
| MORE                         | ENTER<br>Averaging                       | ENTER<br>Averaging                                                   | ENTER                                     | ENTER                                                                           | ENTER                                    | ENTER                                                   | 0.83                                      | L                                                       | 5                                                 |                                              |                                     |                             |
|                              | time for                                 | time for<br>oncarcinogens,<br>AT <sub>NC</sub>                       | Exposure<br>duration,<br>ED               | Exposure<br>frequency,<br>EF                                                    | Target<br>risk for<br>carcinogens,<br>TR | Target hazard<br>quotient for<br>noncarcinogens,<br>THQ |                                           |                                                         |                                                   |                                              |                                     |                             |
|                              | 70                                       | (yrs)<br>25                                                          | (yrs)<br>25                               | (days/yr)                                                                       | (unitless)                               | (unitless)                                              |                                           |                                                         |                                                   |                                              |                                     |                             |
| END                          |                                          | -                                                                    |                                           | 230                                                                             | 1.0E-06  Used to calcula groundwater c   | 1<br>ate risk-based<br>oncentration.                    |                                           |                                                         | •                                                 |                                              | ;                                   |                             |

# CHEMICAL PROPERTIES SHEET

| Diffusivity<br>in air,<br>D <sub>a</sub><br>(cm <sup>2</sup> /s) | Diffusivity<br>in water,<br>D <sub>w</sub><br>(cm <sup>2</sup> /s) | Henry's<br>law constant<br>at reference<br>temperature,<br>H<br>(atm-m³/mol) | Henry's<br>law constant<br>reference<br>temperature,<br>T <sub>R</sub><br>(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal<br>boiling<br>point,<br>T <sub>B</sub><br>(°K) | Critical<br>temperature,<br>T <sub>C</sub><br>(°K) | Organic<br>carbon<br>partition<br>coefficient,<br>K <sub>oc</sub><br>(cm <sup>3</sup> /g) | Pure<br>component<br>water<br>solubility,<br>S<br>(mg/L) | Unit<br>risk<br>factor,<br>URF<br>(µg/m³) <sup>-1</sup> | Reference<br>conc.,<br>RfC<br>(mg/m³) |
|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| 7.90E-02                                                         | 9.10E-06                                                           | 1.03E-02                                                                     | 25                                                                             | 7,505                                                                            | 360.36                                                | 544.20                                             | 1.66E+02                                                                                  | 1.47E+03                                                 | 2.0E-06                                                 | 6.0E-01                               |

#### INTERMEDIATE CALCULATIONS SHEET

|   | Exposure<br>duration,<br>t<br>(sec)                                            | Source-<br>building<br>separation,<br>L <sub>T</sub><br>(cm)                            | Stratum A<br>soil<br>air-filled<br>porosity,<br>$\theta_a^A$<br>(cm³/cm³) | Stratum B<br>soil<br>air-filled<br>porosity,<br>$\theta_a^B$<br>(cm³/cm³) | Stratum C<br>soil<br>air-filled<br>porosity,<br>e <sub>a</sub> c<br>(cm³/cm³)         | Stratum A<br>effective<br>total fluid<br>saturation,<br>Ste<br>(cm³/cm³)           | Stratum A<br>soil<br>intrinsic<br>permeability,<br>k <sub>i</sub><br>(cm²)                       | Stratum A<br>soil<br>relative air<br>permeability,<br>k <sub>rg</sub><br>(cm <sup>2</sup> ) | Stratum A<br>soil<br>effective vapor<br>permeability,<br>k,<br>(cm²) | Thickness of capillary zone,  L <sub>cz</sub> (cm)                                            | Total<br>porosity in<br>capillary<br>zone,<br>n <sub>cz</sub><br>(cm³/cm³)         | Air-filled porosity in capillary zone, θ <sub>a,cz</sub> (cm³/cm³)                                  | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³)                     | Floor-<br>wall<br>seam<br>perimeter,<br>X <sub>crack</sub><br>(cm) |
|---|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|   | 7.88E+08                                                                       | 195                                                                                     | 0.347                                                                     | 0.321                                                                     | 0.321                                                                                 | 0.156                                                                              | 5.94E-09                                                                                         | 0.917                                                                                       | 5.45E-09                                                             | 25.00                                                                                         | 0.45                                                                               | 0.130                                                                                               | 0.320                                                                                  | 4,000                                                              |
|   |                                                                                |                                                                                         |                                                                           |                                                                           |                                                                                       |                                                                                    | , , , , , , , , , , , , , , , , , , , ,                                                          |                                                                                             |                                                                      | 20.00                                                                                         | 0.40                                                                               | 0.150                                                                                               | 0.320                                                                                  | 4,000                                                              |
| _ | Bidg.<br>ventilation<br>rate,<br>Q <sub>building</sub><br>(cm <sup>3</sup> /s) | Area of<br>enciosed<br>space<br>below<br>grade,<br>A <sub>B</sub><br>(cm <sup>2</sup> ) | Crack-<br>to-total<br>area<br>ratío,<br>η<br>(unitless)                   | Crack<br>depth<br>below<br>grade,<br>Z <sub>crack</sub><br>(cm)           | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature, H <sub>TS</sub> (atm-m³/mol) | Henry's law<br>constant at<br>ave. groundwater<br>temperature,<br>H' <sub>TS</sub><br>(unitless) | Vapor viscosity at ave. soil temperature,  µts (g/cm-s)                                     | Stratum A effective diffusion coefficient, Deff A (cm²/s)            | Stratum B effective diffusion coefficient, D <sup>eff</sup> <sub>B</sub> (cm <sup>2</sup> /s) | Stratum C effective diffusion coefficient, D <sup>eff</sup> c (cm <sup>2</sup> /s) | Capillary zone effective diffusion coefficient, D <sup>eff</sup> <sub>c2</sub> (cm <sup>2</sup> /s) | Total overall effective diffusion coefficient, D <sup>eff</sup> T (cm <sup>2</sup> /s) | Diffusion<br>path<br>length,<br>L <sub>d</sub><br>(cm)             |
| Г | 6.92E+04                                                                       | 1.06E+06                                                                                | 3.77E-04                                                                  | 15                                                                        | 8,544                                                                                 | 5.05E-03                                                                           | 2.17E-01                                                                                         | 1.76E-04                                                                                    | 4 4 5 5 00 1                                                         |                                                                                               |                                                                                    |                                                                                                     |                                                                                        |                                                                    |
|   | Convection path length,                                                        | Source<br>vapor<br>conc.,                                                               | Crack<br>radius,                                                          | Average vapor flow rate into bldg.,                                       | Crack<br>effective<br>diffusion<br>coefficient.                                       | Area of crack,                                                                     | Exponent of equivalent foundation Peclet number,                                                 | Infinite source indoor attenuation coefficient,                                             | Infinite source bldg. conc.,                                         | 0.00E+00  Unit risk factor,                                                                   | 0.00E+00  Reference conc.,                                                         | 4.45E-04                                                                                            | 2.75E-03                                                                               | 195                                                                |
|   | L <sub>p</sub><br>(cm)                                                         | C <sub>source</sub><br>(μg/m³)                                                          | r <sub>crack</sub><br>(cm)                                                | Q <sub>soil</sub><br>(cm³/s)                                              | D <sup>crack</sup><br>(cm²/s)                                                         | A <sub>crack</sub><br>(cm²)                                                        | exp(Pe <sup>f</sup> )<br>(unitless)                                                              | α<br>(unitless)                                                                             | C <sub>building</sub><br>(μg/m³)                                     | URF<br>(μg/m <sup>3</sup> ) <sup>-1</sup>                                                     | RfC<br>(mg/m³)                                                                     |                                                                                                     |                                                                                        |                                                                    |
|   | 15                                                                             | 1.08E+02                                                                                | 0.10                                                                      | 8.33E+01                                                                  | 1.15E-02                                                                              | 4.00E+02                                                                           | 5.15E+78                                                                                         | 1.83E-04、                                                                                   | 1.98E-02                                                             | 2.0E-06                                                                                       | 6.0E-01                                                                            |                                                                                                     |                                                                                        |                                                                    |

## RESULTS SHEET

## RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

## **INCREMENTAL RISK CALCULATIONS:**

| Indoor<br>exposure<br>groundwater<br>conc.,<br>carcinogen<br>(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure<br>component<br>water<br>solubility,<br>S<br>(μg/L) | Final<br>indoor<br>exposure<br>groundwater<br>conc.,<br>(µg/L) |   | risk from vapor intrusion to indoor air, carcinogen (unitless) | quotient from vapor intrusion to indoor air, noncarcinogen (unitless) |
|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---|----------------------------------------------------------------|-----------------------------------------------------------------------|
| NA                                                                  | NA                                                      | NA                                                   | 1.47E+06                                                 | NA                                                             | ] | 9.7E-09                                                        | 2.3E-05                                                               |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)

SCROLL DOWN TO "END"

PRG SHEET

### INCREMENTAL RISK CALCULATIONS:

| Indoor               | Indoor                  | Risk-based         | Pure             | Final            |   | Incremental risk from    | Hazard quotient             |
|----------------------|-------------------------|--------------------|------------------|------------------|---|--------------------------|-----------------------------|
| exposure             | exposure                | indoor             | component        | indoor           |   | vapor                    | from vapor                  |
| groundwater          | groundwater             | exposure           | water            | exposure         |   | intrusion to             | intrusion to                |
| conc.,<br>carcinogen | conc.,<br>noncarcinogen | groundwater conc., | solubility,<br>S | groundwater      |   | indoor air,              | indoor air,                 |
| (mg/L)               | (mg/L)                  | (mg/L)             | (mg/L)           | conc.,<br>(mg/L) |   | carcinogen<br>(unitless) | noncarcinogen<br>(unitless) |
|                      |                         |                    |                  |                  | : |                          |                             |
| 5.16E+01             | 2.21E+04                | 5.16E+01           | 1.47E+06         | 5.16E+01         |   | NA                       | NA                          |

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"